
MICRO: A Multilevel Caching-Based
Reconstruction Optimization
for Mobile Storage Systems

Tao Xie, Member, IEEE, and Hui Wang

Abstract—High performance, highly reliable, and energy-efficient storage systems are essential for mobile data-intensive applications

such as remote surgery and mobile data center. Compared with conventional stationary storage systems, mobile disk-array-based

storage systems are more prone to disk failures due to their severe application environments. Further, they have a very limited power

supply. Therefore, data reconstruction algorithms which are executed in the presence of disk failure for mobile storage systems must

be performance-driven, reliability-aware, and energy-efficient. Unfortunately, existing reconstruction schemes cannot fulfill these three

goals simultaneously because they largely overlook the fact that mobile disks have much higher failure rates than stationary disks.

Besides, they normally ignore energy saving. In this paper, we develop a novel reconstruction strategy, called multilevel caching-based

reconstruction optimization (MICRO), which can be applied to RAID-structured mobile storage systems to noticeably shorten

reconstruction times and user response times while saving energy. MICRO collaboratively utilizes storage cache and disk array

controller cache to diminish the number of physical disk accesses caused by reconstruction. Experimental results demonstrate that,

compared with two representative algorithms, DOR and PRO, MICRO reduces reconstruction times on average by 20.22 percent and

9.34 percent, while saving energy by no less than 30.4 percent and 13 percent, respectively.

Index Terms—Reconstruction algorithm, mobile storage system, multilevel caching, energy efficiency, RAID structure.

Ç

1 INTRODUCTION

TRADITIONALLY, disk-array-based storage systems are
stationary in the sense that they are normally installed

in data centers where air conditioning, uninterrupted
power supplies, backup systems, and physical security are
provided. Still, there are many situations where mobile
disk-array-based storage systems are gradually becoming
desirable and even indispensable. Here, we define a mobile
storage system as an array of small form factor hard disks
organized in RAID structures and connected to a host by a
storage interface like serial-attached SCSI (SAS) in a mobile
computing environment. Due to their severe application
environments, mobile storage systems must be energy-
efficient, extremely reliable, highly fault-tolerant, and
physically robust.

A typical application scenario of mobile storage system is a

mobile data center. Mobile data centers are an alternative to

conventional stationary data centers that are enclosed in
buildings. They could be built on self-contained trucks,

airplanes, or ships that contain onboard generators, UPS,

multiple high-capacity servers, and satellite Internet links
[23]. Obviously, mobile storage systems located in mobile

data centers are essential for applications such as disaster

recovery, live video broadcast [20], and homeland security.
For example, an NAAT Mobile Emergency Datacenter (MED)
can accommodate up to 100 fully charged laptops, multiple
high-performance servers, and a large capacity storage
system with multiple terabytes of data in a 20-25 ft truck
[23]. In this emergency-oriented application, mobile storage
systems are indispensable because they can provide not only
huge storage capacities but also quick response times. In fact,
micro hard disk drives for mobile storage systems recently
emerged in the HDD market. For instance, an Imation Micro
Hard Drive can provide up to a 4 Gbyte capacity with a 0.85 in
diameter and 0.84 oz weight [31] and a Seagate ST1 1-in Hard
Disk Drive can offer up to a 12 Gbyte capacity [2], even though
the applications of mobile disk arrays illustrated above are
still in their infancy in terms of development and deployment.
Nevertheless, we believe that they will become prevalent in
the not-so-distant future due to the real needs of mobile data-
intensive applications, high wireless network bandwidth,
and advances of hard disk technology.

Mobile disk array, however, faces several new challenges
that were not encountered by their stationary counterparts
before, as explained below:

. Stringent reliability requirements. The reliability
requirements for both mobile disk arrays and the
data they store are much higher than stationary disk
arrays. Data sampled from mobile and dynamic
environments is most likely irreproducible and,
thus, data loss is completely unacceptable. To
improve data reliability, an efficient data recovery
mechanism is a must. Besides, no or a very small
number of spare disks can be carried in a mobile
system due to the limited space. As a result, it is very

1386 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

. T. Xie is with the Department of Computer Science, San Diego State
University, 5500 Campanile Drive, GMCS 544, San Diego, CA 92182.
E-mail: xie@cs.sdsu.edu.

. H. Wang is with Ortiva Wireless Inc., 4225 Executive Sq., La Jolla, CA
92037. E-mail: jackawang@gmail.com.

Manuscript received 22 July 2007; revised 5 Jan. 2008; accepted 14 Apr. 2008;
published online 25 Apr. 2008.
Recommended for acceptance by B. Veeravalli.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-07-0360.
Digital Object Identifier no. 10.1109/TC.2008.76.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

difficult, if not impossible, to obtain a backup disk
once a mobile disk is corrupt.

. High demands on fault tolerance. Mobile disk
arrays are more prone to failures than stationary
ones because of their harsh application and opera-
tional environments. Consequently, mobile disk
arrays should be able to gracefully degrade their
performance in the event of the failure of some of
their components.

. Very limited power supply. In contrast to tradi-
tional static storage systems located in data center
buildings where electrical power is guaranteed,
mobile storage systems only have a very limited
power supply provided by either gasoline genera-
tors or batteries. Although disk arrays, mobile or not,
demand energy conservation to save on the cost of
electricity and cooling and to reduce the impact of
high operating temperatures on the stability and
reliability of the components [9], energy saving
becomes more critical for mobile storage systems
because their energy consumption can significantly
affect the lifetime of the entire mobile systems of
which they are a part.

Unfortunately, existing reconstruction algorithms re-
ported in the literature [11], [18], [32] targeted only
traditional stationary storage systems and thus largely
overlooked the three new challenges imposed by mobile
storage systems. Although they concentrate on minimizing
the reconstruction time and alleviating performance degra-
dation during the recovery process, they are inadequate for
mobile storage systems. The reason is twofold. First, they
are not aware of the fact that mobile disks have much
higher failure rates than stationary disks. Consequently, the
length of the reconstruction time (or “window of vulner-
ability”) they achieved might not be sufficiently short for
mobile storage systems, where the probability of a sub-
sequent disk failure during a reconstruction process is not
negligible. Second, they normally ignore energy saving.
Although disk recovery is not a frequent event compared
with normal operating mode, three facts, however, can
dramatically increase the occurrence of the recovery mode.
The first fact is that the more than one million hours
datasheet Mean Time Between Failure (MTBF) specified by
disk manufacturers is unrealistic. Schroeder and Gibson
found that the annual disk replacement rates in the field are
usually in the range of 2 percent to 4 percent and up to
13 percent, which are much higher than than manufac-
turers’ datasheet annual failure rate (e.g., 0.88 percent for
disks with 1,000,000 hours MTBF) [27]. The second fact is
that, compared with their static counterparts, mobile disk
arrays generally operate in a much worse environment,
which could result in an even higher annual disk replace-
ment rate. The third fact is that, nowadays, computer
systems grow larger and larger and, thus, storage systems
scale up significantly. A large-scale storage system with
tens of thousands or more disks could expect a very high
overall failure rate [32]. For example, in a petabyte-scale file
system, disk failure will be a daily occurrence [35]. Thus, we
argue that disk recovery is not a rare case in large-scale
mobile storage systems. Moreover, the time to rebuild a

single disk has lengthened and can be on the order of
several hours or even longer [27] as increases in disk
capacity far outpace increases in disk bandwidth [32].
Therefore, disk recovery, a nonrare and slow event,
warrants an investigation in energy saving. In summary, a
new high-performance, reliability-aware, and energy-effi-
cient data construction strategy is needed for mobile storage
systems.

In this paper, we propose a novel reconstruction
strategy, called multilevel caching-based reconstruction
optimization (MICRO), which can be applied to RAID-
structured mobile storage systems to noticeably shorten
reconstruction times and user response times during disk
recovery while saving energy. The basic idea of MICRO is
to collaboratively utilize storage cache and disk array
controller cache to diminish the number of physical disk
accesses caused by reconstruction. In addition, MICRO
leverages on recent request access locality information,
which is periodically collected before disk failure, to predict
the workload access pattern during the reconstruction
process. To the best of our knowledge, little research work
has been directed toward integrating multilevel caching
into the reconstruction algorithm for mobile storage
systems. Most of the existing reconstruction algorithms
perform either stripe-oriented [14] or disk-oriented [11], [32]
parallel reconstruction processes. Exploiting the multilevel
caches provided in modern storage systems, the MICRO
strategy reconstructs popular data of the failed disk without
accessing surviving disks and thus obtains a shorter
reconstruction time, a more graceful performance degrada-
tion, and energy efficiency.

Extensive experimental results demonstrate that, com-
pared with existing data construction algorithms, MICRO
leads to a much quicker reconstruction time and a shorter
user response time during disk recovery while noticeably
saving energy. Specifically, compared with the well-known
algorithm Disk-Oriented Reconstruction (DOR) [11] and a
state-of-the-art scheme Popularity-based Multithreaded
Reconstruction (PRO) [32], MICRO reduces reconstruction
time by up to 20.46 percent and 9.61 percent, decreases
mean response time during recovery on average by
46.59 percent and 26.91 percent, while saving energy by
no less than 30.4 percent and 13 percent, respectively. The
rest of this paper is organized as follows: In Section 2, we
discuss the related work and motivation. In Section 3, we
describe the design and implementation of the MICRO
strategy. In Section 4, we evaluate the performance of
MICRO based on synthetic benchmarks. Section 5 con-
cludes this paper with a summary and future directions.

2 RELATED WORK AND MOTIVATION

In this section, we first present the problem of data
reconstruction and its current solutions. Next, we discuss
multilevel cache architecture and its applications in high
performance storage systems. Last, we clarify the motiva-
tion of our research.

2.1 Existing Approaches

When a disk failure occurs, a parity-encoding-based RAID-
structured disk array can restore to the normal operating

XIE AND WANG: MICRO: A MULTILEVEL CACHING-BASED RECONSTRUCTION OPTIMIZATION FOR MOBILE STORAGE SYSTEMS 1387

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

state by successively rebuilding each block of the failed disk
onto a replacement drive while it continues to serve I/O
requests from users. This process is called reconstruction,
which is normally performed by a background process
activated in either the host or the array controller [13]. Since
the efficiency of reconstruction algorithms not only affects
the performance but also the reliability of storage systems
[35], much effort has been devoted to the development of
effective reconstruction schemes to maintain system relia-
bility and to minimize the performance degradation [11],
[13], [14], [18], [32]. Existing solutions to the reconstruction
problem generally fall into two categories: data layout
reorganization and reconstruction workflow optimization
[32].

Traditional data layouts like RAID-5 significantly de-
grade performance in terms of response times during
reconstruction process because the workload of each
surviving disk increases by 100 percent during disk
recovery [13]. To solve this problem, Muntz and Lui [24]
suggested a data placement scheme called declustering,
where each stripe is mapped to just k of the n disks in an
array (k � n). The declustering scheme largely improves
performance during both degraded operation and online
disk reconstruction because a smaller number of stripe units
need to be read during the reconstruction process. Further,
Holland and Gibson [12] evaluated the declustering
strategy by identifying six desirable properties for ideal
layouts. Based on the six properties, Alvarez et al. presented
a complete characterization of the collection of ideal
declustered layouts possessing all six properties [1]. In
addition, they developed two novel layout algorithms,
PRIME and PELPR, which can tolerate multiple failures in a
wide range of configurations. Considering large-scale
distributed storage systems, Xin et al. presented FARM, a
distributed recovery approach that exploits excess disk
capacity and reduces data recovery time [34]. In addition,
they examined essential factors that influence storage
system reliability, performance, and cost.

The second category of existing reconstruction algo-
rithms strives to improve reliability and alleviate perfor-
mance degradation by optimizing reconstruction workflow.
Compared with approaches in the first category, schemes in
this camp possess an obvious advantage because there is no
need for them to alter the data layout of widely used RAID
installations. Stripe-Oriented Reconstruction (SOR) [13] and
DOR [11] are two representative approaches in this
category. Although both algorithms exploit parallelism to

speed up the reconstruction process, the parallel processes
they generate target different sources. Specifically, SOR
creates a set of reconstruction processes associated with
stripes, whereas DOR generates a group of processes with
each corresponding to one disk. Holland et al. [13]
demonstrate that DOR outperforms SOR in failure recovery
time with only a small degradation in user response time
during failure recovery. The improvement of DOR comes
from a much more efficient utilization of the disk array’s
excess disk bandwidth. Sivathanu et al. designed D-GRAID,
a gracefully degrading and quickly recovering RAID
storage array which ensures that most files within the file
system remain available even when an unexpectedly high
number of faults occur [30]. Very recently, Tian et al. [32]
proposed and evaluated a novel dynamic data construction
optimization algorithm, PRO, which allows the reconstruc-
tion process to rebuild the frequently accessed areas prior to
rebuilding infrequently accessed areas to exploit access
locality. Essentially, the PRO scheme integrates workload
characteristics into workflow-based reconstruction process
to accomplish improvement of reliability and system
performance simultaneously.

2.2 Multilevel Cache in Storage Systems

Hierarchical cache subsystems, illustrated in Fig. 1, are
typical in modern storage systems for reliability and
performance purposes [22]. Generally, in a large-scale
storage system, there are three levels of caches: the storage
cache attached to a storage server, the disk array controller
cache associated with an array controller, and the disk drive
onboard buffer [16]. The storage cache is a nonvolatile array
of fast RAM that interfaces with other storage devices
through multiple high-performance interconnects, such as
Fiber Channel links, and its size varies from several
gigabytes to 128 Gbytes [38]. While the size of disk array
controller cache is normally in the range from 64 to
512 Mbytes [37], disk drives like SCSI disks only have a
1-4 Mbyte onboard buffer [38].

The majority of the existing work on multilevel storage
cache architectures focuses on the collaboration between
caches in client-side, like the IBM DB2 database server and
storage cache (level 1 in Fig. 1) to improve performance [6],
[33]. A common goal for these studies is to achieve exclusive
caching, in which data is cached at either a client or the
storage system but not both [33]. The first work integrating
storage cache with disk energy saving [38] proposed two
energy-aware cache replacement algorithms, PA-LRU and

1388 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

Fig. 1. Multilevel caches in a storage system.

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

PB-LRU, which use a single level storage cache to enlarge
the idle time interval of a standby disk in a disk array. Only
a little recent research targets energy saving by collabora-
tively using multilevel caches in storage systems. Yao and
Wang presented a redundancy-based two-level I/O cache
architecture called RIMAC to save energy without compro-
mising performance [37]. In addition, they proposed two
energy-aware read request transformation schemes (TRC
and TRD), which can be applied to optimize the disk I/O
access pattern such that the idle period of the standby disk
can be elongated for significant energy savings.

2.3 Motivations

Although a number of studies reported in the literature
have concentrated on how to improve storage system
reliability, performance, and energy efficiency by utilizing
caches in either single level or multilevel [6], [33], [37], [38],
none of them attempted to address the data reconstruction
issue by employing multilevel storage caches. On the other
hand, existing reconstruction algorithms mainly focus on
optimizing data layouts or reconstruction workflow, which
are all essentially disk-oriented in the sense that the read/
write access requests they generated during recovery are
served by physical disks. Based on insightful observations
made by the research work in multilevel storage caching
subsystems discussed above and by our own research, we
believe that collaborative utilization of multilevel storage
caches is a new avenue to solving the data reconstruction
problem because it can noticeably diminish the number of
disk accesses caused by disk recovery, thus enhancing
performance, improving reliability, and saving energy.

3 DESIGN AND IMPLEMENTATION OF MICRO

In this section, we first present an overview of the architecture
of a multilevel cache subsystem used by our MICRO
approach, which is followed by a detailed algorithm
description as well as a complexity analysis of MICRO.

3.1 Architecture Overview

Since the onboard buffer on current disk drives is very
small (from 64 Kbytes to 1 Mbyte), MICRO only uses the
level 1 (storage cache) and the level 2 (controller cache)
caches illustrated in Fig. 1. In a modern storage system like
EMC Symmetrix 5000 Enterprise Storage System, up to
128 Gbyte nonvolatile memory can be configured as the
storage cache [8]. Meanwhile, the size of the disk array
controller cache normally falls into the range from
64 Mbytes to several gigabytes. Considering that the storage
cache will be shared by multiple disk arrays, MICRO evenly
divides it into multiple partitions, with each being
dedicated to one disk array. Based on real-world settings,
for each disk array we assume that the total size of the two-
level caches varies from 1/4 to 4 Gbytes with the fixed size
of the level 2 cache being 128 Mbytes. In addition, we
consider a RAID-5 structure with read-only requests, which
is common in the Web search workload [29].

Fig. 2 displays the data organization in RAID-5 and the
cache placement scheme employed by MICRO. The size of a
basic unit to store data in the two levels of caches is
configured as the same size as a data unit in a RAID-5 disk

array. MICRO utilizes a request-driven storage cache
placement policy, which was also used in [37]. Only the
data units requested by users are placed into the storage
cache (level one). Meanwhile, a controller cache is used as a
second-level cache of its corresponding “storage cache
partition” in the storage cache (see Fig. 2). Since we only
consider read-only applications, there is no need to read the
parity data. As a result, only data units are stored in the
two-level caches. In this paper, each access to a file is a
sequential read of the entire file, which is a typical scenario
in most file systems or WWW servers [17]. In addition, a
user access is mapped to multiple stripes. In the normal
operation mode, if all data units necessary to satisfy a host
I/O request are in the storage cache, a Level One Read Hit
occurs and the data units are returned to the host without
searching the controller cache. Otherwise, the controller
cache will be searched to find the missing data units. In the
case where all missing data units are found in the second-
level cache, a Level Two Read Hit happens and the data units
are escalated to the storage cache. If the data units needed
are still missing from the controller cache, a Read Miss
occurs and the corresponding data is fetched by accessing
physical disks. In this situation, the data units from disks
are stored in the storage cache for future use. Both the
storage cache and the controller cache employ the simple
least recent used (LRU) replacement policy. When there is
no free room to accommodate a new data unit in the storage
cache, the LRU data unit in the storage cache will be moved
to the controller cache. Similarly, when there is no free
space to hold newly incoming data units from the storage
cache, the controller cache will evict its LRU data units.
While data units in the storage cache are the most popular
data requested by clients, data stored in the controller cache
is second in terms of popularity. In Fig. 2, we can see that
the data units of the first stripe (units 1, 2, 3) are in the
storage cache, whereas data units 9, 7, 8 of the third stripe
reside in the controller cache. The capacity of a storage

XIE AND WANG: MICRO: A MULTILEVEL CACHING-BASED RECONSTRUCTION OPTIMIZATION FOR MOBILE STORAGE SYSTEMS 1389

Fig. 2. MICRO cache usage example.

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

cache portion associated with one disk array is much larger
than the array controller’s local cache.

3.2 Implementations

From the beginning of serving I/O requests, MICRO
launches a Popularity Evaluator (PE) process to record
each file’s popularity in terms of number of accesses within
one epoch in a table called File Popularity Table (FPT). The
FPT, which maintains the latest popularity information for
each stripe set corresponding to each file, will be used later
by Reconstruction Data Fetcher (RDF) processes to guide
their reading sequence of reconstruction data from surviv-
ing disks. When one of the disks in a disk array fails, the
MICRO strategy is activated in the array controller
automatically. There are two phases in a MICRO-based
reconstruction process: the dumping phase and the
rebuilding phase. When a disk failure occurs, MICRO
activates a Data Dumper (DD) process, which first dumps
all of the data units from the failed disk in the local
controller cache to a replacement disk. Next, all data units
from the failed disk in the storage cache partition will be
transferred into the local controller cache, from where they
are eventually written onto the replacement disk. While
transferring cached data to the replacement disk, the DD
process records each dumped stripe set by changing its
“Dump” field in the FPT to 1. A sample FPT is given in
Table 1.

Note that a storage system only takes 20�s to determine if a
particular record is in cache [8]. As a result, the search time
caused by finding data from the failed disk in cache is ignored
in this study. In addition, since any transfers between the
storage cache and the controller cache are achieved at
electronic speeds that are a quantum leap faster than transfers
involving disks [8], the data transmission time between the
two levels of caches for reconstruction is omitted as well.
Besides, the data processing bandwidth between cache and
disk can be optimized up to 720 Mbytes/s in a modern
storage system [8], which implies a very short data
dumping (from the controller cache to the replacement
disk) time. By transferring part of the failed disk data units
directly from caches to the replacement disk, MICRO saves
disk accesses needed to rebuild these data units. On the
other hand, both DOR [11] and PRO [32] have to reconstruct
every single data unit of the failed disk. Thus, compared
with DOR and PRO, MICRO diminishes the number of disk
accesses caused by disk recovery.

After all cached data units from the failed disk are
restored in the replacement disk, MICRO enters into its
rebuilding phase. Fig. 3 shows the workflows for core

routines of MICRO. MICRO optimizes the reconstruction

workflow by fetching reconstruction data of popular stripe

sets from the failed disk prior to fetching reconstruction

data of unpopular stripe sets. In fact, two types of processes

run concurrently in a disk array with n disks when the disk

array is in its rebuilding phase. The disk array controller

creates n� 1 processes, called RDF. Each RDF process

associates with one surviving disk. In addition, a process

named Reconstructed Data Deliverer (RDD) is launched in

the disk array controller to write the reconstructed data

onto the replacement disk. The functions of RDF and RDD

are similar to those of the DOR algorithm [11] except for the

following difference: An RDF process always selects the

next most popular “under construction” unit rather than

choosing the next sequential unit as the DOR algorithm. The

workflow of PE, DD, RDF, and RDD is depicted as follows:

CC represents the controller cache and SC denotes the

1390 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

TABLE 1
A Sample File Popularity Table

Fig. 3. The MICRO algorithm.

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

storage cache. The interactions between the main compo-
nents of MICRO are shown in Fig. 4.

3.3 Overhead Analysis

In this section, we analyze the overhead of MICRO in terms
of space, time, and energy. While PE is always working in
the storage cache to periodically update the FPT, DD, RDF,
and RDD are running in the controller cache during tje
rebuilding phase after one disk fails. First of all, the sizes of
the execution codes of all components (PE, DD, RDF, and
RDD) in our MICRO strategy are small due to their simple
logic. In other words, they only consume a small portion of
the cache compared with the total cache size in gigabyte
scale. Second, in terms of memory usage, MICRO does not
need the extra memory required by the PRO algorithm for
the storage of the reconstruction thread descriptor [32].
More importantly, MICRO, unlike PRO, does not generate
reconstruction jobs. Therefore, the space overhead in terms
of n� 1 job queues associated with the n� 1 surviving
disks can be saved. Next, since MICRO adopts a similar
implementation methodology as DOR, its memory require-
ments are approximately those of DOR as well. The only
extra memory required by MICRO is two tables: FPT and a
temporary version of FPT (tFPT). However, as each record
in the FPT only possesses 10 bytes in our implementation,
for a file set with 5,000 files, the two tables use around
100 Kbyte cache memory in total, which is acceptable in
modern storage systems.

Although the PE module is running all the time in the
storage cache, its runtime overhead is trivial. Note that
Steps 4-7 (see Fig. 3) each only take Oð1Þ time to accomplish
and the FPT (see Table 1) is only around 50 Kbytes.
Executing the loop (Steps 3-8 in PE) in one epoch (1,000 s)

when the aggregate access rate is 100/s using a modern
3 GHz processor only requires 0.132 ms. In addition,
copying 50 Kbyte data from tFPT to FPT (Step 9 in Fig. 3)
only takes around 50 �s when the data transfer rate of the
fast RAM in the storage cache is 1 Gbyte/s (e.g., the peak
data transfer bandwidth for memory chip PC-266 DDR is
2.1 Gbytes/s [21]). Considering that, nowadays, the disk
recovery process could last several hours or even longer
due to the large amount of data [27], the risk of data loss
because of a second disk failure during the recovery
becomes high. Since data loss generally is prohibitively
expensive and sometimes even unacceptable, we believe
that paying PE’s runtime overhead on the order of
milliseconds to facilitate shrinking the reconstruction time,
which in turn shortens the “window of vulnerability,” is
definitely worthwhile. The time for transferring cached data
from the controller cache to the replacement disk and the
time for updating each cached file’s “Dump” field in the
FPT are dominant in total time consumed by the dumping
phase. Since there is only 64 Mbyte to 1 Gbyte data that
could be cached for a failed disk in a four-disk array with a
total of 1/4 to 4 Gbyte cache and data processing
bandwidth between cache and disk can be optimized up
to 720 Mbytes/s, the time for dumping cached data from
controller cache to the replacement disk is around 1.39 sec-
onds. Assume that, among the total m files in the storage
system, k files were cached before the disk failure occurs.
The time spent on updating each cached file’s “Dump”
status in FPT is OðkÞ, where k << m because of the very
limited size of the cache. Thus, the dumping time, which is
not necessary for DOR and PRO, is trivial in the whole
recovery time span. In the rebuilding phase, comparing
with PRO, MICRO obviously saves time because it does not
need to spend time in thread scheduling and job queue
operations (enqueue and dequeue). Compared with DOR,
MICRO requires extra time overhead Oðm� kÞ because it
consults the FPT for every noncached file’s reconstruction.

MICRO pays extra energy consumption caused by
dumping cached data from the controller cache to the
replacement disk and maintaining the FPT, which are not
necessary for both DOR and PRO. However, in what
follows, we demonstrate that the additional energy con-
sumption of MICRO is minimal. First of all, considering that
the typical energy consumption rate of the Seagate Cheetah
ST3146854LW disk drive is 17.5 W [28] and the time for
dumping cached data from the controller cache to the
replacement disk is around 1.39 seconds, the energy
consumption of the dumping process is around 24.3 J.
Next, the storage cache normally consists of static RAM
chips due to their high speed. Typical access time for
modern static RAM is on the order of 20-50 ns [10]. Besides,
these devices usually consume several hundred milliwatts
when they are in active mode [10]. In what follows, we will
use an illustrative example to show that the energy used for
maintaining the FPT is also negligible. For example, the
read cycle time and the write cycle time of the static RAM
IDT71V30 are only 25 ns, respectively [10]. In addition,
when it is in active mode, the energy consumption rate is
only 375 mW. Let us assume a heavy workload condition,
where 200 requests arrive every second (i.e., the aggregate

XIE AND WANG: MICRO: A MULTILEVEL CACHING-BASED RECONSTRUCTION OPTIMIZATION FOR MOBILE STORAGE SYSTEMS 1391

Fig. 4. The architecture of MICRO.

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

access rate is 200) and each request reads a file from the
beginning to the end. Therefore, every second, the PE
module needs to access the tFPT (see Fig. 3) 400 times
(200 times for reading the current number of accesses for
each visited file and 200 times for updating their access
numbers). Thus, the energy consumed by memory accesses
for updating the tFPT in 1 second is 400 � 25 � 10�9 � 375 �
10�3 ¼ 375 � 10�8 J. Consequently, the energy consumed by
maintaining the tFPT in one month is around 10.04 ð375 �
10�8 � 3;600 � 24 � 31 ¼ 10:044Þ J. In addition, copying
50 Kbyte (i.e., the size of the tFPT) data from tFPT to
FPT (Step 9 of the PE module in Fig. 3) once in every
epoch only takes around 50 �s. As a result, with an epoch
that is equal to 1,000 seconds, energy consumption caused
by copying 50 Kbyte data from tFPT to FPT is around 0.05
ð50 � 10�6 � 375 � 10�3 � ð3;600=1;000Þ � 24 � 31 ¼ 0:05022Þ J
in one month. Thus, the total monthly energy consump-
tion caused by maintaining the FPT is around 10.09 J. On
the other hand, as we explained in Section 1, the annual
disk replacement rates in the field are usually in the range
of 2 percent to 4 percent [27]. Let us assume a moderate
annual disk replacement rate of 3 percent for a mobile disk
array with a total of 384 disks (e.g., EMC Symmetrix 8000
can accommodate up to 384 disks in RAID-5 organization
[8]). Hence, around 12 ð384 � 3 percent ¼ 11:52Þ disks
among the 384 disks need to be replaced within one year,
which implies one occurrence of disk recovery every
month. Considering the energy saved by the MICRO
algorithm when compared with DOR and PRO during
one disk recovery process is on the order of 106 J (see Figs. 6,
7, 8, 9, and 10), 34.39 ð10:09þ 24:3 ¼ 34:39Þ J extra energy
overhead of MICRO in one month is trivial and can be
safely ignored.

4 PERFORMANCE EVALUATION

This section presents the results of a comprehensive experi-
mental study comparing the proposed MICRO strategy with
two existing algorithms, PRO and DOR, using extensive
simulations. Section 4.1 introduces the methodology utilized
in this study, including storage system configurations. A
detailed analysis of the characteristics of both synthetic
workloads and a real-world trace that have been employed in
our simulations is provided in Section 4.2. Experimental
results from synthetic simulations are discussed in Sec-
tions 4.3 and 4.4, which are then validated by a trace-driven
experiment presented in Section 4.5.

4.1 Methodology

While the DOR algorithm is well recognized as the most
effective existing reconstruction algorithm due to the fact
that it has been implemented in many real applications [11],
the PRO strategy represents the latest advances in storage
system reconstruction optimization [32]. In order to fully
examine our MICRO algorithm, we compare it with the
representative algorithm DOR as well as the state-of-the-art
strategy PRO in this simulation study. A brief introduction
of the two algorithms is presented below.

1. DOR (Disk-Oriented Reconstruction. In a disk
array with n disks, DOR activates n� 1 processes

associated with n� 1 surviving disks to sequentially
fetch reconstruction data and then put it in a
centralized buffer. In addition, one process dedi-
cated to the replacement disk repeatedly transfers
reconstructed data from the centralized buffer to the
replacement disk. The goal of DOR is to absorb all of
the array’s bandwidth that is not absorbed by users.
DOR is a classic heuristic that is widely used in real
applications.

2. PRO (Popularity-based Multithreaded Reconstruc-
tion). PRO reconstructs high-popularity data units of
a failed disk, which are the most frequently accessed
units in terms of the workload characteristics, prior
to reconstructing other units. Therefore, the PRO
algorithm has the potential to recover many units
ahead of users’ accesses with high probability to
avoid performance degradation caused by recovery.
The major difference between PRO and DOR is that
PRO optimizes the workflow of the reconstruction
procedure by utilizing workload localities, which
were not considered in DOR.

Note that neither DOR nor PRO employs multilevel
cache to facilitate their reconstruction processes. Moreover,
although both MICRO and PRO leverage access localities,
MICRO uses PE, which maintains a recent history of file
popularities from the beginning of the execution of an
application, to predict access pattern during the reconstruc-
tion process. On the other hand, PRO launches its Access
Monitor (AM) only after a disk failure occurs to establish
multiple hot zones based on the number of accesses in the
replacement disk, which burdens system load and delays
reconstruction progress.

We analyze reconstruction performance in terms of mean
response time during reconstruction, reconstruction time,
and energy consumption during disk recovery. The three
performance metrics are defined as follows:

. Mean Response Time: Average user response time in
milliseconds during the recovery process.

. Reconstruction Time: The time in seconds needed for
a disk array to recover from failure mode to normal
mode.

. Energy Consumption: The amount of energy in Joules
consumed by the reconstruction process.

We have developed an execution-driven simulator, called
the Cache-Aware Reconstruction SIMulator (CARSIM) 1.0,
which models a storage system with n disk arrays (see
Fig. 1). Each disk array is made up of m small form factor
mobile hard disks organized in a RAID-5 structure. Notice
that existing small form factor hard disk drives like Seagate
ST1.3 [2] and Imation Micro [31] are intended only for
consumer electronics. Generally, they have very low
capacities and performance. For example, the largest micro
hard disk, Seagate ST1.3, is only 12 Gbytes, with an effective
transfer rate of 10.2 Mbytes/s. Therefore, they are not
suitable for server-class mobile applications like a mobile
data center. However, based on hard disk technology
trends, one can reasonably conjecture that server-class
small form factor (less than 2 in) mobile hard disk drives
which can provide similar capacity and performance as

1392 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

current enterprise-level stationary disks like Seagate Chee-
tah ST3146854LW (3.5 in) will be available on the market in
the near future. Thus, our simulator CARSIM 1.0 employs
the parameters of the Seagate Cheetah ST3146854LW to
emulate a future mobile storage system. The main char-
acteristics of the simulation platform and the disk are
shown in Table 2. Energy-related parameters in Table 2 are
derived from [25]. In addition, two levels (Level 1 and
Level 2) of caches were simulated within CARSIM 1.0 as
well (see Fig. 1).

While the storage cache is controlled by a storage server
processor, a controller cache is managed by a RAID
controller. In our performance study, cache size refers to
the combinational size of the storage cache and the
controller cache associated with a disk array. In other
words, the cache size of a disk array is the sum of the size of
the disk array’s RAID controller cache and the size of one
storage cache partition (see Fig. 2). For simplicity, we set n
as 1, which implies that only one disk array exists in the
simulated storage system. The number of disks in the disk
array varies from 3 to 7 ð3 � m � 7Þ as modern storage
systems such as EMC Symmetrix prefer to utilize small-
scale (� 8 disks) disk arrays as building blocks [37]. We
choose cache size from 1/4 to 4 Gbytes with 128 Mbyte
fixed size for the controller cache, which approximates real-
world cache configurations in current storage systems [8].

Both synthetic workloads and a real-world trace were
used to drive the CARSIM simulator. The advantage of
using synthetic simulations is that the impacts of major
workload features on the reconstruction algorithms’ per-
formance can be examined. Trace-driven simulations,
however, can validate the experimental results obtained
from synthetic workloads.

4.2 Synthetic Workload Analysis

Since we are considering a Web server application running
in a mobile data center, we believe that Web I/O traces like
ClarkNet-HTTP [3] are appropriate to represent a typical
workload of a mobile disk array storage system. Therefore,
the main characteristics of the synthetic workload used in
Sections 4.3 and 4.4 are based on normal Web workloads.
Because workload characteristics directly influence data

reconstruction, we identified four key characteristics: skew
degree, aggregate access rate, base file size, and file size
distribution.

1. Skew degree. File popularity weight relates to the
frequency with which file requests arrive at the
disk array. Since the frequency of file access
usually exhibits a Zipf-like distribution, we assume
that the distribution of file access requests is a
Zipf-like distribution with a skew parameter
� ¼ log X

100 = log Y
100 , where X percent of all accesses

were directed toY percent of files. The value of X :Y is
called skew degree in this paper. In our simulations,
we tested four values of � with skew degree ðX :Y Þ
changing from 50:50 to 90:10. Since 70:30 is a realistic
assumption of the level of data skew [26] and it has
been widely used in the literature [4], [15], [19], [26],
we select it as the default value of skew degree in
our synthetic simulations.

2. Aggregate access rate. This is defined as the average
number of I/O requests arriving in a disk array per
second. Each file access represents a sequential read
of the entire file. Hence, the service time of a file
access request is proportional to the file’s size. We
assume that each file has a fixed request arrival rate,
�i, and the arrival interval times are exponentially
distributed. The aggregate access rate of the entire
system is defined as

P5;000
i¼1 �i. The value of the

aggregate access rate represents the intensity of the
total access requests submitted to the disk array
where 5,000 files have been assigned across. Note
that our PE has no knowledge of each file’s �i as a
prior. It dynamically records each file’s popularity in
terms of number of accesses within one epoch in the
FPT. We set an epoch to 1,000 seconds in our
simulations. Note that, when the aggregate access
rate is 88, the average request interarrival time is
11.36 ms, which is close to the interarrival pattern of
ClarkNet-HTTP [3].

3. Base file size. The base file size is the size of the
smallest file among all of the 5,000 files saved across
a disk array. The sizes of all of the other files can be
computed based on the file size distribution curve
shown in Fig. 5 since the file size in a Web
application usually varies from several kilobytes to
several megabytes. Besides, considering that the
stripe unit was set to 64 Kbytes, our selection of
base file size from 250 Kbytes to 4 Mbytes is
reasonable.

4. File size distribution. The distribution of access rates
across the files and the distribution of file sizes were
inversely correlated with the same skew parameter �,
as shown in Fig. 5. The file size distribution is
reasonable because the phenomena that popular files
are generally small ones can be frequently observed.

Note that the transfer rate (Table 2) of the disk combined
with the file size decides a file access request’s service time,
which in turn affects the mean response time. Table 3
summarizes the configuration parameters of a simulated
disk array used in our experiments and the characteristics
of the synthetic workload. All synthetic workloads used

XIE AND WANG: MICRO: A MULTILEVEL CACHING-BASED RECONSTRUCTION OPTIMIZATION FOR MOBILE STORAGE SYSTEMS 1393

TABLE 2
System Characteristics

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

from Section 4.2 to Section 4.3 were created by our trance
generator. Although cache size, skew degree, number of
disks, aggregate access rate, and size of files are syntheti-
cally generated, we examined their impacts on system
performance by controlling the parameters. All experiments
were conducted on a simulated RAID-5 disk array.

4.3 The Impact of Storage System Configurations

The goal of this experiment is to examine the impact of
storage system configurations on storage system perfor-
mance and energy consumption. More specifically, we
investigate the impact of the size of caches associated with a
disk array, as well as the impact of the number of disks in a
disk array.

Fig. 6 shows that MICRO outperforms the two existing
algorithms in all four performance metrics in all cases when
the cache size varies from 1/4 to 4 Gbytes. It is obvious that
MICRO gains more improvements with more caches being
used. On the other hand, all metrics of DOR and PRO are
kept constant because they do not exploit the two-level
caches. Compared with DOR and PRO, MICRO on average
decreases reconstruction time by 21.22 percent and
10.46 percent, respectively. Since, in a mobile disk-array-
based storage system, the possibility that a second disk
drive fails shortly after the first disk failure is higher than
the same size stationary storage system, it is very important
to shorten the reconstruction time to avoid a second disk
failure during the recovery of the first disk failure for the
sake of reliability and availability of the mobile storage
system. In terms of mean response time during reconstruc-
tion, MICRO on average improves by 55.23 percent and

36.61 percent. More importantly, MICRO saves energy by at
least 32.69 percent and 15.86 percent compared with the two
current approaches. We attribute the performance improve-
ments and energy savings to the shortened reconstruction
time and the reduced number of disk accesses during the
recovery process. The larger the caches are, the more
popular data can be cached and, thus, their corresponding
requests can be served in the caches.

We then evaluated the impact of the number of disks in
an array. Fig. 7 demonstrates that the reconstruction time
and mean response time decrease when the number of disks
increases. This is because more surviving disks can share
the workload caused by normal I/O requests and recon-
struction I/O requests. Energy consumption, however, goes
down slightly because of more working disks in the array.
The performance improvements gained by MICRO become
less because, with a greater number of disks, fewer files can
be cached in the two-level caches.

4.4 The Impact of Workload Characteristics

To verify the performance impact of workload character-
istics, including aggregate access rate, skew degree, and
base file size, we evaluated the performance as a function of
these parameters in this section.

When the request load increases, results from Fig. 8 show
that MICRO obtains more improvement in terms of rebuild
mean response time. The reason is that the major part of the
increased number of requests during recovery targets
popular files, which most likely have been restored to the
replacement during the data dumping phase before they are
queried. On the contrary, DOR and PRO do not have the

1394 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

TABLE 3
Experimental Parameters

Fig. 5. Access rate and file size distributions.

Fig. 6. Impact of cache size.

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

data dumping phase and thus need to rebuild every single
file from the surviving disks.

When the skew degree is set to 50:50 (Fig. 9), MICRO
only marginally outperforms PRO in terms of reconstruc-
tion time and energy consumption. This is because the skew
parameter is equal to 1, which means the access requests

were evenly distributed across all files without any request
skew. As a result, there is no popular file in the entire file
set. In this case, the data restored from caches to the
replacement disk is not popular. As a result, data dumping
cannot noticeably help reduce reconstruction time. On the
other hand, however, when the skew degree was enlarged

XIE AND WANG: MICRO: A MULTILEVEL CACHING-BASED RECONSTRUCTION OPTIMIZATION FOR MOBILE STORAGE SYSTEMS 1395

Fig. 7. Impact of number of disks.

Fig. 8. Impact of aggregate access rate.

Fig. 9. Impact of skew degree.

Fig. 10. Impact of base file size.

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

to 70:30, MICRO obviously improved the mean response
time and energy consumption. We observed from Fig. 8 that
MICRO achieves the best mean response time improvement
when the skew degree is 70:30.

For completeness, we also conducted an experiment on
the reconstruction metrics by increasing the base file size.
Intuitively, reconstruction time and response time increase
while the file size becomes larger. This is natural because
serving I/O and recovering disk takes a longer time,
regardless of what algorithm has been used. Fig. 10
illustrates that MICRO is still superior to the two existing
approaches when file size increases. In particular, MICRO
results in a slower degradation in both performance and
energy than the two baseline algorithms.

In summary, by exploiting multilevel caching and access
locality, the MICRO algorithm consistently outperforms the
DOR and PRO algorithms in both performance and energy
consumption during recovery. The experimental results
above strongly imply that MICRO has the potential to be
applied in mobile storage systems where high reliability,
high performance, and energy efficiency are musts.

4.5 Trace-Driven Simulations

To validate the experimental results from synthetic work-
loads, we evaluate the three reconstruction algorithms by
trace-driven simulations in this section.

The real-world trace that we used is ClarkNet-HTTP log
[3], which was collected by ClarkNet, an Internet service
provider, for a week from 09/04/95 to 01/10/95 with a total
of 3,328,587 requests. The frequency of file access in the
trace follows a Zipf-like distribution, which has been widely
used in storage system research [5], [7], [36]. Since the

reconstruction times in our experiments are much shorter

compared with the time span of the ClarkNet-HTTP trace,

we only used the first 50,000 requests in the trace to conduct

the simulations. In addition, we filtered out all write

accesses because the trace is read-dominant. The number

of different files accessed by the 50,000 requests is 2,745,

with an average file size of 49.8 Kbytes. In addition, the

most popular 10 percent of files (275 files) with a total size

of 4.65 Mbytes attracted 88.5 percent requests and 90 percent

requests targeted on 15 percent files (412 files) with a total

size of 17.47 Mbytes. Fig. 11 shows the characteristic of the

trace. Although the distribution of user requests generally

follows a Zipf-like distribution (Fig. 11a), there is only a

weak correlation between file access frequency and file size

(Fig. 11b). In other words, some popular files are not small

in size. In addition, the size of a stripe unit is set to 8 Kbytes.
The results from Figs. 12 and 13 are consistent with those

of Figs. 6 and 7. We noticed that the performance

improvement in terms of reconstruction time and mean

response time became less significant in the trace-driven

simulations. The reason is that there is only a weak

correlation between file access frequency and file size

shown in the trace. Some popular files are also large in size,

which degraded the efficiency of caching. Detailed evalua-

tion between MICRO and PRO is presented in Table 4. In

summary, the trace-driven simulation results validated the

synthetic experimental results. More importantly, they

indicate that our MICRO algorithm has the potential to be

applied in real-world applications.

1396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

Fig. 11. (a) Access rate distribution. (b) File size distribution of the ClarkNet-HTTP trace.

Fig. 12. Impact of cache size.

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

5 SUMMARY AND FUTURE WORK

In this paper, we have addressed the issue of data
reconstruction in a RAID-structured mobile disk storage
system where high reliability, high performance, and
energy saving are demanded. To achieve these goals
simultaneously, a new reconstruction strategy, called
MICRO, is developed for RAID-structured mobile storage
systems to noticeably save energy while providing shorter
reconstruction times and user response times. MICRO
collaboratively utilizes the storage cache and the disk array
controller cache to diminish the number of physical disk
accesses caused by reconstruction. Compared with two
representative reconstruction algorithms, DOR and PRO,
MICRO achieves noticeable improvement in reliability,
performance, and energy consumption with reasonable
spatial and time complexity. Comprehensive experimental
results show that MICRO consistently improves the
performance of mobile disk storage systems in terms of
response times and saves energy. Compared with DOR and
PRO, MICRO on average decreases reconstruction time by
20.22 percent and 9.34 percent, respectively. In terms of
mean response time during reconstruction, MICRO on
average improves by 46.59 percent and 26.91 percent. More
importantly, MICRO saves energy by at least 30.4 percent
and 13 percent compared with the two current approaches.

In summary, the MICRO strategy realizes energy saving
not at the cost of performance degradation and system

reliability, but, rather, it delivers much shorter mean
response times during recovery compared with existing
algorithms. The MICRO strategy in its current form only
works for read-dominated workloads such as Web, proxy,
ftp, and e-mail server applications. Future studies in this
research can be performed in the following directions: First,
we will extend our scheme to accommodate write-domi-
nated workloads, where each file access demands parity
information updating. The major new challenge for MICRO
to incorporate write operations is how to maintain data
consistency between multilevel caches and disks. Next, we
intend to complete our caching-based data reconstruction
algorithm by taking more RAID architectures into account.
We only consider the RAID-5 structure in this work.

ACKNOWLEDGMENTS

This work was supported by US National Science Founda-
tion Computing Processes and Artifacts (CISE-CCF) under
Grant 0742187. The authors would like to thank the
anonymous reviewers whose comments noticeably im-
proved the quality of this paper.

REFERENCES

[1] G. Alvarez, W. Burkhard, L. Stockmeyer, and F. Cristian,
“Declustered Disk Array Architectures with Optimal and Near-
Optimal Parallelism,” Proc. 25th Int’l Symp. Computer Architecture,
pp. 109-120, 1998.

XIE AND WANG: MICRO: A MULTILEVEL CACHING-BASED RECONSTRUCTION OPTIMIZATION FOR MOBILE STORAGE SYSTEMS 1397

Fig. 13. Impact of number of disks.

TABLE 4
A Comparison between PRO and MICRO

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

[2] D. Anderson and W. Whittington, “Hard Drives: Today and
Tomorrow,” Proc. Fifth USENIX Conf. File and Storage Technologies,
Feb. 2007.

[3] M. Arlitt and C. Williamson, “Web Server Workload Character-
ization: The Search for Invariants,” Proc. ACM SIGMETRICS Int’l
Conf. Measurement and Modeling of Computer Systems, pp. 126-137,
1996.

[4] A. Bhalekar and J. Baras, “Cumulative Caching for Reduced User-
Perceived Latency for WWW Transfers on Networks with Satellite
Links,” Lecture Notes in Computer Science, vol. 3126/2004, pp. 179-
186, 2004.

[5] E. Carrera, E. Pinheiro, and R. Bianchini, “Conserving Disk
Energy in Network Servers,” Proc. 17th Ann. Int’l Conf. Super-
computing, pp. 86-97, 2003.

[6] Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and B. Schiefer, “Empirical
Evaluation of Multi-Level Buffer Cache Collaboration for Storage
Systems,” Proc. ACM SIGMETRICS Int’l Conf. Measurement and
Modeling of Computer Systems, pp. 145-156, 2005.

[7] B. Diniz, D. Guedes, W. Meira, and R. Bianchini, “Limiting the
Power Consumption of Main Memory,” Proc. 34th Ann. Int’l Symp.
Computer Architecture, pp. 290-301, 2007.

[8] EMC Corp., Symmetrix Enterprise Storage Systems Product
Description Guide, 1999.

[9] S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kandemir, H.
Fanke, N. Vijaykrishnan, and M. Irwin, “Interplay of Energy and
Performance for Disk Arrays Running Transaction Processing
Workloads,” Proc. IEEE Int’l Symp. Performance Analysis of Systems
and Software, pp. 123-132, Mar. 2003.

[10] High-Speed 1K � 8 Dual-Port Static RAM, http://www.semi
conductorstore.com/pdf/newsite/idt/71V30S55TFG_DS.pdf,
2008.

[11] M. Holland, “On-Line Data Reconstruction in Redundant Disk
Arrays,” PhD dissertation CMU-CS-94-164, Carnegie Mellon
Univ., Apr. 1994.

[12] M. Holland and G. Gibson, “Parity Declustering for Continuous
Operation in Redundant Disk Arrays,” Proc. Fifth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 23-35, 1992.

[13] M. Holland, G. Gibson, and D. Siewiorek, “Fast, On-Line Failure
Recovery in Redundant Disk Arrays,” Proc. 23rd Ann. Int’l Symp.
Fault-Tolerant Computing, pp. 422-443, 1993.

[14] M. Holland, G.A. Gibson, and D. Siewiorek, “Architectures and
Algorithms for On-Line Failure Recovery in Redundant Disk
Arrays,” J. Distributed and Parallel Databases, vol. 2, no. 3, pp. 295-
335, July 1994.

[15] B.S. Jeong and E. Omiecinski, “Inverted File Partitioning Schemes
in Multiple Disk Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 6, no. 2, pp. 142-153, Feb. 1995.

[16] M. Kaaniche, L. Romano, Z. Kalbarczyk, R. Iyer, and R. Karcich,
“A Hierarchical Approach for Dependability Analysis of a
Commercial Cache-Based RAID Storage Architecture,” Proc. 28th
Ann. Int’l Symp. Fault-Tolerant Computing, pp. 6-15, 1998.

[17] T. Kwan, R. Mcgrath, and D. Reed, “Ncsas World Wide Web
Server Design and Performance,” Computer, vol. 28, no. 11, pp. 67-
74, Nov. 1995.

[18] J.Y.B. Lee and J.C.S. Lui, “Automatic Recovery from Disk Failure
in Continuous-Media Servers,” IEEE Trans. Parallel and Distributed
Systems, vol. 13, no. 5, pp. 499-515, May 2002.

[19] L.W. Lee, P. Scheuermann, and R. Vingralek, “File Assignment in
Parallel I/O Systems with Minimal Variance of Service Time,”
IEEE Trans. Computers, vol. 49, no. 2, Feb. 2000.

[20] B.A. Mah, S. Seshan, K. Keeton, R.H. Katz, and D. Ferrari,
“Providing Network Video Service to Mobile Clients,” Proc. Fourth
Workshop Workstation Operating Systems, pp. 48-54, 1993.

[21] “Memory Speeds: Have You Ever Wondered How They Were
Determined?” The DEW Assoc., http://www.dewassoc.com/
performance/memory/memory_speeds.htm, 2008.

[22] J. Menon and J. Cortney, “The Architecture of a Fault-Tolerant
Cached RAID Controller,” Proc. 20th Ann. Int’l Symp. Computer
Architecture, pp. 76-86, 1993.

[23] Mobile Emergency Datacenter, North Am. Access Technologies,
http://www.naat.com/Disaster%20Recovery/mobile_datacenter
.htm, 2006.

[24] R. Muntz and J. Lui, “Performance Analysis of Disk Arrays under
Failure,” Proc. 16th Int’l Conf. Very Large Data Bases, pp. 162-173,
1990.

[25] E. Pinheiro and R. Bianchini, “Energy Conservation Techniques
for Disk Array-Based Servers,” Proc. 18th Ann. Int’l Conf. Super-
computing, pp. 68-78, June 2004.

[26] D. Rinfret, P. O’Neil, and E. O’Neil, “Bit-Sliced Index Arithmetic,”
Proc. ACM SIGMOD ’01, pp. 47-57, 2001.

[27] B. Schroeder and G.A. Gibson, “Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You?,” Proc. Fifth
USENIX Conf. File and Storage Technologies, Feb. 2007.

[28] Seagate Cheetah 15k.4 Mainstream Disc Drive Storage, http://
www.seagate.com/docs/pdf/marketing/ds_1566_004_cheetah_
15k_4.pdf, 2008.

[29] P.G. Sikalinda, L. Walters, and P.S. Kritzinger, “A Storage System
Workload Analyzer,” Technical Report CS06-02-00, Univ. of Cape
Town, 2006.

[30] M. Sivathanu, V. Prabhakaran, F. Popovici, T.E. Denehy, A.C.
Arpaci-Dusseau, and R.H. Arpaci-Dusseau, “Improving Storage
System Availability with D-GRAID,” Proc. Third USENIX Conf.
File and Storage Technologies, Mar. 2003.

[31] The Smallest Hard Disk Drive, http://news.softpedia.com/
news/The-Smallest-Hard-Disk-Drive-4533.shtml, 2008.

[32] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang, and
Z. Song, “PRO: A Popularity-Based Multi-Threaded Reconstruc-
tion Optimization for RAID-Structured Storage Systems,” Proc.
Fifth USENIX Conf. File and Storage Technologies, Feb. 2007.

[33] T. Wong and J. Wilkes, “My Cache or Yours? Making Storage
More Exclusive,” Proc. USENIX Ann. Technical Conf., pp. 161-175,
June 2002.

[34] Q. Xin, E. Miller, and T.J. Schwarz, “Evaluation of Distributed
Recovery in Large-Scale Storage Systems,” Proc. 13th Int’l Symp.
High Performance Distributed Computing, pp. 172-181, 2004.

[35] Q. Xin, E. Miller, T.J. Schwarz, and D. Long, “Reliability
Mechanism for Very Large Storage Systems,” Proc. 20th IEEE/
11th NASA Goddard Conf. Mass Storage Systems and Technologies,
2000.

[36] J. Yang, W. Wang, and R. Muntz, “Collaborative Web Caching
Based on Proxy Affinities,” Proc. ACM SIGMETRICS Int’l Conf.
Measurement and Modeling of Computer Systems, pp. 78-89, 2000.

[37] X. Yao and J. Wang, “RIMAC: A Novel Redundancy-Based
Hierarchical Cache Architecture for Energy Efficient, High
Performance Storage Systems,” Proc. EuroSys Conf., pp. 249-262,
2006.

[38] Q. Zhu and Y. Zhou, “Power-Aware Storage Cache Management,”
IEEE Trans. Computers, vol. 54, no. 5, pp. 587-602, May 2005.

Tao Xie received the BSc and MSc degrees
from Hefei University of Technology, Hefei,
China, in 1991 and 2000, respectively, and the
PhD degree in computer science from the New
Mexico Institute of Mining and Technology in
2006. He is currently an assistant professor in
the Department of Computer Science at San
Diego State University, California. His research
interests include storage systems, high-perfor-
mance computing, cluster and grid computing,

parallel and distributed systems, and real-time/embedded systems. He
is a member of the IEEE and the IEEE Computer Society.

Hui Wang received the BS degree in informa-
tion and image sciences from Chiba University,
Chiba, Japan, in 2002 and the MS degree in
computer science from San Diego State Uni-
versity in 2007. He is currently a network
engineering manager at Ortiva Wireless, which
offers the industry’s only commercial solution for
rich media content delivery optimization over
wireless networks.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1398 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

Authorized licensed use limited to: San Diego State University. Downloaded on August 27, 2009 at 20:16 from IEEE Xplore. Restrictions apply.

