
SEA: A Striping-Based Energy-Aware Strategy
for Data Placement in RAID-Structured

Storage Systems
Tao Xie, Member, IEEE

Abstract—Many real-world applications need to frequently access data stored on large-scale parallel disk storage systems. On one

hand, prompt responses to access requests are essential for these applications. On the other hand, however, with an explosive

increase of data volume and the emerging of faster disks with higher power requirements, energy consumption of disk-based storage

systems has become a salient issue. To achieve energy-conservation and prompt responses simultaneously, in this paper we propose

a novel energy-aware strategy, called striping-based energy-aware (SEA), which can be integrated into data placement in RAID-

structured storage systems to noticeably save energy while providing quick responses. Next, to illustrate the effectiveness of SEA, we

implement two SEA-powered striping-based data placement algorithms, SEA0 and SEA5, by incorporating the SEA strategy into

RAID-0 and RAID-5, respectively. Extensive experimental results demonstrate that compared with traditional non-stripping data

placement algorithms, our algorithms significantly improve performance and save energy. Further, compared with an existing stripping-

based data placement scheme, the two SEA-powered strategies noticeably reduce energy consumption with only a little performance

degradation.

Index Terms—Allocation strategies, energy-aware systems, file organization, secondary storage.

Ç

1 INTRODUCTION

MANY real-world applications intensively read data
stored in large-scale parallel disk storage systems like

Redundant Arrays of Inexpensive Disks (RAID) [5]. To
guarantee the quality of service demanded by users,
prompt responses to read requests are essential for these
applications. For example, a Video-on-Demand (VOD)
server has to quickly respond access requests from multiple
users so as to provide them with continuous glitch-free
video [13], [35]. Similarly, a data-intensive Web server
application that publishes significant amounts of data
stored in a back-end database must answer users’ inquiries
instantly before they lose patience [4], [27]. It is obvious that
the performance of these read-intensive applications largely
depends on the performance of underlying parallel disk
storage systems. More precisely, reducing the mean
response time of parallel disk storage systems is a must
for these applications.

There is a wide variety of ways of reducing the mean
response time or improving the system throughput for
parallel I/O systems [1], [13], [19], [24], [36], [38]. Data
placement, or file assignment, allocating of all of the data
onto a disk array before they are accessed, is one such
avenue that can significantly affect the overall performance
of a parallel I/O system [1], [24], [36]. In order to fully

exploit the capacities of a parallel disk storage system, data
placement algorithms for parallel disk systems have been
extensively investigated in the literature [1], [3], [8], [11],
[13], [24], [29], [36]. Generally, these algorithms place data
onto a parallel disk array so that a special cost function or
performance metrics can be optimized. While common cost
functions include communication costs, storage costs, and
queuing costs, popular performance metrics are mean
response time and overall system throughput [12]. It is
well known that finding the optimal solution for a cost
function or a performance metric in the context of data
placement on multiple disks is an NP-complete problem
[12]. Thus, heuristic algorithms became practical solutions.

Although performance objectives such as the mean
response time are always the subjects of the research on
parallel disk storage systems, energy consumption of disk-
based storage systems has become a salient issue that not
only raises the costs but also inversely affects our environ-
ment [33], [38]. According to a recent industry report [31],
storage devices contribute to around 27 percent of the total
energy consumed by a data center. This problem will
become much more severe with an explosive increase in
data volume and the emergence of faster disks with higher
power requirements. Therefore, energy conservation and
prompt response need to be achieved simultaneously
through intelligent data placement. Unfortunately, tradi-
tional data placement algorithms such as Greedy [15], Sort
Partition (SP) [24], Hybrid Partition (HP) [24], and PVFS [23]
for parallel disk systems only pursue minimized mean
response times and normally ignore energy conservation.

In this paper, we address the problem of energy-saving
yet quick-response data placement in a parallel disk storage
system where data accesses exhibit Poisson arrival rates and

748 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

. The author is with the Department of Computer Science, San Diego State
University, 5500 Campanile Drive, GMCS 544, San Diego, CA 92182.
E-mail: xie@cs.sdsu.edu.

Manuscript received 6 Apr. 2007; revised 23 Oct. 2007; accepted 24 Jan. 2008;
published online 1 Feb. 2008.
Recommended for acceptance by J. Antonio.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-04-0121.
Digital Object Identifier no. 10.1109/TC.2008.27.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

fixed service times. Each data can be viewed as a file, which
will be assigned onto an array of disks in a striping manner.
We propose a novel energy-aware strategy, called striping-
based energy-aware (SEA), which can be integrated into
data placement for RAID-structured storage systems to
optimize the mean response time and the overall energy
consumption simultaneously. The basic idea of SEA is to
place popular data onto a subset of the disks in the array
and assign unpopular data onto the rest of disks. The
rationale behind this idea is that the distribution of Web
page requests generally follows a Zipf-like distribution [24],
where the relative probability of a request for the ith most
popular page is proportional to 1=i�, with � typically
varying between 0 and 1 [2], [27]. Based on this workload
characteristic, we first divide all data into two categories—
popular and unpopular—based on their popularity weights
[27]. Several previous studies [10], [14] claimed that the
request frequency and the file size are inversely correlated,
i.e., the most popular files are typically small in size, while
the large files are relatively unpopular. Next, we separate
disks in a disk array into two zones: the hot disk zone and the
cold disk zone. Disks in the hot disk zone are called hot disks
with popular data, whereas disks in the cold disk zone are
named cold disks with unpopular data. The ratio between
the hot disk number and the cold disk number in a disk
array is decided by the load percentages of popular data
and unpopular data in the whole data set. As a result, the
overall load balancing between two zones can be achieved,
which improves the interrequest parallelism. Furthermore,
we employ multispeed disks in the disk array to save
energy. Specifically, hot disks are always running in a
higher speed mode with more energy consumption, while
cold disks are continuously operating in a lower speed
mode with less energy dissipation. Although real multi-
speed (more than two speeds) hard disks are not widely
available in the market yet [28], a few simple variations of
multispeed disks, such as a two-speed Hitachi Deskstar
7K400 hard drive, have recently been produced [18]. In
addition, we believe that real multispeed disks will be
manufactured in the not-so-distant future because they
provide more opportunities for storage systems to adapt to
a wide spectrum of workloads. For simplicity, in this study,
we only utilize two-speed hard disks. The most significant
difference between the use of multispeed disks in our study
and in traditional energy-saving techniques [4], [17], [30],
[38] is that, in our study, once a disk was configured as a hot
disk or a cold disk, its operation characteristics such as
transfer (read) speed and energy consumption rate were
fixed and it could not be dynamically switched to the other
mode during the process of serving requests. The advan-
tages of statically setting the operation mode for multispeed
disks are obvious. First, mode transition is very expensive
in both energy consumption and response times because it
incurs a high overhead in the form of transition time and
transition energy [30]. Second, frequent mode transitions
adversely affect disks’ reliability and their lifetime [13], [38]
Finally, to provide quick responses and fault tolerance, we
combine SEA with RAID structures so that each file is
partitioned into multiple same size stripes, which are then
allocated across an array of disks. This way, all disks in the

same zone can simultaneously serve a request which targets
on a file allocated in the zone. The consequence is that the
response time for the request can be dramatically decreased
due to an enhanced intrarequest parallelism. For example,
we integrate SEA with RAID-5 (striping with parity) to
create SEA5, a RAID-based energy-aware data placement
algorithm which can generate data placement schemes that
not only save energy and provide prompt responses but
also improve fault tolerance by employing the parity data.
Similarly, SEA0, a peer of SEA5, was generated by
combining SEA with RAID-0 (stripping without parity).

Extensive experimental results demonstrate that, com-
pared with three conventional nonpartitioned data place-
ment algorithms, namely, Greedy [15], SP [24], and HP [24],
SEA0 and SEA5 reduce the mean response time, on average,
at least 45.8 percent and 39.3 percent while saving energy,
on average, not less than 9.8 percent (96,657.1 J) and
7.9 percent (77,771.6 J), respectively. Compared with a well-
known stripping-based file assignment scheme, PVFS [23],
SEA0 and SEA5 save energy by up to 36.2 percent (376,063 J)
and 38.6 percent (352,567 J) while increasing the mean
response time, on average, by 0.018 and 0.024 s, respec-
tively. The rest of this paper is organized as follows: In
Section 2, we discuss related work and motivation. In
Section 3, we build the system model and energy
consumption model. Section 4 presents the SEA strategy
and introduces four existing algorithms. In addition, the
time complexity of SEA0 is proven in Section 4. In
Section 5, we evaluate the performance of our algorithms
based on synthetic benchmarks. Section 6 concludes this
paper with summary and future directions.

2 RELATED WORK AND MOTIVATION

Very recently, energy saving for parallel disk storage
systems has begun to draw much attention from the
research community [4], [17], [19], [30], [32], [39]. Results
from this research have demonstrated that the average idle
slot between disk access requests in high-end computing
workload is too small to justify the cost caused by disk spin-
up or spin-down [4], [17]. Thus, traditional energy-aware
disk scheduling algorithms that utilize disk idle times are
not feasible in I/O-intensive applications. Consequently,
some other means of saving energy for parallel disk storage
systems running I/O-intensive applications must be dis-
covered. To this end, several pioneer researchers proposed
a diversity of techniques to save energy for parallel disk
storage systems under server workloads. A multispeed
parallel disk system that can modulate disk speed dynami-
cally was proposed by Gurumurthi et al. [17]. In [19], data
replication was used to dynamically place copies of data in
free blocks according to the disk access patterns. Data
prefetching was employed by Son et al. to save disk energy
by making it energy aware. Zhu et al. devised an offline
energy-aware cache replacement algorithm which mini-
mizes the underlying disk energy consumption [38].

Comparing with the energy-efficient techniques for the
parallel disk storage systems mentioned above, data
placement shows its unique advantages. First, to save disk
energy, it does not need to modify applications. Next, no
extra hardware such as cache is necessary. Last, the

XIE: SEA: A STRIPING-BASED ENERGY-AWARE STRATEGY FOR DATA PLACEMENT IN RAID-STRUCTURED STORAGE SYSTEMS 749

overhead of data placement strategy is relatively low and it
is easy to implement. Attracted by these advantages, a
research group led by Son has proposed an array of energy-
aware disk layout algorithms very recently [21], [33], [35].
Based on our knowledge, their studies are the only results
of energy-aware data placement for parallel disk storage
systems reported in the literature so far. The central idea in
[21] is to decide the most appropriate set of disks to store a
given disk-resident array so that other disks can run at a
low speed. A profile-driven approach for determining disk
layouts of array data was proposed in [33] to minimize the
energy consumption without increasing overall execution
cycles excessively.

The aforementioned existing energy-aware disk layout
algorithms, however, have some limitations. First, they are
only dedicated to array-based scientific applications. Still,
there are many other types of disk I/O-intensive applica-
tions, such as VOD [13], [33], Web applications [4], [25], and
transaction processing [38], where energy conservation and
quick response need to be realized simultaneously through
data placement. Therefore, a more general energy-response
efficiency data placement scheme that can be applied to a
wide range of disk I/O-intensive applications is needed.
Furthermore, to apply their algorithms, one has to modify
the compiler to make it become aware of disk layout
information. This requirement prevents them from being
readily used because it incurs an extra burden for system
software programmers. Besides, to better exploit existing
energy-saving capabilities, their disk layout algorithms
need to be combined with application code restructuring
to increase the length of idle periods. This strategy demands
modifications of an application’s code and thus brings users
additional overhead. As a result, the need for a new energy-
response efficiency data placement strategy that bridges the
gap between the existing algorithms and the open problems
is greatly felt. In this paper, we are proposing a heuristic
energy-aware strategy SEA which can be incorporated with
RAID structures to generate energy-aware data placement
algorithms like SEA0 and SEA5. Compared with existing
data placement algorithms, SEA0 and SEA5 noticeably
reduce energy consumption while providing quick re-
sponses for disk I/O-intensive applications running on
parallel architectures. Our schemes are orthogonal to
existing disk layout strategies. First, there is no need to
modify any software using our methods. Second, our
schemes are not dedicated to some particular applications.
Thus, they are more general in the sense that they can be
applied in multiple application domains. Without loss of
generality, we assume that each data is viewed as an
independent file and it is allocated in a striping manner
across an array of disks. Communication delays between
any pair of disks are ignored because they are identical and
negligibly small [24]. In addition, disk access (read) to each
file is modeled as a Poisson process with a mean access rate
�i. The reason is fourfold. First, the Poisson distribution
models random events with a constant average rate from a
large number of independent sources, which generally
matches request arrival patterns of data center workloads
[38]. Second, many types of real-world requests of large
installation systems naturally obey the Poisson distribution

[9]. Third, the Poisson distribution has been well recognized
as a standard statistic method in modeling disk access
patterns [16] and has been widely used in modeling the
performance of disk systems [16], [17], [24], [38]. Last, the
three baseline algorithms, Greedy, SP, and HP, employed
the Poisson distribution [24]. Also, we assume that each
request accesses an entire file, which is a typical scenario for
Web, proxy, ftp, and e-mail server workloads [24], [30].
Thus, for nonpartitioned file assignment, the service time
svi for each file is fixed [24] and the positioning time (seek
time plus rotation latency) is ignored. This assumption is
valid because, when the basic unit of data access is an entire
file on one disk, seek time and rotation latency are
negligible in comparison with data transfer time. For
stripping-based file assignment, however, the positioning
time has to be considered as it is nontrivial compared with
the data transfer time. Therefore, we include the positioning
time when calculating the mean response times for SEA0,
SEA5, and PVFS (see (5)).

3 MATHEMATICAL MODELS

We describe in this section mathematical models which
were built to represent a disk array-based storage system,
workload characteristics, and an energy consumption
model.

3.1 System Model

Fig. 1 depicts a SEA data placement framework which
integrates SEA with RAID structures to form energy-
aware data placement algorithms like SEA0 and SEA5.
Data placement algorithms such as Greedy, SP, HP, SEA0,
and SEA5 allocate a set of data (hereafter files) onto a
group of two-speed disks so that the mean response time
can be minimized. The set of files is represented as
F ¼ ff1; . . . ; fu; fv; . . . ; fmg, which is further categorized
into a popular file set Fh ¼ ff1; . . . ; fh; . . . ; fug and an
unpopular file set Fc ¼ ffv; . . . ; fc; . . . ; fmg (F ¼ Fh [Fc
and Fh \ Fc ¼ �). Since each file will be allocated onto a
set of disks in a striping manner, let sp denote the size of a
stripe (in megabytes) and it is assumed to be a constant in
the system. A file fi ðfi 2 F Þ is modeled as a set of rational

750 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

Fig. 1. Striping-based energy-aware data placement framework.

parameters, e.g., fi ¼ ðsi; �iÞ, where si and �i are the file’s
size in (in megabytes) and its access rate. In this paper,
requests to a file fu are modeled as a Poisson process with a
mean access rate �i. Also, we assume that each access to
file fi is a sequential read of the entire file, which is a typical
scenario in most file systems or WWW servers [22]. Besides,
we assume that the distribution of file access requests is a
Zipf-like distribution with a skew parameter � ¼ log A

100
=log B

100
,

where A percent of all accesses were directed to B percent
of files [24] (see Fig. 4a). The value of A : B is called skew
degree (SD) in this paper and � ¼ 1� � (see Section 1 for �).
In addition, the file access frequency and the file size are
inversely correlated (see Fig. 4b). The number of popular
files in F is defined as jFhj ¼ ð1� �Þ �m. Similarly, the
number of unpopular files is jFcj ¼ � �m. Thus, the ratio
between the number of popular files and the number of
unpopular files in F is defined as �:

� ¼ 1� �
�

: ð1Þ

In this study, each disk can be configured to run in either
a high-speed mode or a low-speed mode. Note that, once a
disk has been set to one mode, it cannot be dynamically
switched to another mode during the process of serving
requests. It can be transferred to another mode by the
system administrator, however, after the current request set
has been completed and before a new workload arrives if
necessary. A disk array storage system consists of a linked
group D ¼ fd1; . . . ; de; df ; . . . ; dng of n independent two-
speed disk drives, which can be divided into a hot disk
zone Dh ¼ fd1; . . . ; dh; . . . ; deg and a cold disk zone Dc ¼
fdf ; . . . ; dc; . . . ; dng (D ¼ Dh [Dc and Dh \Dc ¼ �). Disks
in the hot zone are all configured to their high-speed modes,
which always run in the high transfer rate th (Mbytes/
second) with the high active energy consumption rate ph

(J/Mbyte) and the high idle energy consumption rate ih

(J/s). Similarly, disks in the cold zone are set to their low-
speed modes, which continuously operate in the low

transfer rate tl (Mbytes/s) with the low active energy
consumption rate pl (J/Mbyte) and the low idle energy
consumption rate il (J/s). In the system, a hot disk dh ðdh 2
DhÞ is modeled as a tuple dh ¼ ðc; th; ph; ihÞ, where c is the
capacity of dh in gigabytes. Similarly, a cold disk dc ðdc 2
DcÞ is modeled as a tuple dc ¼ ðc; tl; pl; ilÞ, where c is the
capacity of dc in gigabytes. Since we only consider
homogeneous disks, all disks have the same capacity c.
We assume that disks are always large enough to accom-
modate files to be assigned on them. Each popular file fh 2
Fh is partitioned into multiple units, with the size of each
unit being equal to sp. All units of fh will be allocated across
the hot disks in a RAID-0 (striping without parity) or a
RAID-5 (striping with parity) fashion. Similarly, each
unpopular file fc 2 Fc is also partitioned into multiple-
sized sp units and then allocated across the cold disks in a
RAID-0 or a RAID-5 manner. Let svi be the expected service
time of file fi ðfi 2 F Þ. It can be computed by

svi ¼ si=t
h; if fi is popuplar

si=t
l; if fi is unpopular:

�
ð2Þ

Since the combination of �i and svi accurately gives the
load of fi, we define the load hi of fi as follows [24]:

hi ¼ �i � svi: ð3Þ

Fig. 2 depicts the subsequent file access requests
scheduling process after the data placement process
completes. All requests from multiple users form the
aggregate workload, which is then directed to a high-
performance data server with high-speed buffers. Since the
majority portion of the aggregate workload can be success-
fully served by the data server, only a very small part of
system workload will eventually turn out to be the real disk
physical read accesses. This is because the miss rate of data
buffers normally is lower than 10 percent in many real
applications like OLTP [26]. Therefore, the real workload
that the disk storage system indeed needs to serve is equal

XIE: SEA: A STRIPING-BASED ENERGY-AWARE STRATEGY FOR DATA PLACEMENT IN RAID-STRUCTURED STORAGE SYSTEMS 751

Fig. 2. Request scheduling architecture.

to (the aggregate workload) � (miss rate). The real workload
is further divided by the Request Dispatcher into two groups:
hot requests and cold requests. All hot requests are then
directed into the Hot Queue, whereas all cold requests are
delivered into the Cold Queue. Hot disks in Fig. 2 are
represented as black disks and cold disks are denoted as the
white disks. The ratio between the number of hot disks and
the number of cold disks is defined as �, which is decided
by the ratio between the total load of popular files and the
total load of unpopular files as follows:

� ¼

Pð1��Þ�m
i¼1;fi2Fh

hi

P��m
j¼1;fj2Fc

hj

: ð4Þ

Please note that we categorize a majority of files into the
popular file group (see (1)). The reason is threefold. First,
the sizes of popular files are much smaller than that of
unpopular files (see Fig. 4b). Thus, requests on popular files
are all small accesses in nature. Second, popular files are
stored in the hot disk zone and unpopular files are stored in
the cold disk zone. Hot disks are much faster than cold
disks. This makes the expected service times of requests on
popular files even shorter than that of requests on
unpopular files (see (2)). Third, although popular files have
a relatively large value of �, the magnitude of the average �
of all popular files is much smaller than the magnitude of
the average size of unpopular files. As a result, the total
load of popular files is much smaller than that of unpopular
files, which starves the hot disk zone. To balance the load
between the two disk zones and thus obtain good
performance in the mean response time, we enlarge the
scope of popular file set so that more files can be in the hot
disk zone.

In Fig. 2, we can see that the First-Come-First-Serve (FCFS)
scheduling heuristic is used in both Hot Queue and Cold Queue
to schedule arrival requests. Suppose there are x total
requests in a request set which visits a file set that has been
allocated on a disk array. The request set is designated as
R ¼ fr1; . . . ; rk; . . . ; rxg, which can be separated into a hot
request set Rh ¼ frb; . . . ; rh; . . . ; rog and a cold request set
Rc ¼ frp; . . . ; rc; . . . ; rsgðR ¼ Rh [Rc;Rh \Rc ¼ �Þ. E a c h
request is modeled as rk ¼ ðfidk; akÞ, where fidk is the file
identifier targeted by the request and ak is the request’s
arrival time. For each arrival request, the FCFS scheduler
uses the allocation scheme X generated in data placement
stage (see Fig. 1) to find the disks on which the target file of
the request resides. In fact, the request workload is an
m-class workload, with each class of requests having its
fixed �i.

To obtain the response time of a request rk, two

important parameters, the earliest start time and the latest

finish time of rk, must be computed. We denote the earliest

start time and the latest finish time of rk by estðrkÞ and

lftðrkÞ, respectively. In what follows, we present deriva-

tions leading to the final expressions for these two

parameters. Since each file is distributed across multiple

disks in a striping manner, we need to compute the start

time and the finish time for each stripe of the file that

request rk is targeting on. Suppose rk is visiting file fi,

which was distributed on a disk set fda; . . . ; dg; . . . ; dwg
(a � g � w, 1 � a, g, w � e, or f � a, g, w � n). The stripe set

of fi is represented as fs1
i ; . . . ; ski ; . . . ; szig, where z ¼ dsi=spe.

Also, a disk dg has its own local queue Qg in the set

fQa; . . . ; Qg; . . . ; Qwg. There are three cases when rk arrives

on disk dg. First, dg is idle and Qg is empty. Second, dg is

busy, but Qg is empty. Third, dg is busy and Qg is not empty.

Thus, the start time of transferring a strip ski on disk dg is

stkgðrkÞ ¼
SK þRT þ ak; if dg is idle and Qg is empty;

SK þRT þ ak þ rg; if dg is busy and Qg is empty;

SK þRT þ ak þ rg
þ

P
rp2Qg;ap�ak

tfidp ; otherwise;

8>>>>><
>>>>>:

ð5Þ

where SK denotes the average seek time, RT means the

average rotation latency, rg represents the remaining

service time of a request currently running on dg, andP
rp2Qg;ap�ak tfidp is the overall service time of requests in Qg

whose arrival times are earlier than that of rk. For

simplicity, we assume that all disks are rotationally

synchronized with each other and disks in the set

fda; . . . ; dg; . . . ; dwg start at the same cylinder [6]. This

assumption is valid and has been used in studies in finding

optimal strip unit size for RAID-based disk arrays [6], [7].

Therefore, the positioning times of each disk in set

fda; . . . ; dg; . . . ; dwg are identical and can be approximated

by a constant value ðSK þRT Þ. Consequently, ftkg ðrkÞ, the

finish time of transferring the strip ski on disk dg, can be

calculated by

ftkgðrkÞ ¼ stkgðrkÞ þ tsi; ð6Þ

where tsi is the service time of the stripe ski on disk dg, and it
can be computed by

tsi ¼
sp=th; if dg is hot
sp=tl; if dg is cold:

�
ð7Þ

As a result, the earliest start time of request rk can be
obtained by

estðrkÞ ¼ min st1gðrkÞ; . . . ; stkgðrkÞ; . . . ; stzgðrkÞ
n o

: ð8Þ

Consequently, the latest finish time of rk is

lftðrkÞ ¼ max ft1gðrkÞ; . . . ; ftkgðrkÞ; . . . ; ftzgðrkÞ
n o

: ð9Þ

Hence, the service time of the request rk is

strðrkÞ ¼ lftðrkÞ � estðrkÞ: ð10Þ

The response time of the request rk can be calculated by

rtðrkÞ ¼ lftðrkÞ � ak: ð11Þ

752 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

Therefore, the slowdown of rk is

sdðrkÞ ¼
rtðrkÞ
strðrkÞ

: ð12Þ

Thus, the mean response time of the request set R is

expressed as follows:

mrtðRÞ ¼
Xx
k¼1

rtðrkÞ
�
x; ð13Þ

where x is the total number of requests in R. Similarly, the

mean slowdown of the request set R can be obtained by the

following expression:

msdðRÞ ¼
Xx
k¼1

sdðrkÞ
�
x: ð14Þ

3.2 Energy Consumption Model

For a request rh in the hot request set Rh, assume that it

accesses a popular file fh in the popular file set Fh, which is

allocated in the hot disk zone. The energy consumed by rh
can be written as follows:

eactiveh ¼ sh � ph: ð15Þ

The aggregate service time of rh provided by a set of hot

disks where file fh were allocated can be computed as

follows:

atactiveh ¼ sh
th
: ð16Þ

Note that the aggregate service time of rh is defined as the

summation of service times contributed by hot disks that

accommodate a portion of fh. It is equivalent to the service

time of rh when file fh is stored entirely on a single hot disk.

Thus, the energy consumption of the whole hot request set

can be derived by

eactiveRh
¼
XjRhj

h¼1

eactiveh : ð17Þ

Similarly, the total aggregate service time imposed by the

whole hot request set Rh in the hot disk zone is

atactiveRh
¼
XjRhj

h¼1

atactiveh : ð18Þ

In addition, we define rftk as the finish time of request rk.

Then, we obtain the analytical formula for the energy

consumed by the hot disks when they are idle:

eidlehot ¼ ih � jDhj �max
x

k¼1
ðrftkÞ � atactiveRh

� �
: ð19Þ

Hence, the total energy consumed by the hot disk zone can

be computed by

ehot ¼ eactiveRh
þ eidlehot

¼
XjRhj

h¼1

eactiveh þ ih � jDhj �max
x

k¼1
ðrftkÞ � atactiveRh

� �
:
ð20Þ

Similarly, the total energy consumed by the cold disk zone

can be obtained by

ecold ¼ eactiveRc
þ eidlecold

¼
XjRcj

c¼1

eactivec þ il � jDcj �max
x

k¼1
ðrftkÞ � atactiveRc

� �
:
ð21Þ

Therefore, the total energy consumption for the whole

storage system is

etotal ¼ ehot þ ecold: ð22Þ

4 THE SEA STRATEGY

In this section, we first present a detailed description of the

SEA strategy, which is integrated with RAID-0. Then, we

prove the time complexity of SEA0, as well as providing a

brief introduction of the four baseline algorithms Greedy,

SP, HP, and PVFS.

4.1 Strategy Description

Fig. 3 outlines the SEA strategy with RAID-0 combined.

Note that the input F has been sorted in ascending order in

terms of popularity before it is fed into SEA. In other words,

XIE: SEA: A STRIPING-BASED ENERGY-AWARE STRATEGY FOR DATA PLACEMENT IN RAID-STRUCTURED STORAGE SYSTEMS 753

Fig. 3. The SEA strategy with RAID-0 combined.

file f1 is the most popular file with the smallest file size,
whereas file fm is the most unpopular one with the largest
file size. First, SEA uses the skew parameter � to derive the

number of popular files and the number of unpopular files
in F based on (1) (Step 1). Second, Step 2 calculates �, the

ratio between the number of hot disks and the number of
cold disks, based on (4), which, in turn, results in the

number of hot disks HD and the number of cold disks CD.
Consequently, the HD of n disks are configured to their

high-speed modes and the CD of n disks are set to their
low-speed modes (Step 4). Next, SEA assigns all popular

files onto the hot disk zone in a striping manner (Steps 5-
16). Similarly, all unpopular files are allocated onto the cold
disk zone in a striping fashion (Steps 17-28). Although the

number of popular files defined by SEA is much larger than
the number of unpopular files, SEA sets a minority portion

of n disks as hot disks. The reason is threefold. First, hot
disks are always running in their high-speed modes and

therefore should accommodate more files than cold disks.
Second, a relatively large number of cold disks provide

more opportunities to save energy as cold disks operate in
low-speed modes. Third, more cold disks lead to a higher
intrarequest parallelism in the cold disk zone, which can

compensate for the low running speed used by cold disks so
that responses to cold requests can still be completed in a

timely manner. Note that the SEA strategy described in
Fig. 3 is actually the SEA0 data placement algorithm, which

is a combination of SEA and RAID-0. To generate the SEA5
algorithm, one needs to slightly modify the algorithm so

that the parity stripes are interleaved with the normal data
stripes. The difference between SEA0 and SEA5, in terms of

performance, mainly lies in the fact that SEA0 can
effectively use one more disk than SEA5. However, in
terms of fault tolerance and data reliability, SEA5 clearly

outperforms SEA0 due to the use of parity data. In short,
SEA0 offers low cost and maximum performance but

provides no fault tolerance. Businesses use SEA0 mainly
for applications requiring fast access to a large capacity of

temporary disk storage such as video/audio postproduc-
tion, multimedia imaging, CAD, and data logging, where,

in case of a disk failure, the data can be easily reloaded
without impacting the business. On the contrary, SEA5 has
the potential of being applied in server environments

requiring fault tolerance. The RAID parity requires one
disk drive per RAID set. Therefore, usable capacity for

SEA5 will always be one disk drive fewer than the number

of available disks for SEA0. Still, SEA5 can provide good

read performance.

4.2 Time Complexity of SEA0

Before qualitatively comparing our scheme with the four

existing algorithms, we demonstrate the worst-case time

complexity of the SEA0 algorithm.

Theorem 1. Given a parallel disk array D ¼
fd1; . . . ; de; df ; . . . ; dng of n independent two-speed disk

drives and a collection of files represented by

F ¼ ff1; . . . ; fu; fv; . . . ; fmg, the worst-case time complexity

of SEA0 is Oððkþ 1ÞmÞ, where m is the number of files in F ,

k is the number of stripes of the largest file in F , and

k ¼ maxmi¼1ðsispÞ.
Proof. It takes OðmÞ time to derive an appropriate value

of � based on (4) (see Step 2). Let k represent the

number of stripes of the largest file in F . Therefore,

k ¼ maxmi¼1ðsispÞ. The upper bound of time complexity

for allocating a popular file fp in the set Fh is k and

we have jFhj number of popular files. Hence, the

worst-case time complexity for allocating all popular

files is OðkjFhjÞ (Steps 5-16). Similarly, the worst-case

time complexity for allocating all unpopular files is

OðkjFcjÞ (Steps 17-28). Since jFhj þ jFcj ¼ m, the worst-

case time complexity for allocating all files in F is

OðkmÞ (Steps 5-28). Other steps simply take Oð1Þ time.

Thus, the worst-case time complexity of the SEA0

algorithm is OðmÞ þOðkmÞ ¼ Oððkþ 1ÞmÞ. tu

Theorem 1 indicates that the time complexity of the SEA0

algorithm is typically low. For example, in our experiments,

the value of m is 5,000, the value of sp is 512 Kbytes, and k is

in the range [864, 30,240], which should take less than

thousands of microseconds to complete the SEA algorithm

in modern processors. An implication of Theorem 1 is that

SEA has the potential of being extended to be applied in

real-world applications because of its low complexity.

4.3 The Four Baseline Algorithms

In Section 5, we will compare the performance of SEA0 and

SEA5 against three traditional nonpartitioned file assign-

ment algorithms, namely, Greedy [15], SP [24], and HP [24],

and one stripping-based data placement scheme PVFS [23].

The purpose of this section is to briefly introduce the four

baseline algorithms, which are well-known data placement

algorithms whose goal is to minimize the mean response

time. The average disk load � can be obtained by the

following equation:

� ¼ 1

n
�
Xm
i¼1

hi: ð23Þ

Note that the Greedy, SP, and HP algorithms assign

nonpartitioned files onto a disk array. In other words, each

file must be allocated entirely onto one disk. In contrast,

PVFS essentially employs RAID-0 structure to partition

each file across the disk array with uniform stripe size. In

addition, since all four baseline algorithms only pursue a

minimized mean response time, all disks in the disk array

754 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

Fig. 4. (a) File access rate distribution. (b) File size distribution.

are configured to hot disks with high speed. The four

algorithms are briefly described as follows:

1. Greedy. This is the most common heuristic for
multiple disks load balancing. It can operate in
either the online mode or the offline mode. Here, we
only consider its offline mode because SEA is an
offline energy-aware file assignment strategy. It first
calculates the mean load of all files and then assigns
a consecutive set of files whose total load is equal to
the mean load onto each disk. Its goal is to generate a
file assignment scheme such that the mean response
time of the parallel I/O system can be minimized.
The time complexity of Greedy is OðmþmnÞ, where
m is the number of files and n is the number of disks.

2. SP (Sort Partitions). It first computes the average
disk utilization using (23). Next, it sorts all files into
a list I in descending order of their service times.
Finally, it allocates each disk dj the next contiguous
segment of I until its load loadj reaches the
maximum allowed threshold �. The remaining files
(if any) after one round allocation will be assigned to
the last disk dn. It improves the performance of the
Greedy algorithm by minimizing the variances of
service times at each disk. Its time complexity is
OðmþmnþmlgmÞ, where m is the number of files
and n is the number of disks.

3. HP (Hybrid Partition). In case files arrive in batches
which can be sorted prior to their assignment, HP
attempts to simultaneously minimize the load
variance across all disks, as well as the service time
variance at each disk. For each batch, HP assigns
files to disks in distinct allocation intervals. The
algorithm selects, for each allocation interval l, a
different disk dk as the allocation target. It chooses
the disk with the smallest accumulated load. During
one allocation interval, a number of files are
allocated to the target disk dk until its load reaches
a given threshold Tk. The complexity of the
HP algorithm is Oððbþ 1ÞnlgnþmÞ, where m is the
number of files, n is the number of disks, and b is the
number of batches.

4. PVFS (Parallel Virtual File System). PVFS is an open
source implementation of a parallel file system
developed specifically for cluster-based parallel
computers [23]. In order to provide high-perfor-
mance access to data stored on the file system by
many clients, PVFS spreads data out across multiple
cluster nodes. Basically, it mimics a RAID-0 style
stripping to distribute each file onto multiple

I/O nodes in a round-robin fashion. Its worst-case
time complexity is OðkmÞ, where m is the number of
files and k is the number of stripes of the largest file
in F . To make the comparisons between PVFS and
our SEA0 and SEA5 fair, the strip size for all three
stripping-based algorithms is set to 512 Kbytes.

5 PERFORMANCE EVALUATION

This section presents the results of a comprehensive

experimental study by comparing the proposed two SEA-

powered energy-aware data placement algorithms, namely,

SEA0 and SEA5, with the four traditional approaches,

Greedy, SP, HP, and PVFS. To the best of our knowledge,

the SP algorithm is arguably the most effective among

existing static nonpartitioned data placement algorithms, in

part because it can result in a minimal mean response time

[24]. In this section, we first outline the performance metrics

that we used and explore the parameter space by discussing

six critical parameters. Next, we introduce a synthetic

workload generator that we built to investigate the impact

of the parameters that we discuss in Section 5.1. Finally, in

Sections 5.3-5.7, we analyze experimental results under the

workload assumption that file access frequency is inversely

correlated with file size [10], [14]. Some preliminary results

in Sections 5.3 were presented in [37].

5.1 Simulator and Parameter Space

We have developed an execution-driven simulator that

models an array of two-speed disks. We adopt the same

strategy used in [30] to derive corresponding low speed

mode disk statistics from parameters of a conventional

Cheetah disk. The main characteristics of the two-speed

disk are shown in Table 1. The performance metrics by

which we evaluate system performance include:
Mean response time. Average response time of all file

access requests submitted to the simulated parallel disk

storage system (see (13)).
Energy consumption. Energy (in joules) consumed by the

disk systems during the process of serving the entire

request set (see (22)).
Mean slowdown. Ratio between the average request turn-

around time and the average request service time (see (14)).
Two categories of parameters directly influence the data

placement algorithms that we investigate: workload char-

acteristics and disk drive characteristics. Among the large

number of parameters that specify a workload, we

identified six key characteristics:

XIE: SEA: A STRIPING-BASED ENERGY-AWARE STRATEGY FOR DATA PLACEMENT IN RAID-STRUCTURED STORAGE SYSTEMS 755

TABLE 1
Main Characteristics of a Two-Speed Disk

1. Number of files. Since the total number of files to be
assigned onto a parallel disk array directly determines
the disk array’s load, we set it to 5,000 so that each
disk can accommodate around 312 files in case
there are 16 disk drives in the array. The number
of files per disk is a realistic mimic of the real-
world situation.

2. Request rate. Each file access represents a sequential

read of the entire file. Hence, the service time of a file

access request is proportional to the file’s size. We

assume that each file has a fixed request arrival

rate �i and the arrival interval times are exponen-

tially distributed. The aggregate arrival rate of the

entire system is defined as
P5;000

i¼1 �i. The value of the

aggregate arrival rate represents the intensity of the

total access requests submitted to the disk array,

where 5,000 files have been assigned across.
3. File popularity weight. File popularity weight relates

to the frequency with which file requests arrive at
the parallel disk array system. Since the frequency of
file access usually exhibits a Zipf-like distribution,
we assume that the distribution of file access
requests is a Zipf-like distribution with a skew
parameter � ¼ log A

100 = log B
100 , where A percent of all

accesses were directed to B percent of files [24].
Fig. 4a shows a Zipf-like distribution of file access
rate on the 5,000 files, with A : B ¼ 70 : 30, assuming
that file f1 is the most popular file and f5;000 is the
most unpopular one. In our simulations, we tested
three values of �, with skew degree A : B changing
from 60 : 40 to 80 : 20.

4. File size distribution. The distribution of file sizes and
the distribution of access rates across the files were
inversely correlated with the same skew parameter,
�, as shown in Fig. 4b. The parameter file size base is
defined as the smallest file size in the whole file set.

5. Coverage of the system. The file system coverage is
defined as the percentage of the entire file repository
that is actually accessed by the request workload.
We set the coverage of the system to 100 percent in
our simulations, which means that all files in the
parallel disk array system are accessed at least once.

6. �. The ratio between the number of hot disks and the
number of cold disks in the disk set is calculated by
(4). In fact, � is a critical parameter which directly
influences the mean response time and energy
consumption. On one hand, a large value of �
implies a longer mean response time with more
energy consumption. On the other hand, a low value
of � indicates a shorter mean response time with less
energy consumption. � must be adjusted so that a
good balance between quick response and energy
saving can be achieved. Section 5.7 shows that a fine-
tuned � results in quick mean responses and low
energy consumption.

Table 2 summarizes the configuration parameters of a
simulated parallel disk array system used in our experi-
ments and characteristics of the synthetic workload. All
synthetic workloads used from Sections 5.3 to 5.7 were
created by our trace generator. Although the number of

disks, aggregate access rate, and size of files are syntheti-
cally generated, we examined the impacts of these
important parameters on system performance by control-
ling the parameters.

5.2 Synthetic Workload Generator

To study the impact of the parameters that we discussed in
Section 5.1, we built a workload generator that can produce
file traces and request traces with user-specified request
rate, popularity weight, file sizes, the number of files,
coverage, skew degree, and the number of requests.

The workload generator takes the number of files
(FILE_NUM), the aggregate access rate (TOTAL_ACCESS_
RATE), and the skew degree (SKEW_DEGREE) as input
parameters and then computes popularity weight for each
file based on Zipf-like distribution with the skew
parameter � ¼ log A

100 = log B
100 . Suppose pi is the popularity

weight of file fi. In a Zipf-like distribution, pi ¼ c=rank1��
i ,

where ranki is the rank of the file from 1 to the total number
of files (FILE_NUM) and c ¼ 1=H

ð1��Þ
N . H

ð1��Þ
N is the Nth

harmonic number of order ð1� �Þ and it is defined asPN
k¼1

1
kð1��Þ

. A file’s popularity weight multiplied by the
aggregate access rate is equal to its access rate. The same
skew degree value was used to produce file sizes when the
file size obeys a Zipf-like distribution (Sections 5.3-5.7).
Therefore, each file has the following attributes: popularity
weight, access rate, and file size in Zipf-like distribution. To
generate a request trace, for each file, the workload
generator first computes the number of requests targeted
on the file during the simulation duration (1,000 s)
according to each file’s access rate. Since we set the coverage
of the file system to 100 percent, each file has at least one

756 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

TABLE 2
Characteristics of System Parameters

request. The interarrival times of access to file fi were
exponentially distributed with a fixed mean 1=�i. Hence, for
each file, the generator creates a request list. Next, the
generator mixes all of the file’s request list into one request
queue and sorts it in ascending order in terms of arrival
time. As a result, there are two features for each request: the
identifier of the file that it targets on and its arrival time.
The request trace was used to drive the simulated parallel
disk array, with all files having been assigned on.

5.3 Impact of Aggregate Access Rate

The goal of this experiment is to compare the proposed
SEA0 and SEA5 algorithms against the four well-known file
assignment schemes and to understand the sensitivity of the
six heuristics to the aggregate access rate in a parallel disk
storage system, where an array of two-speed disk drives
serve requests simultaneously. The aggregate access rate
varies from 20 (1 J/s) to 45 (1 J/s). The file sizes were
generated according to a Zipf-like distribution with skew
degree 70 : 30 and the file size base is set to 1 Mbyte.

Fig. 5 shows the simulation results for the six algorithms
on a parallel disk array with 16 disk drives, where five of
them are hot disks and 11 of them are cold disks. We
observe in Fig. 5a that SEA0 and SEA5 consistently
outperform the three nonpartitioned approaches in terms
of the mean response time. This is because they employ a
striping-based data placement scheme where intrarequest
parallelism is very high. SP takes the third place in the mean
response time metric, which is consistent with our expecta-
tion because it is one of the best existing nonpartitioned
data placement heuristics, which is superior to Greedy and
HP [24]. Compared with the SP algorithm, SEA0 and SEA5
can reduce the mean response time, on average, by
45.8 percent and 39.3 percent while saving energy, on
average, by not less than 9.8 percent (96,657.1 J) and
7.9 percent (77,771.6 J), respectively (see Fig. 5b). PVFS [23]
is in first place in terms of the mean response time. On
average, it lowers the mean response time to 0.018 and
0.024 s when compared with SEA0 and SEA5, respectively.
This is because it employs the same stripping manner that
SEA0 does. More importantly, to pursue quick responses, it
uses only high-speed disks in the simulated system.
However, in terms of energy consumption, PVFS is the
worst algorithm among the six approaches. The reason
behind this is that PVFS uses the entire disk array to serve
every single request and, thus, each disk has an interleaved
high speed idle-high speed active reading mode sequence

until the finish time of the last request in the whole request
set R. In contrast, for the three traditional nonpartitioned
algorithms, an individual disk stops consuming energy
immediately after the disk finishes serving the last request
targeting on it. In other words, the disk does not need to keep
running until the finish time of the last request in the entire
request set R. Thus, the three nonpartitioned algorithms
consume less energy than PVFS does. Compared with PVFS,
SEA0 and SEA5 save energy by up to 36.2 percent (376,063 J)
and 38.6 percent (352,567 J), respectively. We argue that
saving energy by more than 35 percent (i.e., more than
350,000 J per simulation duration time), at the price of a small
performance degradation (i.e., less than 0.025 second), is
absolutely worthwhile. An interesting observation is that, in
terms of the mean slowdown, SP and SEA0 deliver a similar
performance (Fig. 5c). The reason is that the average service
time of each request is relatively higher in SP because no
intrarequest parallelism exists. Although we only test a
relatively light physical read workload (in the range [20, 45]
1 J/s), the actual system workload can be 10 times heavier (in
the range [200, 450] 1 J/s) because of the very low miss rates
(less than 10 percent) provided by the high-speed buffers on
the data server (see Fig. 2). The implication is that both SEA0
and SEA5 can be applied in applications where the system
workload is heavy. One example of such applications is
Online Transaction Processing (OLTP).

5.4 Scalability

This experiment is intended to investigate the scalability of
the six algorithms. We scale the number of disks in the
system from 12 to 32. The aggregate access rate is
configured to 35 (1 J/s). The skew degree is still set to
70 : 30. Fig. 6 plots the performance of the six algorithms as
functions of the number of disks. The results show that
SEA0 and SEA5 exhibit good scalability.

Fig. 6 shows that all six algorithms deliver better
performance in the mean response time and the mean
slowdown when the number of disks increases. This is
because each disk has few files to be assigned on when the
system is scaled up. With more disks available, it is easy to
understand that the total energy consumption will be
increased (Fig. 6b). The SEA0 and SEA5 algorithms almost
tie with PVFS in the mean response time when the system
has more than 20 disks (Fig. 6a). Meanwhile, SEA0 and
SEA5 can save more energy compared with all four baseline
algorithms when the system has more disks (Fig. 6b). The
implication of this observation is that SEA is suitable for a

XIE: SEA: A STRIPING-BASED ENERGY-AWARE STRATEGY FOR DATA PLACEMENT IN RAID-STRUCTURED STORAGE SYSTEMS 757

Fig. 5. Impact of aggregate access rate.

parallel I/O system where the number of disks is adequate
for a heavy workload. In addition, SEA0 and SEA5
obviously perform better in the mean slowdown compared
with PVFS (Fig. 6c). The rationale behind this is that PVFS
provides each request with a shorter service time due to a
higher level intrarequest parallelism while offering almost
the same response time. A shorter service time combined
with a similar response time leads to a larger slowdown
value (see (12)).

5.5 Sensitivity to Skew Parameter �

To verify the performance impact of the skew parameter �,
we evaluate the performance as functions of skew degree.
When the skew degree increases from 60 : 40 to 80 : 20, the
improvement of our SEA algorithms in both the mean
response time and energy consumption compared with the
best nonpartitioned algorithm SP becomes less pronounced.
This is because, when the skew degree becomes high, more
requests will concentrate on a small portion of popular files
with small sizes. In this case, the advantage of the
intrarequest parallelism employed by SEA0 and SEA5
becomes less salient. In other words, SP can also quickly

complete most of the requests, without using intrarequest
parallelism in this scenario. We observe in Fig. 7 that SEA0
and SEA5 achieve the best balance between the mean
response time improvement and energy saving when the
skew degree is 70 : 30.

5.6 Impact of File Size

In this section, we examine the performance impact of file
size when the parameter file size base varies from 15 to
30 Mbytes. Note that file size base is the size of the smallest
file in a file set F and the sizes of all other files can be
generated based on the inverse Zipf-like distribution shown
in Fig. 4b. Obviously, when the size of files is enlarged, the
mean response time and energy consumption correspond-
ingly increase (Figs. 8a and 8b). Another purpose of this
experiment is to examine the maximal possible file size in
the system when the mean response time is controlled
within a realistic range, e.g., 3 � 5 seconds, which is
acceptable for some real-time systems [20]. When the file
size base is set to 30 Mbytes, the size of files changes in the
range [35, 13,360] Mbytes. Still, SEA0 and SEA5 perform
much better than the three nonpartitioned algorithms in

758 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

Fig. 7. Impact of skew degree.

Fig. 6. Impact of the number of disks.

Fig. 8. Impact of file size.

both the mean response time and energy conservation.
Although PVFS can deliver a shorter mean response time, it
achieves this slim performance improvement, but at the cost
of significant energy consumption (Fig. 8b). The results
from this test demonstrate that SEA0 and SEA5 can also be
applied in decision support systems (DSSs).

5.7 Impact of �

To measure the impacts of parameter �, the ratio between
the number of hot disks, and the number of cold disks in a
disk array, we evaluate the six algorithms while changing �
from 3 : 13 to 10 : 6. The performance patterns plotted in
Fig. 9 are similar to those reported in previous sections except
that the four baseline algorithms are kept constant in all three
figures. This is because there is no parameter � in these three
algorithms and they all set disks to their high-speed modes.
When � is configured to 10 : 6, both SEA0 and SEA5 are
beaten by SP and PVFS in terms of the mean response time.
The rationale behind this phenomenon is that the limited
number of cold disks makes the mean response times for large
but unpopular files dramatically enlarged. Meanwhile, the
energy saving becomes less significant when the number of
hot disks dominates the entire disk array. The best choice for�
is 4 : 12, where SEA0 and SEA5 can achieve their lowest mean
response times while noticeably saving energy. The best
value of � (4 : 12) obtained from our experiments above is
very close to the value calculated by (4) (5 : 11), which verifies
its effectiveness.

One important observation from Fig. 9 is that only when
the number of hot disks is not larger than the number of cold
disks can our algorithms achieve a better mean response
time than the three nonpartitioned baseline algorithms. In
other words, a better performance is achieved by using a
minority of disks to serve a majority of files, which is
counterintuitive at first glance. Nevertheless, the disk
partition method (see (4)) is correct because it assigns
disks to the two disk zones based on the load percentage.
Note that, although the number of popular files is in the
majority, the total load of the popular files is not
necessarily dominant as the total load of a file set is
decided by the average file size and the disk transfer rate
as well (see Section 3.1).

6 CONCLUSIONS

In this paper, we have addressed the issue of allocating
striped files onto a RAID-structured disk storage system
where the file access requests exhibit Poisson arrival rates

and fixed service times. To provide quick response and
energy conservation simultaneously, a new energy-saving
strategy, called SEA, is developed to generate optimized file
allocation schemes. SEA0 and SEA5, two SEA-powered
RAID-based data placement algorithms, are also imple-
mented to evaluate the effectiveness and practicality of
SEA. Comprehensive experimental results show that both
SEA0 and SEA5 consistently improve the performance of
parallel disk storage systems in terms of the mean response
time and save energy over three well-known nonpartitioned
data placement algorithms. Compared with SP, one of the
best existing nonpartitioned file assignment algorithms,
SEA0 and SEA5 decrease the mean response time by
averages of 45.8 percent and 39.3 percent while saving
energy, on average, by not less than 9.8 percent (96,657.1 J)
and 7.9 percent (77,771.6 J), respectively. Compared with a
widely used stripping-based file assignment scheme PVFS
[23], SEA0 and SEA5 save energy by up to 36.2 percent
(376,063 J) and 38.6 percent (352,567 J) while only increasing
the mean response time, on average, by 0.018 and 0.024 s,
respectively. More importantly, SEA5 also offers fault
tolerance by utilizing the parity data, whereas all four
existing algorithms provide no fault tolerance at all.
Multispeed disks have been adopted by some traditional
energy-saving schemes like Multispeed [4], DRPM [13],
PDC [30], and Hibernator [38]. Typically, these techniques
dynamically switch disks from one-speed mode to another
to better serve disk access requests and save energy. There
are two inherent drawbacks of these approaches. First, disk
speed mode transitions bring extra overhead in terms of
transition time and transition energy [30], which is against
their original goals. Second, frequent disk speed mode
transitions are detrimental to the lifetime of hard disks [4].
SEA0 and SEA5 avoid these two shortcomings by statically
configuring all disks to one of the multiple modes before
they start to serve requests based on workload character-
istics. Furthermore, there is no speed mode transition
during the process of serving the requests. In case the
workload pattern changes, the system administrator can
reconfigure all disks periodically so that the whole disk
array can serve it better. In summary, compared with
traditional nonpartitioned file assignment algorithms, the
SEA strategy realizes energy saving but not at the cost of
performance degradation and disk reliability. Rather, it
delivers much shorter mean response times. Compared
with existing stripping-based non-energy-aware data place-
ment schemes like PVFS, the SEA strategy substantially

XIE: SEA: A STRIPING-BASED ENERGY-AWARE STRATEGY FOR DATA PLACEMENT IN RAID-STRUCTURED STORAGE SYSTEMS 759

Fig. 9. Impact of �.

saves energy while only marginally degrades system

performance. Besides, the SEA5 algorithm can provide

fault tolerance because of the RAID structures upon which

it relies.
Future studies in this research can be performed in the

following directions: First, we will extend our scheme to a

fully dynamic environment, where file access characteristics

are not known in advance and may vary over time. As a

result, a dynamic energy-saving data placement strategy

that can predict request access patterns based on workload

history is mandatory. Fortunately, data center workload

tends to be highly self-similar, which makes future work-

load prediction possible. Two feasible solutions for dyna-

mically redistributing files across a disk array to adapt to

access pattern changes are file migration and file replica-

tion. File migration, however, incurs a relatively heavy

overhead. In case the size of popular files is small, we may

consider using a file replication approach to avoid file

transfer overhead. We believe that a combination of the two

techniques provides us with a good way of solving the file

redistribution problem. Second, we intend to develop an

energy-saving data placement scheme for write-dominated

workload. The SEA strategy in its current form only

considers read-dominated workload. For write-dominated

workload, the SEA5 algorithm needs to frequently update

the parity data for each write access, which obviously

affects system performance and energy saving. One

possible method to alleviate this burden is to utilize large

size cache so that data updating only occurs periodically.

ACKNOWLEDGMENTS

The author thanks the anonymous reviewers, whose

comments noticeably improved the quality of this paper.

This work was supported by the US National Science

Foundation Computing Processes and Artifacts (CISE-CCF)

under Grant 0742187.

REFERENCES

[1] S. Akyürek and K. Salem, “Adaptive Block Rearrangement,” ACM
Trans. Computer Systems, vol. 13, no. 2, pp. 89-121, 1995.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM ’99, pp. 126-134, 1999.

[3] A. Brinkmann, K. Salzwedel, and C. Scheideler, “Efficient,
Distributed Data Placement Strategies for Storage Area Net-
works,” Proc. 12th Ann. ACM Symp. Parallel Algorithms and
Architectures, pp. 119-128, 2000.

[4] E.V. Carrera, E. Pinheiro, and R. Bianchini, “Conserving Disk
Energy in Network Servers,” Proc. 17th Ann. Int’l Conf. Super-
computing, pp. 86-97, 2003.

[5] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patterson,
“RAID: High-Performance Reliable Secondary Storage,” ACM
Computing Surveys, vol. 26, no. 2, pp. 145-185, 1994.

[6] P.M. Chen and D.A. Patterson, “Maximizing Performance in a
Striped Disk Array,” Proc. 17th Int’l Symp. Computer Architecture,
pp. 322-331, 1990.

[7] P.M. Chen and E.K. Lee, “Striping in a RAID Level 5 Disk Array,”
ACM Sigmetrics Performance Evaluation Rev., vol. 23, no. 1, pp. 136-
145, 1995.

[8] Y. Cho, M. Winslett, Y. Chen, and S.W. Kuo, “Parallel I/O
Performance of Fine Grained Data Distributions,” Proc. Seventh
Int’l Symp. High Performance Distributed Computing, pp. 163-170,
1998.

[9] A.L. Couch, N. Wu, and H. Susanto, “Toward a Cost Model for
System Administration,” Proc. Usenix 19th Conf. Large Installation
System Administration, pp. 125-141, 2005.

[10] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of
WWW Client-Based Traces,” Technical Report 1995-010, Boston
Univ., 1995.

[11] C.H.Q. Ding and Y. He, “Data Organization and I/O in a Parallel
Ocean Circulation Model,” Proc. 13th Ann. Int’l Conf. Super-
computing, 1999.

[12] W. Dowdy and D. Foster, “Comparative Models of the File
Assignment Problem,” ACM Computing Surveys, vol. 14, no. 2,
pp. 287-313, 1982.

[13] S. Ghandeharizadeh, S.H. Kim, and C. Shababi, “On Disk
Scheduling and Data Placement for Video Servers,” Sigmetrics
Performance Evaluation, vol. 23, no. 1, pp. 37-46, 1995.

[14] S. Glassman, “A Caching Relay for the World Wide Web,” Proc.
First Conf. World Wide Web, pp. 165-173, 1994.

[15] R.L. Graham, “Bounds on Multiprocessing Timing Anomalies,”
SIAM J. Applied Math., vol. 7, no. 2, pp. 416-429, 1969.

[16] P. Greenawalt, “Modeling Power Management for Hard Disks,”
Proc. Second Int’l Workshop Modeling, Analysis, and Simulation of
Computer and Telecomm. Systems, pp. 62-66, Jan. 1994.

[17] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.
Franke, “DRPM: Dynamic Speed Control for Power Management
in Server Class Disks,” Proc. 30th Int’l Symp. Computer Architecture,
pp. 169-179, June 2003.

[18] “Hitachi Power & Acoustic Management: Quietly Cool,” white
paper, Hitachi Corp., Mar. 2004.

[19] H. Huang, W. Hung, and K.G. Shin, “FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk Performance
and Energy Consumption,” Proc. 12th ACM Symp. Operating
Systems Principles, pp. 263-276, 2005.

[20] B. Inmon, “Information Management: Real-Time Decision Support
Systems,” DM Rev. Magazine, Aug. 2006.

[21] M. Kandemir, S.W. Son, and G. Chen, “An Evaluation of Code and
Data Optimizations in the Context of Disk Power Reduction,”
Proc. Int’l Symp. Low-Power Electronics and Design, pp. 209-214,
2005.

[22] T. Kwan, R. Mcgrath, and D. Reed, “Ncsas World Wide Web
Server Design and Performance,” Computer, vol. 28, no. 11, pp. 67-
74, Nov. 1995.

[23] R. Latham, N. miller, R. Ross, and P. Carns, “A Next-Generation
Parallel File System for Linux Clusters: An Introduction to the
Second Parallel Virtual File System,” Linux World Magazine,
pp. 56-59, Jan. 2004.

[24] L.W. Lee, P. Scheuermann, and R. Vingralek, “File Assignment in
Parallel I/O Systems with Minimal Variance of Service Time,”
IEEE Trans. Computers, vol. 49, no. 2, pp. 127-140, Feb. 2000.

[25] P. Merialdo, P. Atzeni, and G. Mecca, “Design and Development
of Data-Intensive Web Sites: The Araneus Approach,” ACM Trans.
Internet Technology, vol. 3, no. 1, pp. 49-92, 2003.

[26] M. Narris and J. Obal, “Performance Analysis of the Linux Buffer
Cache while Running an Oracle OLTP Workload,” Worcester
Polytechnic Inst., Jan. 2002.

[27] N. Nishikawa, T. Hosokawa, Y. Mori, K. Yoshida, and H. Tsuji,
“Memory-Based Architecture for Distributed WWW Caching
Proxy,” Proc. Seventh Int’l Conf. World Wide Web, pp. 205-214, 1998.

[28] A.E. Papathanasiou and M.L. Scott, “Power-Efficient Server-Class
Performance from Arrays of Laptop Disks,” Proc. Usenix Ann.
Technical Conf. Work-in-Progress Presentation, 2004.

[29] Z. Peterson, D.E. Long, and S.A. Brandt, “Data Placement Based
on Seek Time Analysis of a MEMS-Based Storage Device,” Proc.
Conf. File and Storage Technology Work-in-Progress Session, Jan. 2002.

[30] E. Pinheiro and R. Bianchini, “Energy Conservation Techniques
for Disk Array-Based Servers,” Proc. 18th Ann. Int’l Conf. Super-
computing, pp. 68-78, June 2004.

[31] “Power, Heat, and Sledgehammer,” white paper, Maximum Inst.,
www.max-t.com/downloads/whitepapers/Sledgehammer
PowerHeat20411.pdf, 2002.

[32] X. Ruan, X. Qin, M. Nijim, Z. Zong, and K. Bellam, “An Energy-
Efficient Scheduling Algorithm Using Dynamic Voltage Scaling
for Parallel Applications on Clusters,” Proc. 16th IEEE Int’l Conf.
Computer Comm. and Networks, pp. 735-740, Aug. 2007.

[33] N.J. Sarhan and C.R. Das, “Adaptive Block Rearrangement
Algorithms for Video-on-Demand Servers,” Proc. 30th Int’l Conf.
Parallel Processing, pp. 452-459, 2001.

760 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

[34] S.W. Son, G. Chen, and M. Kandemir, “Disk Layout Optimization
for Reducing Energy Consumption,” Proc. 19th Ann. Int’l Conf.
Supercomputing, pp. 274-283, 2005.

[35] S.W. Son, G. Chen, M. Kandemir, and A. Choudhary, “Exposing
Disk Layout to Compiler for Reducing Energy Consumption of
Parallel Disk-Based Systems,” Proc. 10th ACM Symp. Principles and
Practice of Parallel Programming, pp. 174-185, 2005.

[36] P. Triantafillou, S. Christodoulakis, and C. Georgiadis, “Optimal
Data Placement on Disks: A Comprehensive Solution for Different
Technologies,” IEEE Trans. Knowledge and Data Eng., vol. 12, no. 2,
pp. 324-330, Feb./Mar. 2000.

[37] T. Xie and Y. Sun, “No More Energy-Performance Trade-Off: A
New Data Placement Strategy for RAID-Structured Storage
Systems,” Proc. 14th Ann. IEEE Int’l Conf. High-Performance
Computing, pp. 35-46, Dec. 2007.

[38] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes,
“Hibernator: Helping Disk Arrays Sleep through the Winter,”
Proc. 12th ACM Symp. Operating Systems Principles, pp. 177-190,
2005.

[39] Z. Zong, X. Qin, M. Nijim, X. Ruan, K. Bellam, and M. Alghamdi,
“Energy-Efficient Scheduling for Parallel Applications Running
on Heterogeneous Clusters,” Proc. 36th Int’l Conf. Parallel Proces-
sing, 2007.

Tao Xie received the BSc and MSc degrees
from Hefei University of Technology, Hefei,
China, in 1991 and 2000, respectively, and the
PhD degree in computer science from the New
Mexico Institute of Mining and Technology in
2006. He is currently an assistant professor in
the Department of Computer Science at San
Diego State University, California. His research
interests include storage systems, high-perfor-
mance computing, cluster and grid computing,

parallel and distributed systems, real-time/embedded systems, and
information security. He is a member of the IEEE, the IEEE Computer
Society, and Usenix.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XIE: SEA: A STRIPING-BASED ENERGY-AWARE STRATEGY FOR DATA PLACEMENT IN RAID-STRUCTURED STORAGE SYSTEMS 761

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

