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Abstract—A flash translation layer (FTL) is a software layer
running in the flash controller of a NAND flash memory
solid-state disk (hereafter, flash SSD). It translates logical
addresses received from a file system to physical addresses
in flash SSD so that the linear flash memory appears to the
system like a block storage device. Since the effectiveness of an
FTL significantly impacts the performance and durability of a
flash SSD, FTL design has attracted significant attention from
both industry and academy in recent years. In this research,
we propose a new FTL called DLOOP (Data Log On One
Plane), which fully exploits plane-level parallelism supported
by modern flash SSDs. The basic idea of DLOOP is to allocate
logs (updates) onto the same plane where their associated
original data resides so that valid page copying operations
triggered by garbage collection can be carried out by intra-
plane copy-back operations without occupying the external I/O
bus. Further, we largely extend a validated simulation environ-
ment DiskSim3.0/FlashSim to implement DLOOP. Finally, we
conduct comprehensive experiments to evaluate DLOOP using
realistic enterprise-scale workloads. Experimental results show
that DLOOP consistently outperforms a classical hybrid FTL
named FAST and a morden page-mapping FTL called DFTL.

Keywords-flash translation layer, copy-back, merge opera-
tions, solid state disk, garbage collection.

I. INTRODUCTION

With increasing capacity and decreasing price, high-end
flash SSD is now considered a replacement for hard disk
drive (HDD) in server applications due to its desirable
properties such as fast random access, enhanced durability,
and low energy-consumption [16]. Fig. la shows major
components of a flash SSD. The flash controller manages
the entire flash SSD including error correction, the interface
with flash memory, and servicing host requests [1]. The
flash memory part of a flash SSD is composed of an array
of identical packages. Each package contains several chips
and packages within the same group share one channel,
which connects them to the flash controller. Chips within
one package share the package’s 8/16-bit /O bus but have
separate chip enable and ready/busy control signals [9].
Each chip consists of multiple dies as shown in Fig. 1b.
Each die has its own internal ready/busy signal, which is
invisible to users and will only be used by the advanced
commands. Further, each die contains multiple planes, each
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containing thousands of blocks and one or two data/cache
registers as an I/O buffer. Each block typically has 64 or
128 pages. The size of one page varies from 2 KB to 16
KB [9]. While read and write are carried out at page-level,
erasure can be conducted only at block granularity, which is
time-consuming [5]. In addition to the three basic operations
(i.e., read, write, and erase), flash SSD manufacturers also
provide advanced commands like copy-back and interleave
to further improve performance [1], [9], [17]. The copy-
back operation, sometimes referred to as internal data move
(IDM) operation [15], moves a page of data from one page
to another page in the same plane. Since no external data
operation occurs, an intra-plane copy-back operation can be
30% faster than a traditional inter-plane data operation [15].
Moreover, intra-plane copy-back operation can be viewed
as a form of plane-level parallelism as multiple copy-back
operations can be performed on different planes at once [1].

Although flash SSD possesses some advantages over
HDD, flash memory also has some inherent limitations such
as finite-erasure-cycles and erase-before-write, which are not
present in HDD. In flash memory, each block has limited
write endurance because it becomes unreliable after a finite
number of erasure cycles. In addition, a piece of data written
on a page cannot be simply overwritten at the same place
[13]. Before overwriting the data, a time-consuming erase
operation on the entire block that contains the data must be
executed. This limitation significantly degrades the overall
write performance of flash memory [2]. In order to solve the
erase-before-write problem, modern flash SSD implements
a software module called flash translation layer (FTL) in
the flash memory controller. The major function of FTL
is to map logical block addresses (LBAs) received from
file system to physical block addresses (PBAs) in the flash
memory [2]. FTL hides erase-before-write by using an out-
of-place update method: first, the update data is written to
an erased page; next, the page that contains the old data is
invalidated; finally, the virtual-to-physical address mapping
table is modified to reflect this change [7]. The out-of-place
update method requires a garbage collector, which reclaims
invalid pages within a block by first relocating valid pages
in the block to new destinations and then erasing the entire
block. The finite-erasure-cycles limitation demands a wear-



leveling scheme, which ensures that all blocks in a flash SSD
are worn out evenly in order to prolong the life and reliability
of the flash SSD [17]. Garbage collection and wear-leveling
are two other functions of FTL.

The efficiency of an FTL is crucial because it significantly
impacts not only the performance but also the durability of
a flash SSD [7], [13], [17]. Intensive investigations on FTL
designs have been reported in the literature [7], [8], [10],
[12], [13], [17]. Most of them either focus on improving
the utilization of log blocks (see Section II) [10], [12],
[13] or concentrate on employing the locality exhibited
in enterprise-scale workloads [7], [8]. In this research, we
take a completely different approach to developing a high-
performance FTL by exploiting the internal parallelism
present in the architecture of contemporary flash SSDs. We
propose a new FTL called DLOOP (Data Log On One
Plane), which fully exploits the fast intra-plane copy-back
operations supported by modern flash SSDs. The basic idea
of DLOORP is to allocate logs (i.e., updates) onto the same
plane where their associated original data resides so that
valid page copying operations triggered by garbage collec-
tion can be carried out by copy-back operations without
occupying the I/O bus. Essentially, DLOOP is an optimized
page-level mapping FTL. This paper makes the following
major contributions:

e We design a novel flash translation layer. Unlike all
existing FTLs, DLOOP achieves higher performance
mainly through exploiting the internal parallelism pro-
vided by modern flash SSDs. The rationale behind
DLOOQOP is straightforward: since current high-end
flash SSDs exhibit multi-level internal parallelism,
DLOOP evenly distributes write requests on all planes
based on their logical block addresses so that intra-
plane copy-back operations can be utilized to move
data when a garbage collection process occurs and
sequential read or update requests can be served in
parallel by multiple planes. More importantly, DLOOP
encourages future research on developing FTLs by
taking advantage of flash SSD internal features and
their interplay [9].

e We extend a validated flash SSD simulator called
FlashSim [11] to evaluate the effectiveness of DLOOP.
FlashSim is built by enhancing a well-recognized
and validated hard disk simulation toolkit named
Disksim3.0 [3]. We plan to release our extended
FlashSim source code for public use in the near future.

e We use five realistic enterprise-scale workloads to
conduct a comprehensive simulation study. The exper-
imental results demonstrate that DLOOP consistently
outperforms DFTL [7] and FAST [13]. For example,
we observe an average 57.8% and 85.5% improve-
ment in mean response time on a 64 GB flash SSD
compared with DFTL and FAST, respectively.
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Figure 1. (a) Flash SSD block diagram; (b) internal chip structure

The remainder of this paper is organized as follows. In
the next section we discuss the related work and motivation.
In Section III, we describe the design and implementation
of DLOOP. Simulator extension will be presented in Section
IV. In Section V, we evaluate DLOOP. Section VI concludes
the paper with a summary and a discussion of future work.

II. RELATED WORK AND MOTIVATION
A. Existing FTL Schemes

Existing FTL schemes can be generally categorized into
three camps: (1) page-mapping FTL; (2) block-mapping
FTL; and (3) hybrid FTL [7]. In a page-mapping FTL,
each logical page can be mapped to any physical page in
a flash SSD, which is efficient in flash memory utilization.
However, the size of its mapping table increases linearly with
the increasing capacity of a flash SSD, and thus, generates
an expensive SRAM cache overhead [7]. In a block-mapping
FTL, each LBA is translated into a physical block number,
which results in a small size mapping table. Nevertheless,
block-mapping FTLs demand extra operations to serve a
request, which degrades the performance [7]. Thus, they are
seldom employed in current flash SSDs. To make a good
trade-off between page-mapping and block-mapping, hybrid
FTL algorithms [10], [12], [13] logically divide all physical
blocks into two groups: data blocks and log blocks. The
majority of physical blocks are tagged as data blocks, which
are administered by a block-mapping scheme. Remaining
physical blocks are designated as log blocks, which are page-
mapped and invisible to users [18]. Both the block-mapping
table and page-mapping table are normally stored in an
SRAM buffer within a flash SSD. When a write (update)
request arrives, a hybrid FTL writes the new data in a log
block, and then invalidates the old version of the data that
was stored in a data block. Whenever there is no free log
block, a garbage collection process is invoked to merge the
log block with the data block, after which either the data
block or the log block will be erased to become a new free



log block [7]. The merge operations can be classified into:
switch merge, partial merge, and full merge. When a log
block B contains all valid and sequentially written pages
corresponding to a data block A, a switch merge is executed.
It makes log block B a new data block and erases the old
data block A [7]. If both data block A and log block B have
valid and invalid pages, a partial merge operation first copies
valid pages in A to B, and then, erases the original data block
A. Finally, it changes block B’s status to a data block. In a
full merge operation, when a log block B is selected as the
victim block by the garbage collector, the valid pages from
B and its corresponding data block A are first copied into
a new free block C. Next, both block A and B are erased.
Full merge operation is the most expensive one among the
three.

Hybrid FTLs are currently predominant as they can offer
decent performance with affordable cache overhead. How-
ever, typical hybrid FTL schemes like Superblock [10],
LAST [12], and FAST [13] still suffer from inefficient
garbage collection, and thus, fail to deliver high enough
performance for enterprise-scale random-write dominant
workloads [7]. Very recently, DFTL [7] and HAT [8], two
optimized page-level mapping FTLs, have been proposed.
The idea behind them is simple: since most enterprise-scale
workloads exhibit significant temporal locality, DFTL and
HAT use the on-flash limited SRAM to store the most
popular mappings while the rest are maintained either on
the flash device itself [7] or on an independent PCM (phase-
change memory) chip [8]. Experimental results show that
both DFTL [7] and HAT [8] perform noticeably better than
the classic hybrid FTL scheme FAST [13]. The main reason
is that DFTL and HAT use page-level mapping, and thus,
can completely get rid of costly full merge operations [7].

B. Advanced Commands and Parallelism

Common advanced commands provided by modern flash
SSD manufacturers include copy-back, multi-plane, and
interleave [1], [9], [17]. Multi-plane command launches
multiple read, write, or erasure operations in all planes on
the same die. Since multiple planes can each carry out
one operation in parallel, a multi-plane operation only takes
the time of one read, write, or erasure operation. DLOOP
employs the plane-level parallelism in two aspects. First of
all, for a multi-page sequential read/write request, DLOOP
always splits it into multiple one-page requests and then
disperses them across multiple planes to reduce waiting time.
Secondly, similar to DFTL, DLOOP also uses a small size
of SRAM to cache the most popular mappings while the
rest are maintained on the flash SSD itself [7]. Pages that
only store logical-to-physical address mappings are called
translation pages, whereas pages that contain the real data
are called data pages. However, unlike DFTL, DLOOP
distributes translation pages evenly across all planes based
on their logical addresses rather than keeping them on a

single plane/die. Thus, when a piece of mapping information
has to be searched in a flash SSD, the mapping-lookup
request can be served by all planes at once.

The interleave command performs several read, write,
erase and multi-plane read/write/erase operations in dif-
ferent dies of the same chip at the same time [9]. This
advanced command provides FTL designers with a die-level
parallelism. Nevertheless, using die-level parallelism is far
from straightforward as it requires a sophisticated scheme
to organize a choreographed set of related operations [1].
The two other levels of parallelism supported by modern
flash SSDs are channel-level and chip-level. The channel-
level parallelism can offer the most optimized performance
as the two operations on two packages belonging to two
different channels can be executed completely in parallel
without any interleaving. Unfortunately, increasing the num-
ber of channels substantially increases the hardware cost.
The chip-level parallelism makes all chips of one package
busy simultaneously, and thus, the package cannot serve any
subsequent requests until the status of these chips returns to
idle, which increases the requests’ response time.

C. Motivation

Several recent research reports on flash SSD architecture
[11, [5], [9], [15], [18] reveal that SSD internal features
such as advanced commands and multi-level parallelism
could significantly impact the performance. For example,
Dirik and Jacob discovered that increasing the level of
concurrency by striping across the planes within the flash
device could increase throughput substantially [5]. Hu et
al. [9] suggest an optimal priority order of parallelism
in flash SSD that flash SSD architects should consider:
channel-level — die-level — plane-level — chip-level. They
advocate that channel-level parallelism should be given the
first priority [9]. However, after analyzing the benefits and
the overhead of the four levels of parallelism, we believe
that the plane-level parallelism is the first one that FTL
designers should take into account. As we discussed in
Section II.B, escalating channel-level parallelism leads to
a more expensive flash SSD. Chip-level parallelism does
not help too much in improving performance as it could
delay subsequent requests [9]. Although using die-level
parallelism does not increase hardware cost, it demands a
complicated plan to concert a group of operations across
multiple dies, which increases software complexity. Besides,
die-level parallelism is constrained to the serial I/O bus,
which is shared by the multiple dies in one chip [1]. Plane-
level parallelism, on the other hand, is relatively easy to use
as operations across all planes in one die can be managed by
the die, which is an independent unit that has its own internal
ready/busy signal [18]. Thus, the logic complexity caused by
using plane-level parallelism is not high. Besides, utilizing
plane-level parallelism does not incur hardware cost.

The insights provided by [1], [5], [9], [15], [18] on flash



SSD internal features as well as our own investigation on
how to effectively employ the multi-level parallelism present
in flash SSD motivate us to develop an optimized page-
mapping FTL that can exploit plane-level parallelism to
achieve high performance while maintaining good durability.

III. DESIGN AND IMPLEMENTATION

In this section, we first explain how an intra-plane copy-
back operation can save considerable time. Next, we use an
example to illustrate how DLOOP works. Finally, a formal
presentation of the algorithm of DLOOP will be provided.

A. Intra-Plane Copy-Back

A typical read operation takes around 25us to read a
page from the flash media into a 4KB data register [1].
Writing a page to the flash cell normally requires 200us
[1]. Transferring one page data between a 4KB data register
and the flash controller usually takes 50us [17]. Note that
transferring a read/write command and address only takes
0.2us [5], which is negligible. Moving a page of data from
one plane to another plane requires the data to be read from
the flash device externally, page by page. A traditional inter-
plane copy operation needs four steps to complete, which is
shown in Fig. 2. In Step 1, page 3 of block 0 is read into
the 4-KB data register on plane 0. It is then transferred into
the flash controller in Step 2.

Next, the data of page 3 is transferred from the flash
controller to the 4-KB data register on plane 3. Finally, the
data is written into the page 2 of block 8191 on plane 3.
Totally, an inter-plane copy operation takes around 325us
(25us + S0us + 50us + 200us) to complete as a page
of data has to travel all the way up to the flash controller
buffer and then back to the destination plane, which is a long
journey. Even worse, it possesses the serial I/O bus shared by
multiple dies twice and the external channel twice (see Fig.
1), which prevents other operations from taking place. This
process is time-consuming and precludes other functions in
flash SSD, thus reducing performance.

An intra-plane copy-back operation, on the other hand,
is much simpler because it only requires two steps. Fig.
3 demonstrates the processes of two concurrent intra-plane
copy operations. In Step 1, a page of data is read into the
4-KB data register. In Step 2, the data is written into the
destination page on the same plane. So, an intra-plane copy-
back operation only takes 225us (25us + 200us), which
saves time by 30.7% compared with a 325us inter-plane
data copy operation. Considering that normally multiple
pages of data need to be moved during a garbage collection
process, using copy-back operation for more pages can
save even more time compared with traditional inter-plane
copy operation. Besides, intra-plane copy-back operations
only occur within a plane, and thus, do not use external
channels at all, which can let other operations to be executed
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Figure 2. A traditional inter-plane copy operation
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Figure 3. Two intra-plane copy-back operations

simultaneously. Multiple intra-plane copy-back operations
on different planes can be run at once.

The intra-plane copy-back operation, however, has an
inherent restriction imposed by flash SSD manufactures: the
addresses of the source page and the destination page must
be either both odd or both even [9]. Therefore, when an even-
address source page needs to be moved to a block whose
current free page address is odd, the free page needs to
be invalidated first, and then, the source page is written to
the next page of the same block so that source page and
destination page have the same address parity. Apparently,
appropriate use of intra-plane copy-back operation is always
required to follow the same-parity policy. Since DLOOP is a
page-mapping FTL, it does not have full merges. For switch



merges, no data move is needed. Only for partial merges,
DLOOP may need to deliberately waste some free pages in
order to follow the same-parity policy. In normal situations,
at most DLOOP has to give up one free page in the current
free block (see Section II.B) when the parity of the first free
page in it is different from that of the first page of a sequence
of sequential valid pages that need to be moved into the
current free block. In the worst case, when m (1 < m < 64)
valid pages scattered on multiple blocks in one plane all
have the same parity, DLOOP has to waste m/2 free pages
in the current free block. However, this extreme case rarely
happens during our experiments.

B. An Illustrative Example

In this section, we use an example to illustrate how
DLOOP works. For illustration purpose, in this example
we assume that a flash SSD totally has four planes and
each plane has two blocks. Each block has only four 4KB
pages. The plane number of an incoming one-page request
is calculated by the equation below:

plane_no = LPN (request)%No_of_planes (1)

where No_of _planes is the number of planes in a flash SSD,
which is 4 in this case. LPN is the logic page number of
a request. The basic idea behind equation (1) is to spread
requests evenly across all planes in a flash SSD. Thus,
successive LPN requests can be dispatched onto different
planes so that plane-level parallelism can be exploited. For
each plane, DLOOP dynamically maintains two pointers:
one pointer to the current free block and one pointer to the
current free page, which is the first free page in the current
free block (see Fig. 4a). While the current free block is
responsible for serving write requests arriving on that plane,
the current free page is used to store the next incoming
single-page write request. The pages can only be written
sequentially in the current free block. Once the current free
block is full, a new free block from the same plane is
assigned as the current free block and its first page is used
as the current free page.

Now, assume that a 14-KB write request with starting
logical page number (LPN) 4204 first-time arrives at the
flash SSD. Since DLOOP always aligns each request on page
boundary, the request will be divided into four individual
one-page write requests: Dyppy = 4204, Dppy = 4205,
Drpny =4206, and Dyppy = 4207 (see Fig. 4a). The last
request Dppy = 4207 is padded with zeros to make its
size to be exactly 4 KB. Also, assume that the flash SSD
shown in Fig. 4a has never been accessed before this 14-
KB write request comes. Based on equation (1), DLOOP
directs these four individual one-page write requests onto
the data registers of plane O, plane 1, plane 2, and plane
3, respectively (see Fig. 4a). And then each page of data
is copied from the plane data register to the first page of
the first block of each plane. At this moment, the current
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Figure 4. (a)Four new writes; (b)four updates

free page pointers are all updated to the second page of the
current free block on the four planes. Fig. 4a shows how
DLOOP processes the four one-page new write requests.
The letter “I” within the parentheses stands for “invalid”,
while the letter “V” represents “valid”.

Assume that a sequence of twelve one-page write requests
arrive after the four write requests are served. The twelve
requests in time order are (3450, 3348, 7458, 7323, 7206,
3450, 5835, 2388, 7206, 7323, 8642, 7206). Among these
twelve requests, four requests (3348, 7460, 2388, 8640) are
served by plane O because their plane number is zero based
on equation (1). Five requests (3450, 7206, 3450, 7206,
7206) go to plane 2. Three requests (7323, 5835, 7323) are
assigned to plane 3. At this moment, the current free block
of plane 1 is still block 0, whereas the current free block
of the rest three planes is changed to block 1 as their block
Os are all full (see Fig. 4b). Now, assume that the 14-KB
write request with starting logical page number 4204 comes
again. DLOOP splits it into four individual one-page update
requests and then directs them to their destination plane
based on their logical page numbers. On plane 0, DLOOP
writes the update request D’ py = 4204 in the second page
of block 1 and then invalidates the original page in block
0 as “4204 (I)”. On plane 1, the update request D’ py =
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Figure 5. Merge operations in DLOOP

4205 is written in the second page of block 0 as no other
requests arrive on this plane between the two 14-KB write
requests. On plane 2, the current free block (i.e., block 1)
has both valid pages and invalid pages as data 7206 has been
updated three times before the 14-KB write request comes
again. For plane 3, since the block 0 is full when the update
request D’z pny = 4207 comes, DLOOP assigns a free block
(block 1 in this case) as the new current free block, and then,
writes D’ py = 4207 onto its first page.

C. Garbage Collection and Extra Blocks

From the example shown in Fig. 4, we can see that the
current free block on a plane can serve both first-time write
requests and subsequent updates until it is full. For each
plane in a flash SSD, DLOOP maintains a free block pool for
it. When the number of free blocks in a plane is lower than
a threshold, which is set to 3 in our experiments, a garbage
collection (GC) is invoked by DLOOP. The block with the
maximal number of invalid pages in the plane is selected as
the victim block, which will be erased and then added into
the free block pool of the plane. There are three situations
when a GC occurs. The most desirable case is that the victim
block has no valid page at all, and thus, no data move is
needed in this scenario. The victim block is simply erased
and put back into the free block pool maintained for the
plane. The second case is that the current free block still has
enough room to accommodate valid pages from the victim
block. Fig. 5a demonstrates this situation. Assume that the
block 0 of plane 3 is selected as a victim block and there are

two valid pages in it. To follow the same-parity policy, the
page 7323 is first fetched into the plane data register in Step
1, and then, in Step 2, it is written into the second page of
the current free block, which is block 1 in this case. In this
way, data 7323 with an even parity address (page 4 in block
0) has been written to a location with even parity (page 2
of block 1). Next, in Step 3 data 5835 is grabbed into the
plane data register, and then, it is re-programmed into page
3 of block 1 in Step 4. The third scenario is that DLOOP
has to waste a free page in the current free block in order to
make sure the source page address and the destination page
address share the same parity. This situation is shown in Fig.
5b. When a GC happens, all blocks including the current free
block on the plane are full. DLOOP will use a new free block
grabbed from the free block pool to accommodate the valid
pages on the victim block. Since block 0 is the block with
the most number of invalid pages on plane 2, it is selected
as the victim block. However, the valid page 3450 has an
even parity address, which is page 4, and thus, cannot be re-
programmed to the first page of the free block, which is page
1, an odd page address. To follow the same-parity policy,
DLOOQOP in Step 1 deliberately invalidates the first page of
the free block, and therefore, wastes one free page in Step
1. The page 3450 is then fetched into the plane data register
in Step 2. Finally, it is re-programmed into the page 2 of the
free block in Step 3. Since valid page copying during GC
is carried out by fast intra-plane copy-back operations, the
multi-die shared serial I/O bus and the external channel are
still available most of the time for processing other requests.
In addition, update requests are always directed to the same
plane that their original data is stored, which implicitly wear-
levels all blocks on one plane without an external wear-
leveling mechanism.

An off-shelf flash SSD usually has a few extra blocks,
which are invisible to users. Assume that one plane has 2,048
data blocks plus 4 such extra blocks. Also, assume that the
GC threshold is set to 3, which means whenever the number
of free blocks including the extra blocks in the free block
pool is lower than 3, a GC will occur to reclaim one block
back. The purpose of these extra blocks is two-fold. First,
when all 2,048 data blocks on a plane are full and the 4
extra blocks are in the free block pool, which is higher than
the GC threshold, an extra block will be used to continue to
serve incoming requests just like a normal data block does.
Secondly, if the extra block becomes full, one more extra
block is needed, which will reduce the number of blocks
in the free block pool to 2. At this time, a GC process
is invoked. DLOOP fetches an extra block from the free
block pool and uses it as the free block to accommodate
valid pages from the victim block as shown in Fig. 5b. The
total capacity of these extra blocks is not counted into the
data-sheet SSD capacity that a user can use. The number of
extra blocks is usually a small fraction of the total number
of data blocks. It can affect the performance because GC



is triggered at different time points when the percentage of
extra blocks in a flash SSD varies. We examine its impacts
on the performance in Section V.

D. The Algorithm of DLOOP

Fig. 6 explains the algorithm of DLOOP. When a non-
empty request comes to the flash controller, DLOOP first
checks to see if its address mapping information is present
in the CMT table, which is stored in SRAM. If it is in CMT,
its corresponding physical page number (PPN) is obtained
and the request is sent to the flash SSD to be processed.
If it is not present, it needs to be fetched from flash into
CMT. When the CMT is full, a victim entry will be selected
using the segmented least recently used (LRU) algorithm. If
the victim entry has been updated after it was loaded into
CMT, DLOOP consults the GTD to find the victim entry’s
corresponding translation page on flash SSD. The translation
page is then read, updated, and re-written to a new physical
location on flash. The corresponding GTD entry is also
updated to reflect the change. Otherwise, the victim entry
is simply deleted from CMT. Next, DLOOP locates the
request’s translation information by consulting GTD again
and then reads it into CMT. Depending on the LPN of the
request, GTD decides which plane to send the mapping-
lookup request to. The mapping information is spread across
multiple planes based on the logical address.

If the request is a new write request, its plane number can
be computed by using equation (1). And then, it is written
to the current free page on the current free block on that
plane. In case it is an update request, DLOOP first finds out
the plane number of the original data corresponding to the
update. Next, the update request is written to the current free
block on the plane. When DLOOP notices that the number
of free blocks on the plane is less than the threshold, a
GC process is invoked. The GC will select the block that
has the most number of invalid pages on the plane as the
victim block. Each valid page on the victim block will be
transferred to the current free block or a brand new free
block if necessary. The victim block is erased and put back
in the plane’s free block pool.

IV. THE SIMULATOR
A. Simulation Environment

To the best of our knowledge, currently there is no
publicly available hardware flash SSD prototype on which
various FTL schemes can be tested. Therefore, as in other
FTL development projects [7], [8], [10], [12], [13], [18], we
can only use simulations to evaluate the proposed DLOOP
scheme. To this end, we largely extended a validated open-
source flash SSD simulator named FlashSim [11], which
was built by extending DiskSim3.0 [3]. DiskSim3.0 is an
event-driven hard disk simulator that has been validated
and extensively used in storage research communities [3].
Since FlashSim has a modular architecture, newly developed

1. Input: LPN(request), size(request), type(request)
2. Output: NULL
3. while size(request) !=0 do
if LPN(request) not in CMT (Cache Mapping Table) then
if CMT is full then
Select a victim entry for eviction using segmented LRU
If LPN(victim) has been updated then
Consult GTD (Global Translation Directory)
9. end
10. Erase the victim entry
11. end
12. Consult GTD to find the location of the translation page
13.  Load the entry of translation page into CMT
14. end
15. PPN(request) == CMT _loopup(LPN(request))
16. if type(request) == write then

XN n s

17. if PPN(request) does not exist then /* a new write */

18. Calculate plane_no using Eq.(1)

19. Write to current_free_block in that particular plane
20. else /* this is an update request */

21. plane_no = get_plane_no() of original write request
22. Write request to current_free_block in the same plane
23.  end

24. if the number of free blocks is less than threshold then
25. victim_block = select_victim_block()

26. for each valid page in victim_block do

27. Read it into plane data register using copy-back

28. Write it back to current_free_block using copy-back
29. end

30. Erase victim block and put it into free block pool

31.  end

32. end

33. DLOORP serves the request
34. Decrementing size (request) by one
35.end

Figure 6. The algorithm of DLOOP
Trace files FTLs

Interface between Buffering/ FAST Hardware
Disksim/Flashsim scheduling | ] DFTL module

DLOOP

Architecture of the extended simulator

Figure 7.

FTLs can be readily integrated into it. Fig. 7 shows a
simple view of the simulation architecture, which explains
how requests are processed in our new DiskSim/FlashSim
simulation environment.

DiskSim first reads the trace file, and then, processes all
requests based on which module (e.g., bus, controller, or
device, etc.) they are intended for [3]. For example, when a
request is intended for the device, it will be passed to the
interface between DiskSim and FlashSim (see Fig. 7). The
interface module further passes it to the top level function
of a flash SSD, which implements request buffering and
scheduling. It is this function which re-orders requests so
that interleaving between different channels can be achieved.
The request is then delivered to an FTL module, which
simulates various FTLs including DFTL [7], FAST [13], and



Table I
SIMULATION PARAMETERS

[Value (Fixed) - Varied
SSD Capacity (GB) (8) - (4, 8, 16, 32, 64)
IPage Size (KB) 4) - (2,4, 8, 16)

INo. of pages per block (64)

IPercentage of extra blocks 3) - (3,5, 7, 10)

IParameter

IBlock erase latency (us) (2000)
IPage read latency (us) (25)
Page write latency (us) (200)
(Chip transfer latency per byte (us) (0.025)
Table II
REAL-WORLD TRACE STATISTICS

(Traces [Financiall  [Financial2 [TPC-C  [Exchange [Build
Number 1) 009354 653,082 [123.060 [69.492 200,462
of writes
Number ;535633 B046,112 244399 [80,164 37452
of reads
Write(%) [76.8 17.6 34 46.4 Us5.8
|Ave. size [3KB 4KB 8KB 12KB 8KB

122 90.2 3000 17 us
|Access rate

reqs/sec reqs/sec reqs/sec [reqs/sec reqs/sec
Duration {728 min 684 min 2 min 15 min 15 min

DLOQFP. Finally, the request is passed to a low level hard-
ware module that simulates the behaviors of flash memory.

B. Simulator Extensions

The original hardware module only supports the three
basic operations: read, write, and erase. We significantly
extended it so that the multi-level parallelism including
the copy-back command is also supported. The timing
parameters used by the simulator are summarized in Table
I. The simulated flash SSD supports 2 channels with various
configurations of flash memory page size, percentage of
extra blocks, and flash SSD capacity (see Table I). In
addition, we added a priority list to keep requests in order
on how they can be processed by free channels. It is used
to implement the interleaving feature. An incoming request
is added to the list in the right position based on existing
requests that have been in the queue. If the targeting channel
and plane of the request are available, it will be immediately
handed to the hardware module to be executed. Otherwise,
DLOOQOP processes other requests until the channel and the
plane turn to be free.

Also, we implemented the copy-back operation implicitly
through multiple steps during the lifetime of a copy/merge
operation. In the address translation phase after a copy/merge
command has been issued, if DLOOP detects that the phys-
ical source address and destination address share the same
plane number in one die, DLOOP will not block the external
channel. Thus, the simulation time will advance only by the
time required for copying the data from source page to the
plane data register, and then, back to the destination page.
Note that the same-parity policy has to follow before a copy-
back operation can be processed.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DLOOP
along with two well-known FTL schemes FAST [13] and
DFTL [7]. We do not include HAT [8] in our experimental
study because its simulation source code is not publicly
available at the time of this writing. Besides, HAT employs
an extra PCM chip, which might make comparisons unfair.

A. Experiment Setup

We use five real-world traces to compare the performance
of DFTL [7] and FAST [13] with DLOOP. The selection of
traces has been done so that different types of workloads
are included. The five traces are Build [4], Exchange [6],
Financiall [18], Financial2 [18], and TPC-C [14], which
have been widely used in the literature. The statistics of the
traces are given in the Table II.

Financiall and Financial2 are taken from OLTP applica-
tions running at two large financial institutions [18]. Finan-
ciall is a random-write-dominant trace. On the other hand,
Financial2 is a random-read-dominant trace. TPC-C trace is
collected on a storage system connected to a Microsoft SQL
Server via storage area network [14]. It is a very intensive
workload and its requests are mostly random. The fourth
trace is the Exchange trace [6] that has been collected at
a Microsoft Exchange mail server. The Build trace [4] is
taken from a Windows Build server, which compiles and
produces complete builds every day for a 32-bit version of
the Windows Server operating system. These two traces are
broken down into multiple 15-minute intervals. We only use
requests going to one device for each of these two traces.

Table I illustrates the experimental parameters used dur-
ing simulation. The two metrics that we measured during
simulations are: (1) Mean Response Time: average response
time of all requests submitted to a flash SSD. This is the
performance metric used to evaluate the performance of the
four FTLs; and (2) Std. Dev. of Requests per Plane (here-
after, SDRPP): the standard deviation of number of requests
that each plane receives during a simulation experiment. A
lower SDRPP indicates that requests are distributed more
evenly across planes, which leads to a better wear-leveling.

B. Flash SSD Capacity

In this section, we evaluate the scalability of the three
FTLs by increasing the capacity of a flash SSD. Two
observations can be obtained from Fig. 8 immediately. First,
DLOOP performs consistently better than the two existing
FTLs on all traces with all SSD capacities. Secondly, as
SSD size increases the mean response time decreases. This
is because a larger flash SSD can delay the occurrences of
garbage collection, which degrades performance. In terms
of mean response time, for a 4 GB flash SSD, DLOOP
performs 70% and 90% better than DFTL and FAST,
respectively. As SSD capacity increases, we see similar
performance improvements for DLOOP and DFTL as their
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mean response times all reduce noticeably. For a 64 GB flash
SSD, DLOOP has a mean response time of 0.43 ms, DFTL
has a mean response time of 2 ms, and FAST performs
worst with a mean response time of 11.4 ms. In case of the
Financial2 trace, we see that the improvements of DLOOP
over DFTL are not as significant as the other traces. The
reason is that Financial2 is a read-dominant workload and
read requests do not cause updates, which eventually lead
to merge operations in garbage collection. As we explained
before, the main reason why DLOOP is better than existing
FTLs is that its garbage collection overhead is less due to
the use of fast intra-plane copy-back operations. For TPC-C
trace, which is an extremely intensive I/O workload with a
lot of random requests, we see that the performance of DFTL
falls a lot. This is because DFTL always picks up free blocks
from the same plane to write sequentially, which could be a
problem if several of such requests come in a row because
the queuing delay quickly increases on that particular plane.

Even worse, DFTL cannot fully leverage the CMT table to
serve most requests as the requests are mostly random.
The SDRPP is plotted on log scale (base e) because
their values are huge. For Financiall, DLOOP has a more
even request distribution across all planes when compared
to DFTL and FAST (see Fig. 8). For a 4 GB SSD, DLOOP
has a SDRPP value of 11.6 compared to 12.8 for DFTL
and 12.1 for FAST. As the SSD capacity increases, request
distribution becomes more even for all three FTLs. We see
similar results for the Financial2 trace. For TPC-C, DLOOP
has lower SDRPP than FAST and DFTL. For a 4 GB SSD,
the difference in SDRPP between DLOOP and DFTL is 0.8,
while it is 1 for FAST. However, for a 64 GB SSD, this
difference becomes 1.2 for DFTL and 1.6 for FAST.

C. Page Size

This experiment is intended to investigate the impact of
page size on the three FTLs. The page size is varied from 2
KB to 16 KB for a constant SSD capacity of 8 GB. Fig. 9
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shows that the general trend for all three FTLs under the five
workloads is that mean response time decreases when the
page size increases. It also shows that for every page size
DLOOP performs better than DFTL and FAST. For 2KB
page size in Financiall, DLOOP reduces the mean response
time by 77% compared with DFTL. The improvement when
compared with FAST is as high as up to 90%. As we increase
page size, DFTL performs better than DLOOP.

For the read-dominant Financial2, the average perfor-
mance improvement of DLOOP over DFTL is 65%. FAST
performs poorly even when read requests are dominant. For
the TPC-C trace, the performance of DFTL is the worst.
For Exchange, DLOOP improves the mean response time
by 81% when compared to DFTL. For larger page sizes,
DFTL and FAST improve performance quickly. In 16 KB
page size, FAST gets a much better performance.

Fig. 9 shows that DLOOP has a more even request
distribution when compared to DFTL and FAST. With 2 KB
page size, DLOOP has a value of 12.2 in SDRPP compared
to 13 for DFTL and 13.9 for FAST. As page size increases,
all three FTLs decrease their SDRPP values. We see similar
results for Financial2. The difference between DLOOP and
DFTL for 2 KB page size is 0.5, while the difference with
FAST is 0.7. However, as page size increases, DFTL and
FAST reduce SDRPP faster than DLOOP does. For the less
intensive Exchange workload, we see that DLOOP is still
better than the other two FTLs. However, for the Build trace,
DLOQP starts worse than DFTL for the 2KB page size. With
16 KB page size, DLOOP beats DFTL by 0.2 and FAST by
0.3, respectively.

D. Extra Blocks

As we discussed, extra blocks are used to support update
operations and merge operations during a GC process. We
vary the number of extra blocks from 3% to 10% of the
number of data blocks, while the SSD capacity is kept

constant throughout the experiments. DLOOP evenly dis-
tributes extra blocks across planes in a round-robin manner.
Fig. 10 shows that DLOOP performs better than DFTL and
FAST in all cases. For Financiall, the mean response time
of DFTL unexpectedly increases as the percentage of extra
blocks enlarges from 7% to 10%. The reason is that DFTL
initially stores its page mapping information in the first
few blocks of plane 0. These blocks are not moved until
merge operations take place. In the case of increasing extra
blocks, these mapping information blocks are accessed more
frequently from plane 0, which increases the contention for a
longer time before they are moved out to a different plane.
The performance improvement of DLOOP over DFTL in
3% extra block case is 66% and over FAST is 90%. The
performance improvement decreases to around 60% for 7%
extra block scenario while it stays the same for FAST. For
Financial2, increasing extra blocks has a very slight effect
on both DLOOP and DFTL. FAST has more improvements
but still it has the highest mean response time. For TPC-C,
DFTL again performs poorly for reasons that we explained
above. As more extra blocks are available, FAST improves
performance but DLOOP remains almost the same.

Fig. 10 demonstrates that for Financiall trace DLOOP has
a better request distribution than that of DFTL and FAST.
With 3% of extra blocks, DLOOP has a value of 11.3 in
SDRPP, compared to 12.2 for DFTL, and 11.8 for FAST.
As the percentage of extra blocks enlarges, DFTL improves
very little in request distribution. On the other hand, both
DFTL and FAST increase their SDRPP values. The reason
behind is that DFTL and FAST both have a large number of
page/block mapping information requests arriving to plane
0, which largely burdens plane 0. We see similar results
for Financial2. For all traces, DLOOP has a much smaller
SDRPP than FAST and DFTL.



VI. CONCLUSION

Flash SSD has started to replace HDD in various applica-
tions from mobile computing to desktop systems. However,
it has not become the standard storage device in enterprise-
scale environments due to its inherent limitations like erase-
before-write and finite write/erasure cycles [2], [13]. Since
manufactures are normally unwilling to disclose the internal
features and FTLs of their flash SSD products, flash SSD that
has been investigated in the literature so far is largely treated
as a grey or black box [9]. Fortunately, a few cutting-edge
research reports [1], [9], [15], [17] reveal the “mysterious”
internal features and structures of flash SSDs. Inspired by the
insights they provided as well as our own understanding on
multi-level parallelism present in flash SSDs, in this research
we propose an optimized page-mapping FTL called DLOOP,
which fully exploits plane-level parallelism including the
fast intra-plane copy-back operations to achieve high perfor-
mance while maintaining good durability by evenly distribut-
ing requests across all planes. Although FTLs developed
by flash SSD manufacturers might also exploit the internal
parallelism, they are normally commercial secrets, and thus,
are unknown to the public domain. Therefore, developing
a high-performance FTL exploiting plane-level parallelism
and the quantified analysis of the promising experimental
results remain valuable to research communities.

In its current format, DLOOP evenly distributes extra
blocks across all planes, which does not consider the need
that planes with hot data require more extra blocks to delay
costly garbage collection. In future work, we will assign
more extra blocks to hot planes to reduce the occurrence of
garbage collection.

ACKNOWLEDGMENT

This work was supported in part by the U.S. National
Science Foundation under grants CNS-0834466 and CNS
(CAREER)-0845105.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Man-
asse, and R. Panigrahy, “Design Tradeofts for SSD Perfor-
mance,” in Proc. USENIX Annual Technical Conference, pp.
57-70, 2008.

[2] S. Boboila and P. Desnoyers, “Write Endurance in Flash
Drives: Measurements and Analysis,” in Proc. 8th USENIX
Conf. on File and Storage Technologies, 2010.

[3] J.S. Bucy and G.R. Ganger, “The DiskSim Simulation En-
vironment Version 3.0 Reference Manual,” Pittsburgh, PA,
Carnegie Mellon University, 2003.

[4] Build Server Trace, SNIA IOTTA  Repository,
http://iotta.snia.org/traces/158, Accessed 2010-04-20.

[5] C. Dirik and B. Jacob, “The performance of PC solid-state
disks (SSDs) as a function of bandwidth, concurrency, device
architecture, and system organization,” in Proc. 36th Int’l
Symp. Computer Architecture (ISCA), pp. 279-289, 2009.

(6]

[71

(8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

Exchange Trace, SNIA IOTTA Repository,
http://iotta.snia.org/traces/130, Accessed 2010-04-20.

A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash trans-
lation layer employing demand-based selective caching of
page-level address mappings,” in Proc. 14th Int’l Conf. Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS’09), pp. 229-240, March 2009.

Y. Hu, H. Jiang, D. Feng, L. Tian, S. Zhang, J. Liu, W.
Tong, Y. Qin, and L. Wang, “Achieving page- mapping FTL
performance at block-mapping FTL cost by hiding address
translation,” in Proc. Symp. Mass Storage Systems and Tech-
nologies, pp. 1-12, 2010.

Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Per-
formance impact and interplay of SSD parallelism through
advanced commands, allocation strategy and data granularity,”
in Proc. Int’l Conf. Supercomputing (ICS’11), pp. 96-107,
2011.

D. Jung, J-U Kang, H. Jo, J. Kim, and J. Lee, “Superblock
FTL: A Superblock-Based Flash Translation Layer with a
Hybrid Address Translation Scheme,” ACM Trans. Embedded
Computing Systems, Vol. 9, No. 4, Article 40, March 2010.

Y. Kim, B. Taurus, A. Gupta, and B. Urgaonkar, “FlashSim:
A Simulator for NAND Flash-based Solid-State Drives,” in
Proc Int’l Conf. Advances System Simulation, Sept. 2009.

S. Lee, D. Shin, Y. Kim, and J. Kim, “LAST: Locality-Aware
Sector Translation for NAND Flash Memory-Based Storage
Systems,” Int’l Workshop on Storage and 1/O Virtualization,
Performance, Energy, Evaluation and Dependability, 2008.

S.W. Lee, D.J. Park, T.S. Chung, D.H. Lee, S. Park, and H.J.
Song, “A log buffer-based flash translation layer using fully-
associative sector translation,” ACM Trans. on Embedded
Computing Systems (TECS), Vol. 6, Issue 3, July 2007.

S.T. Leutenegger and D. Dias, “A modeling study of the
TPC-C benchmark,” in Proc. ACM Int’l Conf. Management
of Data, 22(2), pp. 22-31, 1993.

NAND Flash Performance Improvement Using
Internal Data  Move. Technical Note TN-29-15.
http://download.micron.com/pdf/technotes/tn2915.pdf.

D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and
A. Rowstron, “Migrating server storage to SSDs: analysis
of tradeoffs,” in Proc. 4th ACM European Conf. Computer
Systems (EuroSys), pp. 145-158, 2009.

S. Park, E. Seo, J.Y. Shin, S. Maeng, and J. Lee, “Exploiting
Internal Parallelism of Flash-based SSDs,” IEEE Computer
Architecture Letters, Vol. 9, No. 1, pp. 9-12, 2010.

J. Shin, Z. Xia, N. Xu, R. Gao, X. Cai, S. Maeng, and F. Hsu,
“FTL design exploration in reconfigurable high-performance
SSD for server applications,” in Proc. of the 23rd Int’l Conf.
Supercomputing, 2009.

/O traces,”

SPC, “Storage Performance Council

http://www.storageperformance.org/.



