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1. Introduction 
1.for each task ti ∈ T do 
2.      for each node pu ∈ P in the system do In this project, we address the issue of allocating a 

group of parallel tasks on a heterogeneous embedded 
system with an objective of energy-saving and short-
latency. A novel task allocation strategy, or BEATA 
(Balanced Energy-Aware Task Allocation), is 
developed to find an optimal allocation that minimizes 
overall energy consumption while confining the length 
of schedule to an ideal range. So far we have 
completed the following tasks: (1) BEATA strategy 
design and implementation; (2) experimental 
environment setup; and (3) preliminary results 
analysis. In what follows we will explain each of these 
three completed tasks in detail.  

3.       Compute estu(ti) 
4.               Compute fu (ti) (see Eq. 15) 
5.      end for 
6.     Sort all nodes in finish time of ti  
7.     for each node in energy-adaptive window do 
8.     Compute energy consumption of ti  
9.              for each ti’s predecessor tj, do 
10.                 Compute the energy consumption     
                          cause by message (tj, ti)  
11.                 Compute the total energy consumed   
                          by ti and the messages sent from  
                          the predecessors 
12.            end for        
13.    end for 
14.    Select  pv in energy-adaptive window that  
         offers the smallest energy consumption for ti  
         and messages sent from ti‘s predecessors 
15.    Assign ti to pv 
16.    Update the schedule on node pv  
17.    Compute the energy consumed by ti on pv  
             and the messages received by ti 
18.    Record start time and finish time for task ti 
19.end fo

2. Algorithm design and implementation 
The BEATA algorithm (see Fig. 1) is conducive to 

increasing heterogeneous embedded nodes’ lifetime 
while maintaining high performance in terms of 
makespan time for collaborative applications running 
on networked embedded systems. In other words, 
BEATA can increase embedded nodes’ lifetimes by 
dramatically reducing energy dissipation (see Step 13). 
Before minimizing the energy consumption of task ti, 
BEATA organizes all the nodes in a non-decreasing 
order in terms of ti’s finish time.  Step 8 determines the 
energy consumption incurred by the task on an 
embedded node, whereas Steps 9-10 calculate the 
energy consumed by all the messages received by the 
task from its predecessors. Among all the candidate 
nodes listed in the energy-adaptive window, Step 13 
chooses the most appropriate node that yields the 
minimal energy dissipation for the task and its 
corresponding messages, thereby conserving energy 
without excessive performance deterioration. Then, 
Step 14 allocates the task to the best candidate node. 
After the allocation of the task is accomplished, Step 
15 updates the schedule of the node to which the task 
is allocated. 

r

Figure 1. The BEATA strategy. 

3. Experimental environment setup 
Now we are in a position to evaluate the 

effectiveness of the proposed energy-latency driven 
task allocation scheme. To demonstrate the strength of 
BEATA, we compare it with the list scheduling 

scheme, which is a well-known scheduler for parallel 
applications and a baseline scheme GEATA (Greedy 
Energy-Aware Task Allocation). The two algorithms 
are briefly described below. 
     (1) LIST:  For each task allocation, it chooses the 
computing node that can offer the task earliest finish 
time considering both computation time and 
communication time. Its goal is to generate a schedule 
for a DAG with the shortest length.  

(2) GEATA: For each task allocation, it selects the 
computing node that can provide least energy 
consumption for the task including computation energy 
consumption and communication energy consumption. 
Its goal is to make a schedule with the least total 
energy consumption. 

Before presenting empirical results, we present the 
simulation model as follows. Table 1 summarizes the 
configuration parameters of simulated networked 
embedded systems used in our experiments. The 
parameters of computing nodes in the networked 
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embedded systems are chosen to resemble real-world 
processors like Intel StrongARM 1100. The 
relationship between energy rate and transmission rate 
is 100 mW at 100 Kbps, which means the time and 
energy cost for transmitting one bit are around 10 µsec 
and 1 µJoule. All synthetic parallel jobs used were 
created by TGFF, a randomized task graph generator.  

Figure 2. Performance impacts 
of the number of tasks. 

(a) 

(b) 

Although number of tasks, number of computing 
nodes, out degree, and task execution time are 
synthetically generated, we examined impacts of these 
important workload parameters on system performance 
by controlling the parameters. The performance 
metrics by which we evaluate system include:  

 Makespan (the latest task completion time in the 
task set represented by a DAG). 

 Energy consumption: total energy consumed by 
the task set including computation energy 
consumption and communication energy 
consumption. 

 Utilization standard deviation (USD): standard 
deviation of computing nodes utilization in the 
simulated networked embedded systems.  

 Energy standard deviation (PSD): standard 
deviation of computing nodes energy 
consumption in the simulated networked 
embedded systems.  

 Table 1. System parameters.

4. Preliminary results analysis 
The goal of this experiment is to compare the 

proposed BEATA algorithm against the conventional 
list scheduling scheme and a baseline scheme GEATA, 
and to understand the sensitivity of the two heuristics 
to the number of tasks in a DAG. We tested 6 task 
graphs with the number of tasks varying from 50 to 
500 with precedence constraints. 

We observe from Figure 2a that BEATA and LIST 
exhibit very similar performance in terms of makespan, 
whereas BEATA noticeably outperforms the GEATA 
algorithm. An interesting observation is that BEATA 
even generates a shorter schedule than LIST when the 
number of tasks is 300. The “anomaly” can be 
explained by the fact that the LIST algorithm cannot 

guarantee the shortest schedule in a heterogeneous 
system due to lack of the information about tasks not 
yet scheduled and the varying execution times for each 
task on different computing nodes. Compared with 
LIST, BEATA on average only increases makespan by 
2.9% but saves energy by 12.1%. Figure 2b reveals 
that BEATA and GEATA consistently performs better 
than LIST in terms of energy consumption. In 
particular, GEATA achieves improvement on averages 
of 19.3%. 

5. Conclusions 
In this project, we address the issue of allocating 

tasks of parallel applications in heterogeneous 
embedded systems with an objective of energy-saving 
and latency-reducing. We will conduct a 
comprehensive simulation study to evaluate the 
BEATA strategy in both performance and energy-
efficiency. In particular, we will conduct experiments   
to examine the impact of energy-adaptive window, 
scalability, and heterogeneity on BEATA. Next, to 
validate the results from the synthetic collaborative 
applications, we will evaluate the BEATA algorithm 
using a real system – digital signal processing system.  

Parameter Value (Fixed)-(Varied) 

Number of tasks (300) – (50, 100, 200, 300, 
400, 500) 

Energy-adaptive 
window  

(4) – (2, 4, 6, 8, 10, 12, 14, 
16) 

Number of nodes (64)  
Energy consumption 
rate heterogeneity  1.2 (see Eq. 16) 

Standard node energy 
consumption rate 200 mW 
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