
Solving Energy-Latency Dilemma: Task Allocation for Parallel Applications
in Heterogeneous Embedded Systems

Tao Xie

1. Introduction
1.for each task ti ∈ T do
2. for each node pu ∈ P in the system do In this project, we address the issue of allocating a

group of parallel tasks on a heterogeneous embedded
system with an objective of energy-saving and short-
latency. A novel task allocation strategy, or BEATA
(Balanced Energy-Aware Task Allocation), is
developed to find an optimal allocation that minimizes
overall energy consumption while confining the length
of schedule to an ideal range. So far we have
completed the following tasks: (1) BEATA strategy
design and implementation; (2) experimental
environment setup; and (3) preliminary results
analysis. In what follows we will explain each of these
three completed tasks in detail.

3. Compute estu(ti)
4. Compute fu (ti) (see Eq. 15)
5. end for
6. Sort all nodes in finish time of ti
7. for each node in energy-adaptive window do
8. Compute energy consumption of ti
9. for each ti’s predecessor tj, do
10. Compute the energy consumption
 cause by message (tj, ti)
11. Compute the total energy consumed
 by ti and the messages sent from
 the predecessors
12. end for
13. end for
14. Select pv in energy-adaptive window that
 offers the smallest energy consumption for ti
 and messages sent from ti‘s predecessors
15. Assign ti to pv
16. Update the schedule on node pv
17. Compute the energy consumed by ti on pv
 and the messages received by ti
18. Record start time and finish time for task ti
19.end fo

2. Algorithm design and implementation
The BEATA algorithm (see Fig. 1) is conducive to

increasing heterogeneous embedded nodes’ lifetime
while maintaining high performance in terms of
makespan time for collaborative applications running
on networked embedded systems. In other words,
BEATA can increase embedded nodes’ lifetimes by
dramatically reducing energy dissipation (see Step 13).
Before minimizing the energy consumption of task ti,
BEATA organizes all the nodes in a non-decreasing
order in terms of ti’s finish time. Step 8 determines the
energy consumption incurred by the task on an
embedded node, whereas Steps 9-10 calculate the
energy consumed by all the messages received by the
task from its predecessors. Among all the candidate
nodes listed in the energy-adaptive window, Step 13
chooses the most appropriate node that yields the
minimal energy dissipation for the task and its
corresponding messages, thereby conserving energy
without excessive performance deterioration. Then,
Step 14 allocates the task to the best candidate node.
After the allocation of the task is accomplished, Step
15 updates the schedule of the node to which the task
is allocated.

r

Figure 1. The BEATA strategy.

3. Experimental environment setup
Now we are in a position to evaluate the

effectiveness of the proposed energy-latency driven
task allocation scheme. To demonstrate the strength of
BEATA, we compare it with the list scheduling

scheme, which is a well-known scheduler for parallel
applications and a baseline scheme GEATA (Greedy
Energy-Aware Task Allocation). The two algorithms
are briefly described below.
 (1) LIST: For each task allocation, it chooses the
computing node that can offer the task earliest finish
time considering both computation time and
communication time. Its goal is to generate a schedule
for a DAG with the shortest length.

(2) GEATA: For each task allocation, it selects the
computing node that can provide least energy
consumption for the task including computation energy
consumption and communication energy consumption.
Its goal is to make a schedule with the least total
energy consumption.

Before presenting empirical results, we present the
simulation model as follows. Table 1 summarizes the
configuration parameters of simulated networked
embedded systems used in our experiments. The
parameters of computing nodes in the networked

 1

embedded systems are chosen to resemble real-world
processors like Intel StrongARM 1100. The
relationship between energy rate and transmission rate
is 100 mW at 100 Kbps, which means the time and
energy cost for transmitting one bit are around 10 µsec
and 1 µJoule. All synthetic parallel jobs used were
created by TGFF, a randomized task graph generator.

Figure 2. Performance impacts
of the number of tasks.

(a)

(b)

Although number of tasks, number of computing
nodes, out degree, and task execution time are
synthetically generated, we examined impacts of these
important workload parameters on system performance
by controlling the parameters. The performance
metrics by which we evaluate system include:

 Makespan (the latest task completion time in the
task set represented by a DAG).

 Energy consumption: total energy consumed by
the task set including computation energy
consumption and communication energy
consumption.

 Utilization standard deviation (USD): standard
deviation of computing nodes utilization in the
simulated networked embedded systems.

 Energy standard deviation (PSD): standard
deviation of computing nodes energy
consumption in the simulated networked
embedded systems.

 Table 1. System parameters.

4. Preliminary results analysis
The goal of this experiment is to compare the

proposed BEATA algorithm against the conventional
list scheduling scheme and a baseline scheme GEATA,
and to understand the sensitivity of the two heuristics
to the number of tasks in a DAG. We tested 6 task
graphs with the number of tasks varying from 50 to
500 with precedence constraints.

We observe from Figure 2a that BEATA and LIST
exhibit very similar performance in terms of makespan,
whereas BEATA noticeably outperforms the GEATA
algorithm. An interesting observation is that BEATA
even generates a shorter schedule than LIST when the
number of tasks is 300. The “anomaly” can be
explained by the fact that the LIST algorithm cannot

guarantee the shortest schedule in a heterogeneous
system due to lack of the information about tasks not
yet scheduled and the varying execution times for each
task on different computing nodes. Compared with
LIST, BEATA on average only increases makespan by
2.9% but saves energy by 12.1%. Figure 2b reveals
that BEATA and GEATA consistently performs better
than LIST in terms of energy consumption. In
particular, GEATA achieves improvement on averages
of 19.3%.

5. Conclusions
In this project, we address the issue of allocating

tasks of parallel applications in heterogeneous
embedded systems with an objective of energy-saving
and latency-reducing. We will conduct a
comprehensive simulation study to evaluate the
BEATA strategy in both performance and energy-
efficiency. In particular, we will conduct experiments
to examine the impact of energy-adaptive window,
scalability, and heterogeneity on BEATA. Next, to
validate the results from the synthetic collaborative
applications, we will evaluate the BEATA algorithm
using a real system – digital signal processing system.

Parameter Value (Fixed)-(Varied)

Number of tasks (300) – (50, 100, 200, 300,
400, 500)

Energy-adaptive
window

(4) – (2, 4, 6, 8, 10, 12, 14,
16)

Number of nodes (64)
Energy consumption
rate heterogeneity 1.2 (see Eq. 16)

Standard node energy
consumption rate 200 mW

 2

