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Abstract 
 
The problem of managing and distributing files 

to maximize disk performance has been a popular 
topic of many discussions [1][2][3][4][5].  There 
are several effective static algorithms that have 
addressed this issue such as the static round robin 
(SOR) algorithm. SOR has been proven to produce 
better response time than other static algorithms 
such as Greedy, Sort Partition (SP), and Hybrid 
Partition (HP) [1]. SOR is unique compared to the 
other static algorithms because it provides 
considerable performance improvements even if the 
workload assumption, which says that there is an 
inverse correlation between file size and its 
popularity (small files are more popular than large 
files), does not hold [1]. However, as its name states, 
it is a static algorithm, and its functionality is limited 
by the assumption that files and their access patterns 
do not change over time. In reality, however, this 
assumption is not accurate for all workloads. We, 
therefore, propose a new dynamic algorithm called 
dynamic round robin with replication (DORA).  
There are two main characteristics of DORA: first, it 
takes into account the dynamic nature of file or data 
access patterns to uniquely adapt to changing user 
demand, and second, it utilizes file replication to 
further minimize response time and maximize 
throughput. Moreover, experimental results will 
show that DORA performs significantly better than 
another dynamic algorithm, Cool Vanilla (C-V). 

  
1. Introduction 

 
Fast response time is a technology factor that 

end-users are accustomed to. In a world of 
distributed applications and web pages that grow 
increasingly more bandwidth intensive, considerable 
research has been done to improve methods which 

can lead to providing instantaneous response to 
impatient end-users. A good example is a web server 
application used by an online stock broker company. 
The Stock Broker site facilitates trades or the buying 
and selling of shares based on extremely time-
sensitive information. In this type of profit-based 
scenario, response time is of paramount importance 
since late or untimely information could result in the 
loss of significant amounts of money. On the other 
hand, relevant, timely information could bring 
significant financial gains to the experienced trader.  

It can easily be seen that the performance of 
read-intensive applications such as the above 
example heavily depend on the underlying parallel 
I/O systems that enable the ability to serve requests 
almost instantaneously [1]. Oftentimes, the physical 
disk is the bottleneck to providing timely response to 
users’ requests. Consequently, minimizing the 
response time is an important consideration for these 
large-scale parallel disk systems [1]. 

On the other hand, the system administrator’s 
main goal is to maximize throughput – the total 
amount of user requests that can be served over a 
fixed period of time, or epoch. Throughput and 
response time are often closely related since in most 
cases, by minimizing the response time for individual 
requests, the overall throughput will be maximized 
[12]. 

As a result, much of today’s research centers on 
file management efficiency and disk scheduling 
algorithms. Some examples of these research areas 
are in the realm of RAID architectures that focus on 
data striping, data replication, and data mirroring to 
achieve high data throughput and high data reliability 
[6][7]. Substantial research has also been done to 
reduce disk head latencies associated with moving 
the head to the appropriate physical location on a 
disk [2][3]. Once physical limitations of the hardware 
have been met, it is left up to the software architect to 



accurately and efficiently manage available resources 
to fully exploit the capabilities of the parallel disk 
system. Furthermore, file assignment is the process 
of arranging all the files onto an array of disks 
structured in such a way as to significantly improve 
the overall performance of a parallel I/O system [1]. 
The file assignment problem (FAP) has been 
researched exhaustively in literature [5][12]. At its 
essence, the FAP attempts to organize M files onto N 
disks in a structure that minimizes specific cost 
functions such as bandwidth costs, storage costs, and 
queuing costs [1][5]. Additionally, the FAP attempts 
to optimize performance metrics such as mean 
response time and overall system throughput [1][5]. 
Finding the optimal solution for file assignment for a 
cost function or a performance metric on a parallel 
disk system is an NP-complete problem [1][12]. As a 
result, research for solving the FAP has migrated 
towards heuristic algorithms. 

Typically, there are two classes of heuristic 
algorithms: static and dynamic [1]. File assignment 
algorithms that are static in nature require complete 
knowledge of workload characteristics in advance. 
This includes metrics such as service times, wait 
times, and arrival rates of requests for each file. Files 
are arranged onto a set of disks one time and user 
requests to those files are subjected to the same static 
file assignment for the duration of the epoch. Static 
algorithms fare very well when the workload 
assumption holds – when there is an inverse 
correlation between file size and its popularity. 
However, in certain applications, the workload 
assumption does not necessarily hold [14]. In these 
applications, static algorithms suffer considerable 
degradation in terms of performance. In an attempt to 
supplement existing static algorithms, a new static 
algorithm named SOR was designed. SOR is a static 
file assignment algorithm that proved to be a 
significant improvement to several existing static 
algorithms such as HP, Greedy, and SP [1]. SOR 
distinguished itself from the others by providing 
significant improvements in performance even when 
the workload assumption did not hold. Although 
SOR impressively beat out existing static algorithms, 
SOR – as with its predecessors – suffered as demand 
for the files changed over time. Dynamic file 
assignment algorithms, on the other hand, do not 
require prior knowledge of workload characteristics. 
Dynamic algorithms are able to keep track of the heat 
of each file – as well as the load on each disk – for 
every epoch. As user demand for those files change, 
these algorithms can dynamically reorganize the 
layout of files in an effort to minimize response time 
and maximize throughput. Dynamic algorithms are 
superior to static algorithms in that they are able to 

evolve with changing user demand. As an example, 
consider the online streaming video website 
www.youtube.com. Videos on this popular site 
usually experience the highest demand and generate 
considerable amounts of traffic during the first 
several weeks of being posted. During this period of 
high traffic, dynamic algorithms can assess the user 
demand and make copies of the hot files to several 
other disks and load balance the incoming requests to 
several other high speed disks or physical servers. As 
a result, this can lower the response time for user 
requests. Moreover, once these videos are no longer 
popular, the replicas can be deleted from the servers 
and only one copy of the original file kept in order to 
satisfy the occasional request for the video. It is self-
evident that dynamic algorithms are more suitable for 
real-world applications where comprehensive 
workload characteristics are not usually known ahead 
of time and user demand evolves over time. 

In this paper, we propose a new dynamic 
algorithm called DORA which combines the best 
features of several algorithms. First, DORA takes 
from the philosophy of SP in that it sorts all files 
according to file size so as to take advantage of the 
improvements achieved when the workload 
assumption holds true. Inheriting from SOR, DORA 
assigns the files to disks in a round-robin fashion so 
as to distribute the heat of all files evenly across all 
disks. Thus, DORA also will achieve performance 
improvements when the workload assumption does 
not hold true. Finally, DORA is a dynamic algorithm 
that keeps track of the heat of all files and the load of 
all disks. It then creates replicas of extremely hot 
files and effectively load balances the requests for 
these files across all disks. Consequently, this allows 
DORA to provide performance improvements as the 
demand for files change over time. 

To prove the merit of DORA over other 
algorithms, we will compare it against a dynamic 
algorithm, Cool Vanilla (C-V), which will be 
discussed in greater detail in the Related Work 
section. Inheriting from SOR, DORA provides 
performance improvements regardless of the 
workload assumption. In addition, results will show 
that DORA continues to perform well in the face of 
changing user demand. 

To achieve these goals, performance will first be 
measured for C-V and DORA when the workload 
assumption holds. Next, results will be compared 
between the two algorithms to show that DORA’s 
method for replication of extremely hot files provides 
performance improvements over C-V. 

The rest of this paper is organized as follows. 
Section 2 provides a brief summary of the dynamic 
algorithm C-V. Section 3 discusses the DORA 



algorithm in detail. In addition, the issues that arise 
with processing write requests in a replicated 
environment are addressed as well. Section 4 
presents the experimental results for both DORA and 
C-V. The performance metrics and the parameters 
used to generate the synthetic workload are 
explained. Finally, Section 5 provides conclusive 
arguments and supporting data. 
 
2. Related Work 

 
Several dynamic algorithms have proposed 

noteworthy solutions to solve the FAP. One example, 
C-V, uses file relocation and disk selection in order 
to balance the heat on the disks.  

C-V is also known as Greedy Algorithm with 
disk cooling. In addition to using the Greedy file 
assignment algorithm, C-V adds the ability to 
perform dynamic load balancing to keep the disks 
“cool”. As the heat for previously allocated files 
change, C-V reorganizes files in such a way as to 
balance out the new heat across all disks. More 
precisely, when the disk cooling method is invoked, 
C-V will relocate the hottest files from an overheated 
disk to the coolest disk [5]. 

C-V provides the ability for disk cooling, where 
an overheated disk can offload some of its files to a 
cooler disk. This is beneficial only when the overall 
load on the system decreases. As the overall load on 
the system increases, the performance of C-V will 
suffer as each extremely hot file’s wait time will 
continue to increase. So C-V is downward scalable, 
but not upward scalable. DORA, on the other hand, is 
upwards scalable and has limited downward 
scalability. Since DORA has the ability to create 
replicas, the heat of an extremely hot file can be 
distributed across multiple disks. DORA provides 
moderate downward scalability since replicas can be 
deleted when they are no longer needed. 
 
3. The DORA algorithm 

 
In its most general form, a parallel disk system 

can be represented by a linked group D of 
independent homogeneous disk drives: D = {d1, ..., dj 
, ..., dn}. The set of files that will be placed onto D 
can be represented by F= {f1, ..., fi, ..., fm}. A disk dj 
can be represented by dj = (cj, tj, lj), where cj is the 
capacity in GByte, tj is the transfer rate in 
MByte/second, and lj is the load (total sum of the 
files’ heat on the disk). The assumption is disk 
capacities are large enough to store all of the files. 
When considering the proliferation of server class 
drives with large capacities (i.e. 1 TeraByte), this is a 

reasonable assumption. A file fi consists of four 
attributes and can be modeled as fi = (si, λi, ti, hi), 
where si is the size of the file, λi is the mean arrival 
rate of requests to a file, ti is the expected service 
time, and hi is the heat of the file. For this research, λi 
is the mean arrival rate of requests coming in for a 
file fi. Disk accesses to a file exhibit a Poisson 
distribution with a mean arrival rate λi. A fixed 
service time ti is assumed for each request rk. This is 
a reasonable assumption since – for web server 
applications – the majority of all file accesses are 
sequential reads that read the entire file from 
beginning to end. In addition, when accessing large 
files, the overhead associated with rotational 
latencies involved in moving to the appropriate 
section of the hard disk is negligible since we assume 
a sequential read of the entire file. Consequently, if fi 
is a file allocated to dj, it follows that ti = si / tj. The 
load of a file i can be calculated from the product of 
the mean access arrival rate for a file and the 
expected service time for that file. Thus, the heat of 
the file can be represented by: 
 iii th ⋅= λ  (1) 

It also follows that the average disk load or heat 
can be represented by: 

 ∑
=

=
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i
ih
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File assignment algorithms organize groups of 
files onto sets of homogeneous disks in order to 
reduce mean response time. Typically, incoming 
requests are served using a First-In-First-Out (FIFO) 
or First-Come-First-Serve (FCFS) scheduling 
heuristic. A request set R contains the total number of 
requests u and can be modeled as R = {r1, …, rk, …, 
ru}. Each request can be represented by the equation 
rk = (fidk, ak, typek), where fidk, ak, typek are the file 
identifier targeted by the request, the arrival time of 
the request, and the type of request (read or write). 
For this research, 99% of all requests generated will 
be reads since this is consistent with data obtained 
from web server traces [16]. When an incoming 
request arrives, the FCFS scheduler finds what disk 
the target file is located on. The request is then 
directed to the disk’s local scheduling queue. 

Two important parameters are the start time and 
the finish time of a request rk on a disk dj. Start time 
and finish time are represented by stj(rk) and ftj(rk), 
respectively. In order to get the response time of a 
request rk, the start time and finish time must be 
calculated. Both will be derived below. There are 
three cases for when a request rk arrives in Qj, the 
local queue of disk dj where (1 < j < n). The first is 
when dj is idle and Qj  is empty. The second is when 



dj is busy and Qj is empty. The third is when dj is 
busy and Qj is not empty. 

 
 
     ak, if dj is idle and Qj is empty 
 

stj(rk) =      ak + rj, if dj is busy and Qj is empty 
 

     ak + rj + ∑
≤∈ kpjp

p
aaQr
fidt

,
 otherwise 

 (3) 
where rj is the remaining service time of the request 
currently running on dj, and ∑

≤∈ kpjp

p
aaQr
fidt

,
 is the 

overall service time of requests in Qj that have arrival 
times earlier than that of rk. It then follows that the 
ftj(rk) can be represented by 
 

kfidkjkj trstrft += )()(  (4) 

where 
kfidt is the service time of the file that is 

targeted by request rk. The response time of request rk 
can be calculated by 
 )()()( kjkjkj rstrftrrt −=  (5) 

The mean response time for the request set R can 
be calculated by 

 ∑
≤≤=

=
u

njk
kj rrt

u
Rmrt

1,1
)(1)(  (6) 

The FAP can now be generalized as having a set 
of files F and a parallel disk system D. Given F and 
D, find an allocation scheme X such that the mean 
response time expressed by Eq. 6 is minimized. 

Fig. 1 shows a logical system diagram of how 
the DORA algorithm functions. 

 

 
 

Fig. 1. System Model. 
 

Fig. 2 lists the abbreviated pseudo code for 
DORA and provides some detailed explanations. 

 

 
 

Fig. 2. DORA Pseudocode. 
 
Initial allocation of files. The distribution of the 

workload among all disks and the minimization of 
the variance of service time are both important 
principles used by other algorithms such as SP, HP, 
Greedy, and SOR [1][5]. DORA also takes these 
principles into account. The average disk load ρ is 
computed and the load for each disk dj must not 
exceed ρ. Similar to SP, HP, and SOR, the file set F 
is sorted by file size since the service time is 
proportional to file size. This effectively places files 
of similar size onto the same disk [5]. SOR separates 
the most popular files onto different disks in a round-
robin fashion instead of a consecutive allocation of 
the sorted file set as with SP [1]. The last disk is used 
for very large files only. It will not be used for 
replication since the overhead of replicating a large 
file is very high. By limiting very large files to the 
last disk, DORA prevents the problem of the disk 
blocking all other requests until the completion of the 
large file. 

Replication of extremely hot files. When 
considering SP, HP, Greedy, and SOR, they all have 
similar drawbacks. File assignment algorithms that 
are static in nature require future knowledge of all 

Input: A parallel I/O system D with n identical disks, a collection of m files in a 
queue F, Epoch number EPOCH_NUM 
Ouput: A file allocation matrix X(n,m) and performance matrix   
%%%%Run SOR algorithm to allocate files to each disk%%% 
EPOCH_COUNTER = 0 
while EPOCH_COUNTER < EPOCH_NUM 
  
avg hot files heat = sum(all hot files’ heat) / # of hot files 
HEAT_MAX = avg hot files heat/2; 
HEAT_MIN = aavg hot files heat/ 4; 
MAX_REP = DISK_NUM-2; 
HOT_FILES = 20; 
   
if epoch_counter > 0 
 
%%%%%Process User Requests%%%%% 
 
%%%%% REPLICATION MODULE %%%%%% 
fi = 1 
rep_count = 0 
while fi <= FILE_NUM && hot_files_count < HOT_FILES %only replicating up 
to 20 hottest file 
   
  if heat(fi) >= HEAT_MAX 
     n_replica = floor(2*heat(fi) / avg heat of hot files) 
     if n_replica > MAX_REP  %maximum number of replicas for each file 
          n_replica = MAX_REP 
      end 
     Check Replication_matrix if fi is already replicated   
  
     If YES 
         1.count how many more replicas needed, create, and place each of them on 
the coolest disk dc. 
        2. Update load on each disk dc    
     ELSE 
        1. Create n_replica for fi, place each of them on the coolest disk dc. 
        2. Update load on each disk dc 
     end if     
  end if 
  fi++ 
  hot_files_count++   
end while   
%%%%% END REPLICATION MODULE %%%%%%  
Generate new heat for each file  
%%%%% GARBAGE COLLECTION MODULE %%%%%% 
For every file fi in the Replication matrix 
  If heat(fi) < HEAT_MIN 
     1. Delete each replicas ri of fi from each corresponding disk dc 
     2. Update the load on each disk dc 
  end 
end for



workload characteristics. As a result, static 
algorithms are not suitable for many real-world 
applications as future knowledge of workload 
characteristics are not usually known. Static 
algorithms also suffer from the fact that they cannot 
vary with evolving user demand or access arrival 
rates. DORA does not require future knowledge of 
workload characteristics and can reconfigure file 
assignment as the access patterns change over time. 
Consequently, DORA is better suited for real world 
applications. 

Several challenges arise from the dynamic nature 
of DORA and from the use of file replication. 
Records of all replicated files must be kept which 
include information about the file such as the file 
identifier, how many replicas are in circulation, and 
what disks the replicas reside on. Selecting the 
destination drive and the number of copies remains 
one of the main focuses of many file management 
algorithms that use replication. The choice of 
heuristics significantly affects performance [9]. 

Creating replicas. While load balancing can be 
performed effectively by making copies of hot files 
to multiple disks, creating the replicated files on 
multiple disks will introduce additional overheads. 
Cost versus Benefit trade offs must be examined 
before replicating a file. It is also worth noting that 
replicas will be created on N-2 disks. Similarly to 
SOR, DORA reserves one disk for very large files. 
This further takes advantage of the minimization of 
service time principle by isolating very large files to 
the last disk [5]. The other reserved disk contains the 
original file and should not be replicated to as there is 
no benefit in having two copies of the same file on 
the same disk. Several experiments were run to 
determine exactly when replicas should be created 
for a file and also how many replicas should be 
created for a file. When considering the results, 
empirical data showed that replicas should be created 
when the heat of a file was greater than half the 
average heat of all of the hot files, where 
HOT_FILES is an input parameter of the DORA 
simulator. This provides a HEAT_MAX threshold 
that can be represented by the following equation: 
 2/___ heatfileshotavghi ≥  (7) 
where 

∑
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If the condition in Eq. 7 is true for a file fi, then 
the file is considered to be extremely hot and replicas 
will be created. The amount of replicas that will be 
created is also dependent upon the average heat for 
all hot files avg_hot_files_heat. To obtain the number 
of replicas, two times the heat hi of each extremely 

hot file will be divided by the avg_hot_files_heat. 
This quotient will be rounded down, resulting in the 
number of replicas to be created. This can be 
represented by the following equation: 
 )___/*2(# heatfileshotavghfloorreplicas i= (9) 

This algorithm effectively normalizes the heat 
corresponding to the extremely hot files. Fig. 3 
shows the original Zipfian heat distribution of 40 
files without the use of replication. From Eq. 8, the 
avg_hot_files_heat value is computed to be .3696. 
Combining with Eq. 7, this results in the first 3 files 
being replicated. According to Eq. 9, files 1, 2, and 3 
will each have 3 replicas created. 

Without Replication

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

File ID

H
ea

t
avg_hot_files_heat = .3698

HEAT_MAX = .1849

HEAT MIN = .0925

Fig. 3. Heat Distribution without Replication. 
 
Fig. 4 shows the new heat distribution that has 

been normalized by using replication for the 
extremely hot files. Note that the distribution for the 
replicated files’ heat is now closer to 
avg_hot_files_heat since, for each file, the original 
heat has been divided by the number of replicas plus 
1. Consequently, a single disk dj is relieved of having 
to process every request rk that targets a file fi that 
resides on that disk since now fi is stored on multiple 
disks. This allows for a certain degree of parallel 
execution. 

With Replication

0.000

0.100

0.200

0.300

0.400

0.500

0.600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

File ID

H
ea

t

avg_hot_files_heat = .3698

HEAT_MAX = .1849

HEAT MIN = .0925

Fig. 4. Heat Distribution with Replication. 
 



Updating replicas. Another improvement that 
DORA adds from other static algorithms is the ability 
to handle write requests. As a result, data consistency 
issues must be handled. For example, if an incoming 
request rk is a write request that updates a replicated 
file, all replicas and the original file must be updated 
to ensure the latest copy of the file is being used to 
serve user requests. When a write request that targets 
a replicated file comes into the FCFS scheduler, 
DORA immediately queues the write request to the 
original file and also to all replicated files to ensure 
consistency. This prevents all Read-After-Write 
(RAW) data hazards. 

Deleting replicas. File access patterns and user 
demand for files will change overtime, which 
eventually will result in files that were formerly 
extremely hot wasting disk space. These cold replicas 
must be removed, while leaving the original file 
intact. This requires a garbage collection mechanism 
to conserve space and update the heat on each disk. 
Empirical data showed that a replica for an extremely 
hot file should be deleted once hi for fi became less 
than or equal to the average heat of all of the hot files 
divided by 4. This provides a HEAT_MIN threshold 
that can be expressed by: 
 4/___ heatfileshotavghi ≤  (10) 

Once Eq. 10 is true for a file that has previously 
been replicated, all replicas will be deleted and the 
heat will be updated on each disk to reflect this 
change. 

 
4. Performance evaluation 

 
In this section, we evaluate the performance of 

both C-V and DORA using a synthetic, yet realistic 
workload. Initially, we will present data that 
compares the response improvement of DORA with 
and without replication to illustrate the benefits of 
using replication under heavy workloads. Still more 
notable, DORA will be compared with another 
dynamic algorithm, C-V, which uses the disk cooling 
technique. Results will clearly show that DORA 
performs significantly better than C-V, especially 
under heavy workload conditions. 

4.1 Simulation setup 
 
Matlab software was used for all simulations. In 

addition to DORA, Cool Vanila (C-V) will also be 
simulated for benchmark comparison purposes. The 
A disk array of DISK_NUM homogeneous Cheetah 
ST39205LC hard disks were modeled as a parallel 
I/O system. However, the disks were not simulated in 
a RAID configuration. Non-partitioned files of 
varying sizes and loads corresponding to variable 
heat distributions were used to show that DORA 
performs significantly better than other dynamic 
algorithms such as C-V by adding replication for 
extremely hot files, allowing for the ability to 
dynamically recalibrate file assignment according to 
changing user demand. Since web page requests 
typically follow a Zipfian distribution [13][16], for 
this paper, the initial file-disk allocation is modeled 
as such. In addition, file requests are modeled with 
Poisson arrival rates with fixed service times. 

Mean response time: average response time for 
all file access requests that are sent to the simulated 
parallel disk system. 

Mean response time improvement: decrease in 
seconds of mean response time gained by DORA 
compared with C-V. 

Mean disk utilization: the average ratio between 
a disk’s total service time and its total operation time. 
The time between the arrival time of the first request 
and the finish time of the last request is the total 
operation time. 

Table 1 summarizes the configuration 
parameters of the synthetic workload and the 
modeled system used for our experiments. Despite 
the fact that the workload was synthetically 
generated, all parameters were carefully controlled in 
order to model the workload as accurately as 
possible. 

 
Table 1. System parameters. 

Parameter Value (Fixed) – (Varied) 
Number of files (5000) 
File load (heat) Each file has heat defined as  hi = λi * ti 

Coverage of the file 
system 

(100%) – each file is accessed at least 
once 

Number of disks (20) – (8, 12, 16, 20, 24) 
Aggregate access 
(1/second) rate (200) – (25, 50, 100, 200, 300) 

 



0

200

400

600

800

1000

1200

1400

R
es

po
ns

e 
im

pr
ov

em
en

t (
se

co
nd

)

25 50 100 200 300
Aggregate access rate (1/second)

DORA:Replication vs No Replication

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

R
es

po
ns

e 
im

pr
ov

em
en

t (
%

)

25 50 100 200 300
Aggregate access rate (1/second)

DORA vs. C-V

 
 Fig. 5. DORA: Fig. 6. DORA vs. CV: 
 Replication vs. No Replication. Response Improvement (%). 
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 Fig. 7. DORA vs. CV: Fig. 8. DORA vs. CV: 
 Response Improvement (seconds). Mean disk utilization. 
 
4.2 Impact of aggregate access rate 
 

Figures 4-8 are based on a Zipfian file 
distribution where the workload assumption holds. 
The workload assumption states that the popularity, 
or heat, of a file is inversely proportional to its size. 
The arrival rates are modeled after a Poisson 
distribution. 

Fig. 5 shows a comparison of DORA with 
and without Replication. Similar to the fact that C-V 
is essentially the Greedy algorithm with disk cooling, 
DORA is SOR extended to be a dynamic algorithm 
that uses replication. The results in Fig. 5 show an 
increase in response improvement as the aggregate 
access rate λ increases. This is expected as replication 
is most beneficial for extremely heavy workloads. In 
these cases, the wait time for an extremely hot file is 
minimized since subsequent requests do not have to 
be scheduled onto a single disk, but can instead be 
scheduled onto the original disk or any of the 
replicated disks. A λ of 200 yields the best results. 

Fig. 6 illustrates the response improvement 
percentage of DORA over the C-V algorithm. The 
results show that the greatest improvement of 
response time occurs initially at λ = 25 (77.71%), 
decreases sharply at λ = 50 (40.17%), and then 
remains relatively stable for higher aggregate access 

rates. The sharp decrease is due mainly because the 
total amount of requests are much larger after λ = 25. 
Since this graph shows percentage and the total 
amount of requests is much higher, the percentage 
should decrease. Fig. 7 shows the same dataset 
displayed in seconds. The results are consistent with 
Fig. 6 since even though Fig. 7 shows the highest 
response improvement in seconds at λ = 300 
(779,396 seconds), the total response time at this rate 
is very high. Consequently, Fig. 6 illustrates a more 
conclusive representation. 

In Fig. 8, we see that the aggregate disk 
utilization for DORA is noticeably higher than C-V’s 
for larger values of λ. This is expected since DORA’s 
use of replication will redistribute the heat of an 
extremely hot file to multiple replicated disks, which 
effectively load balances the disk array. By using 
replication, DORA will minimize the disk idle time 
of the disks, thereby increasing the total disk 
utilization. Since C-V is only able to scale downward 
(using disk cooling), and DORA is able to scale 
upward, the results shown correspond to the original 
assumption that replication can be used to minimize 
response time by load balancing across multiple 
disks, thereby increasing overall disk utilization. 
 



4.3 Scalability 
 
From the data, it can be concluded that DORA is 

much more scalable than C-V.  C-V uses a technique 
known as disk cooling. A parallel system using C-V 
is able to move hot files from an overheated disk to 
the disk that contains the least heat. This disk cooling 
technique gives C-V the ability to be downwards 
scalable. More precisely, if the overall load of a disk 
decreases dramatically, files from the hottest disk can 
be moved to the coolest disk. However, C-V does not 
have a mechanism to enable it to be upwards 
scalable. In contrast, DORA’s use of replication 
enables it to scale upwards. For example, when using 
C-V, if several requests arrive in close time 
proximity for the same file, the FCFS will schedule 
the first request to the appropriate disk. It follows 
that all subsequent requests will have to be queued 
behind the original request, thereby increasing the 
wait time and heat on a particular disk. DORA, on 
the other hand, will record the heat generated by the 
numerous requests during the epoch and will then 
create replicas of the file appropriately. During the 
next epoch, the benefit of replication will be realized 
as multiple requests for the same file that have very 
close arrival times can be distributed across several 
disks. This allows DORA to be extremely upwards 
scalable. DORA also provides the ability to have 
limited downwards scalability. For instance, for a 
replicated file, once the heat of the file falls below 
the designated HEAT_MIN threshold, the replicas of 
that file will be deleted, thereby conserving space on 
each disk. 

 
5. Conclusions 

 
Fast response time is a technology factor that 

end-users demand. Considerable research has been 
dedicated to find more efficient ways to arrange data 
such that fast response time can be achieved 
[1][4][5]. SOR effectively increased file search 
efficiencies over other published static algorithms, 
yet SOR, being static by nature, is not able to 
dynamically re-allocate files based on changing user 
demand. We proposed a new dynamic algorithm 
DORA that is able to use replication to adjust to 
varying user demand. DORA is better suited for a 
realistic environment where files’ popularity is 
constantly changing. 

Experimental results showed that DORA 
effectively reduced mean response time with the use 
of replication for extremely hot files. Intuitively, it 
follows that overall system throughput would also be 
reduced since the wait times for subsequent requests 

for the same file were minimized. DORA also proved 
to be far more scalable than C-V. It was able to use 
replication to effectively load balance by 
redistributing the heat to multiple disks that were 
used in replication. The benefit of replication 
becomes evident under extremely heavy workloads 
when the aggregate access rate is high. Thus, 
DORA’s ability to evolve with changing user 
demand and the ability to use replication to load 
balance across multiple disks proves that it is suitable 
for many real world applications where the 
optimization of mean response time is critical. 
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