
DORA: Exploring a Dynamic File Assignment Strategy with Replication

Jonathan Tjioe, Renata Widjaja, and Abraham Lee
Computer Science Department

San Diego State University
San Diego, CA 92182

Abstract

The problem of managing and distributing files

to maximize disk performance has been a popular
topic of many discussions [1][2][3][4][5]. There
are several effective static algorithms that have
addressed this issue such as the static round robin
(SOR) algorithm. SOR has been proven to produce
better response time than other static algorithms
such as Greedy, Sort Partition (SP), and Hybrid
Partition (HP) [1]. SOR is unique compared to the
other static algorithms because it provides
considerable performance improvements even if the
workload assumption, which says that there is an
inverse correlation between file size and its
popularity (small files are more popular than large
files), does not hold [1]. However, as its name states,
it is a static algorithm, and its functionality is limited
by the assumption that files and their access patterns
do not change over time. In reality, however, this
assumption is not accurate for all workloads. We,
therefore, propose a new dynamic algorithm called
dynamic round robin with replication (DORA).
There are two main characteristics of DORA: first, it
takes into account the dynamic nature of file or data
access patterns to uniquely adapt to changing user
demand, and second, it utilizes file replication to
further minimize response time and maximize
throughput. Moreover, experimental results will
show that DORA performs significantly better than
another dynamic algorithm, Cool Vanilla (C-V).

1. Introduction

Fast response time is a technology factor that

end-users are accustomed to. In a world of
distributed applications and web pages that grow
increasingly more bandwidth intensive, considerable
research has been done to improve methods which

can lead to providing instantaneous response to
impatient end-users. A good example is a web server
application used by an online stock broker company.
The Stock Broker site facilitates trades or the buying
and selling of shares based on extremely time-
sensitive information. In this type of profit-based
scenario, response time is of paramount importance
since late or untimely information could result in the
loss of significant amounts of money. On the other
hand, relevant, timely information could bring
significant financial gains to the experienced trader.

It can easily be seen that the performance of
read-intensive applications such as the above
example heavily depend on the underlying parallel
I/O systems that enable the ability to serve requests
almost instantaneously [1]. Oftentimes, the physical
disk is the bottleneck to providing timely response to
users’ requests. Consequently, minimizing the
response time is an important consideration for these
large-scale parallel disk systems [1].

On the other hand, the system administrator’s
main goal is to maximize throughput – the total
amount of user requests that can be served over a
fixed period of time, or epoch. Throughput and
response time are often closely related since in most
cases, by minimizing the response time for individual
requests, the overall throughput will be maximized
[12].

As a result, much of today’s research centers on
file management efficiency and disk scheduling
algorithms. Some examples of these research areas
are in the realm of RAID architectures that focus on
data striping, data replication, and data mirroring to
achieve high data throughput and high data reliability
[6][7]. Substantial research has also been done to
reduce disk head latencies associated with moving
the head to the appropriate physical location on a
disk [2][3]. Once physical limitations of the hardware
have been met, it is left up to the software architect to

accurately and efficiently manage available resources
to fully exploit the capabilities of the parallel disk
system. Furthermore, file assignment is the process
of arranging all the files onto an array of disks
structured in such a way as to significantly improve
the overall performance of a parallel I/O system [1].
The file assignment problem (FAP) has been
researched exhaustively in literature [5][12]. At its
essence, the FAP attempts to organize M files onto N
disks in a structure that minimizes specific cost
functions such as bandwidth costs, storage costs, and
queuing costs [1][5]. Additionally, the FAP attempts
to optimize performance metrics such as mean
response time and overall system throughput [1][5].
Finding the optimal solution for file assignment for a
cost function or a performance metric on a parallel
disk system is an NP-complete problem [1][12]. As a
result, research for solving the FAP has migrated
towards heuristic algorithms.

Typically, there are two classes of heuristic
algorithms: static and dynamic [1]. File assignment
algorithms that are static in nature require complete
knowledge of workload characteristics in advance.
This includes metrics such as service times, wait
times, and arrival rates of requests for each file. Files
are arranged onto a set of disks one time and user
requests to those files are subjected to the same static
file assignment for the duration of the epoch. Static
algorithms fare very well when the workload
assumption holds – when there is an inverse
correlation between file size and its popularity.
However, in certain applications, the workload
assumption does not necessarily hold [14]. In these
applications, static algorithms suffer considerable
degradation in terms of performance. In an attempt to
supplement existing static algorithms, a new static
algorithm named SOR was designed. SOR is a static
file assignment algorithm that proved to be a
significant improvement to several existing static
algorithms such as HP, Greedy, and SP [1]. SOR
distinguished itself from the others by providing
significant improvements in performance even when
the workload assumption did not hold. Although
SOR impressively beat out existing static algorithms,
SOR – as with its predecessors – suffered as demand
for the files changed over time. Dynamic file
assignment algorithms, on the other hand, do not
require prior knowledge of workload characteristics.
Dynamic algorithms are able to keep track of the heat
of each file – as well as the load on each disk – for
every epoch. As user demand for those files change,
these algorithms can dynamically reorganize the
layout of files in an effort to minimize response time
and maximize throughput. Dynamic algorithms are
superior to static algorithms in that they are able to

evolve with changing user demand. As an example,
consider the online streaming video website
www.youtube.com. Videos on this popular site
usually experience the highest demand and generate
considerable amounts of traffic during the first
several weeks of being posted. During this period of
high traffic, dynamic algorithms can assess the user
demand and make copies of the hot files to several
other disks and load balance the incoming requests to
several other high speed disks or physical servers. As
a result, this can lower the response time for user
requests. Moreover, once these videos are no longer
popular, the replicas can be deleted from the servers
and only one copy of the original file kept in order to
satisfy the occasional request for the video. It is self-
evident that dynamic algorithms are more suitable for
real-world applications where comprehensive
workload characteristics are not usually known ahead
of time and user demand evolves over time.

In this paper, we propose a new dynamic
algorithm called DORA which combines the best
features of several algorithms. First, DORA takes
from the philosophy of SP in that it sorts all files
according to file size so as to take advantage of the
improvements achieved when the workload
assumption holds true. Inheriting from SOR, DORA
assigns the files to disks in a round-robin fashion so
as to distribute the heat of all files evenly across all
disks. Thus, DORA also will achieve performance
improvements when the workload assumption does
not hold true. Finally, DORA is a dynamic algorithm
that keeps track of the heat of all files and the load of
all disks. It then creates replicas of extremely hot
files and effectively load balances the requests for
these files across all disks. Consequently, this allows
DORA to provide performance improvements as the
demand for files change over time.

To prove the merit of DORA over other
algorithms, we will compare it against a dynamic
algorithm, Cool Vanilla (C-V), which will be
discussed in greater detail in the Related Work
section. Inheriting from SOR, DORA provides
performance improvements regardless of the
workload assumption. In addition, results will show
that DORA continues to perform well in the face of
changing user demand.

To achieve these goals, performance will first be
measured for C-V and DORA when the workload
assumption holds. Next, results will be compared
between the two algorithms to show that DORA’s
method for replication of extremely hot files provides
performance improvements over C-V.

The rest of this paper is organized as follows.
Section 2 provides a brief summary of the dynamic
algorithm C-V. Section 3 discusses the DORA

algorithm in detail. In addition, the issues that arise
with processing write requests in a replicated
environment are addressed as well. Section 4
presents the experimental results for both DORA and
C-V. The performance metrics and the parameters
used to generate the synthetic workload are
explained. Finally, Section 5 provides conclusive
arguments and supporting data.

2. Related Work

Several dynamic algorithms have proposed

noteworthy solutions to solve the FAP. One example,
C-V, uses file relocation and disk selection in order
to balance the heat on the disks.

C-V is also known as Greedy Algorithm with
disk cooling. In addition to using the Greedy file
assignment algorithm, C-V adds the ability to
perform dynamic load balancing to keep the disks
“cool”. As the heat for previously allocated files
change, C-V reorganizes files in such a way as to
balance out the new heat across all disks. More
precisely, when the disk cooling method is invoked,
C-V will relocate the hottest files from an overheated
disk to the coolest disk [5].

C-V provides the ability for disk cooling, where
an overheated disk can offload some of its files to a
cooler disk. This is beneficial only when the overall
load on the system decreases. As the overall load on
the system increases, the performance of C-V will
suffer as each extremely hot file’s wait time will
continue to increase. So C-V is downward scalable,
but not upward scalable. DORA, on the other hand, is
upwards scalable and has limited downward
scalability. Since DORA has the ability to create
replicas, the heat of an extremely hot file can be
distributed across multiple disks. DORA provides
moderate downward scalability since replicas can be
deleted when they are no longer needed.

3. The DORA algorithm

In its most general form, a parallel disk system

can be represented by a linked group D of
independent homogeneous disk drives: D = {d1, ..., dj
, ..., dn}. The set of files that will be placed onto D
can be represented by F= {f1, ..., fi, ..., fm}. A disk dj
can be represented by dj = (cj, tj, lj), where cj is the
capacity in GByte, tj is the transfer rate in
MByte/second, and lj is the load (total sum of the
files’ heat on the disk). The assumption is disk
capacities are large enough to store all of the files.
When considering the proliferation of server class
drives with large capacities (i.e. 1 TeraByte), this is a

reasonable assumption. A file fi consists of four
attributes and can be modeled as fi = (si, λi, ti, hi),
where si is the size of the file, λi is the mean arrival
rate of requests to a file, ti is the expected service
time, and hi is the heat of the file. For this research, λi
is the mean arrival rate of requests coming in for a
file fi. Disk accesses to a file exhibit a Poisson
distribution with a mean arrival rate λi. A fixed
service time ti is assumed for each request rk. This is
a reasonable assumption since – for web server
applications – the majority of all file accesses are
sequential reads that read the entire file from
beginning to end. In addition, when accessing large
files, the overhead associated with rotational
latencies involved in moving to the appropriate
section of the hard disk is negligible since we assume
a sequential read of the entire file. Consequently, if fi
is a file allocated to dj, it follows that ti = si / tj. The
load of a file i can be calculated from the product of
the mean access arrival rate for a file and the
expected service time for that file. Thus, the heat of
the file can be represented by:
 iii th ⋅= λ (1)

It also follows that the average disk load or heat
can be represented by:

 ∑
=

=
m

i
ih

n 1

1ρ (2)

File assignment algorithms organize groups of
files onto sets of homogeneous disks in order to
reduce mean response time. Typically, incoming
requests are served using a First-In-First-Out (FIFO)
or First-Come-First-Serve (FCFS) scheduling
heuristic. A request set R contains the total number of
requests u and can be modeled as R = {r1, …, rk, …,
ru}. Each request can be represented by the equation
rk = (fidk, ak, typek), where fidk, ak, typek are the file
identifier targeted by the request, the arrival time of
the request, and the type of request (read or write).
For this research, 99% of all requests generated will
be reads since this is consistent with data obtained
from web server traces [16]. When an incoming
request arrives, the FCFS scheduler finds what disk
the target file is located on. The request is then
directed to the disk’s local scheduling queue.

Two important parameters are the start time and
the finish time of a request rk on a disk dj. Start time
and finish time are represented by stj(rk) and ftj(rk),
respectively. In order to get the response time of a
request rk, the start time and finish time must be
calculated. Both will be derived below. There are
three cases for when a request rk arrives in Qj, the
local queue of disk dj where (1 < j < n). The first is
when dj is idle and Qj is empty. The second is when

dj is busy and Qj is empty. The third is when dj is
busy and Qj is not empty.

 ak, if dj is idle and Qj is empty

stj(rk) = ak + rj, if dj is busy and Qj is empty

 ak + rj + ∑
≤∈ kpjp

p
aaQr
fidt

,
 otherwise

 (3)
where rj is the remaining service time of the request
currently running on dj, and ∑

≤∈ kpjp

p
aaQr
fidt

,
 is the

overall service time of requests in Qj that have arrival
times earlier than that of rk. It then follows that the
ftj(rk) can be represented by

kfidkjkj trstrft +=)()((4)

where
kfidt is the service time of the file that is

targeted by request rk. The response time of request rk
can be calculated by
)()()(kjkjkj rstrftrrt −= (5)

The mean response time for the request set R can
be calculated by

 ∑
≤≤=

=
u

njk
kj rrt

u
Rmrt

1,1
)(1)((6)

The FAP can now be generalized as having a set
of files F and a parallel disk system D. Given F and
D, find an allocation scheme X such that the mean
response time expressed by Eq. 6 is minimized.

Fig. 1 shows a logical system diagram of how
the DORA algorithm functions.

Fig. 1. System Model.

Fig. 2 lists the abbreviated pseudo code for
DORA and provides some detailed explanations.

Fig. 2. DORA Pseudocode.

Initial allocation of files. The distribution of the

workload among all disks and the minimization of
the variance of service time are both important
principles used by other algorithms such as SP, HP,
Greedy, and SOR [1][5]. DORA also takes these
principles into account. The average disk load ρ is
computed and the load for each disk dj must not
exceed ρ. Similar to SP, HP, and SOR, the file set F
is sorted by file size since the service time is
proportional to file size. This effectively places files
of similar size onto the same disk [5]. SOR separates
the most popular files onto different disks in a round-
robin fashion instead of a consecutive allocation of
the sorted file set as with SP [1]. The last disk is used
for very large files only. It will not be used for
replication since the overhead of replicating a large
file is very high. By limiting very large files to the
last disk, DORA prevents the problem of the disk
blocking all other requests until the completion of the
large file.

Replication of extremely hot files. When
considering SP, HP, Greedy, and SOR, they all have
similar drawbacks. File assignment algorithms that
are static in nature require future knowledge of all

Input: A parallel I/O system D with n identical disks, a collection of m files in a
queue F, Epoch number EPOCH_NUM
Ouput: A file allocation matrix X(n,m) and performance matrix
%%%%Run SOR algorithm to allocate files to each disk%%%
EPOCH_COUNTER = 0
while EPOCH_COUNTER < EPOCH_NUM

avg hot files heat = sum(all hot files’ heat) / # of hot files
HEAT_MAX = avg hot files heat/2;
HEAT_MIN = aavg hot files heat/ 4;
MAX_REP = DISK_NUM-2;
HOT_FILES = 20;

if epoch_counter > 0

%%%%%Process User Requests%%%%%

%%%%% REPLICATION MODULE %%%%%%
fi = 1
rep_count = 0
while fi <= FILE_NUM && hot_files_count < HOT_FILES %only replicating up
to 20 hottest file

 if heat(fi) >= HEAT_MAX
 n_replica = floor(2*heat(fi) / avg heat of hot files)
 if n_replica > MAX_REP %maximum number of replicas for each file
 n_replica = MAX_REP
 end
 Check Replication_matrix if fi is already replicated

 If YES
 1.count how many more replicas needed, create, and place each of them on
the coolest disk dc.
 2. Update load on each disk dc
 ELSE
 1. Create n_replica for fi, place each of them on the coolest disk dc.
 2. Update load on each disk dc
 end if
 end if
 fi++
 hot_files_count++
end while
%%%%% END REPLICATION MODULE %%%%%%
Generate new heat for each file
%%%%% GARBAGE COLLECTION MODULE %%%%%%
For every file fi in the Replication matrix
 If heat(fi) < HEAT_MIN
 1. Delete each replicas ri of fi from each corresponding disk dc
 2. Update the load on each disk dc
 end
end for

workload characteristics. As a result, static
algorithms are not suitable for many real-world
applications as future knowledge of workload
characteristics are not usually known. Static
algorithms also suffer from the fact that they cannot
vary with evolving user demand or access arrival
rates. DORA does not require future knowledge of
workload characteristics and can reconfigure file
assignment as the access patterns change over time.
Consequently, DORA is better suited for real world
applications.

Several challenges arise from the dynamic nature
of DORA and from the use of file replication.
Records of all replicated files must be kept which
include information about the file such as the file
identifier, how many replicas are in circulation, and
what disks the replicas reside on. Selecting the
destination drive and the number of copies remains
one of the main focuses of many file management
algorithms that use replication. The choice of
heuristics significantly affects performance [9].

Creating replicas. While load balancing can be
performed effectively by making copies of hot files
to multiple disks, creating the replicated files on
multiple disks will introduce additional overheads.
Cost versus Benefit trade offs must be examined
before replicating a file. It is also worth noting that
replicas will be created on N-2 disks. Similarly to
SOR, DORA reserves one disk for very large files.
This further takes advantage of the minimization of
service time principle by isolating very large files to
the last disk [5]. The other reserved disk contains the
original file and should not be replicated to as there is
no benefit in having two copies of the same file on
the same disk. Several experiments were run to
determine exactly when replicas should be created
for a file and also how many replicas should be
created for a file. When considering the results,
empirical data showed that replicas should be created
when the heat of a file was greater than half the
average heat of all of the hot files, where
HOT_FILES is an input parameter of the DORA
simulator. This provides a HEAT_MAX threshold
that can be represented by the following equation:
 2/___ heatfileshotavghi ≥ (7)
where

∑
=

=
FILESHOT

i
ih

FILESHOT
heatfileshotavg

_

1_
1___ . (8)

If the condition in Eq. 7 is true for a file fi, then
the file is considered to be extremely hot and replicas
will be created. The amount of replicas that will be
created is also dependent upon the average heat for
all hot files avg_hot_files_heat. To obtain the number
of replicas, two times the heat hi of each extremely

hot file will be divided by the avg_hot_files_heat.
This quotient will be rounded down, resulting in the
number of replicas to be created. This can be
represented by the following equation:
)___/*2(# heatfileshotavghfloorreplicas i= (9)

This algorithm effectively normalizes the heat
corresponding to the extremely hot files. Fig. 3
shows the original Zipfian heat distribution of 40
files without the use of replication. From Eq. 8, the
avg_hot_files_heat value is computed to be .3696.
Combining with Eq. 7, this results in the first 3 files
being replicated. According to Eq. 9, files 1, 2, and 3
will each have 3 replicas created.

Without Replication

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

File ID

H
ea

t
avg_hot_files_heat = .3698

HEAT_MAX = .1849

HEAT MIN = .0925

Fig. 3. Heat Distribution without Replication.

Fig. 4 shows the new heat distribution that has

been normalized by using replication for the
extremely hot files. Note that the distribution for the
replicated files’ heat is now closer to
avg_hot_files_heat since, for each file, the original
heat has been divided by the number of replicas plus
1. Consequently, a single disk dj is relieved of having
to process every request rk that targets a file fi that
resides on that disk since now fi is stored on multiple
disks. This allows for a certain degree of parallel
execution.

With Replication

0.000

0.100

0.200

0.300

0.400

0.500

0.600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

File ID

H
ea

t

avg_hot_files_heat = .3698

HEAT_MAX = .1849

HEAT MIN = .0925

Fig. 4. Heat Distribution with Replication.

Updating replicas. Another improvement that
DORA adds from other static algorithms is the ability
to handle write requests. As a result, data consistency
issues must be handled. For example, if an incoming
request rk is a write request that updates a replicated
file, all replicas and the original file must be updated
to ensure the latest copy of the file is being used to
serve user requests. When a write request that targets
a replicated file comes into the FCFS scheduler,
DORA immediately queues the write request to the
original file and also to all replicated files to ensure
consistency. This prevents all Read-After-Write
(RAW) data hazards.

Deleting replicas. File access patterns and user
demand for files will change overtime, which
eventually will result in files that were formerly
extremely hot wasting disk space. These cold replicas
must be removed, while leaving the original file
intact. This requires a garbage collection mechanism
to conserve space and update the heat on each disk.
Empirical data showed that a replica for an extremely
hot file should be deleted once hi for fi became less
than or equal to the average heat of all of the hot files
divided by 4. This provides a HEAT_MIN threshold
that can be expressed by:
 4/___ heatfileshotavghi ≤ (10)

Once Eq. 10 is true for a file that has previously
been replicated, all replicas will be deleted and the
heat will be updated on each disk to reflect this
change.

4. Performance evaluation

In this section, we evaluate the performance of

both C-V and DORA using a synthetic, yet realistic
workload. Initially, we will present data that
compares the response improvement of DORA with
and without replication to illustrate the benefits of
using replication under heavy workloads. Still more
notable, DORA will be compared with another
dynamic algorithm, C-V, which uses the disk cooling
technique. Results will clearly show that DORA
performs significantly better than C-V, especially
under heavy workload conditions.

4.1 Simulation setup

Matlab software was used for all simulations. In

addition to DORA, Cool Vanila (C-V) will also be
simulated for benchmark comparison purposes. The
A disk array of DISK_NUM homogeneous Cheetah
ST39205LC hard disks were modeled as a parallel
I/O system. However, the disks were not simulated in
a RAID configuration. Non-partitioned files of
varying sizes and loads corresponding to variable
heat distributions were used to show that DORA
performs significantly better than other dynamic
algorithms such as C-V by adding replication for
extremely hot files, allowing for the ability to
dynamically recalibrate file assignment according to
changing user demand. Since web page requests
typically follow a Zipfian distribution [13][16], for
this paper, the initial file-disk allocation is modeled
as such. In addition, file requests are modeled with
Poisson arrival rates with fixed service times.

Mean response time: average response time for
all file access requests that are sent to the simulated
parallel disk system.

Mean response time improvement: decrease in
seconds of mean response time gained by DORA
compared with C-V.

Mean disk utilization: the average ratio between
a disk’s total service time and its total operation time.
The time between the arrival time of the first request
and the finish time of the last request is the total
operation time.

Table 1 summarizes the configuration
parameters of the synthetic workload and the
modeled system used for our experiments. Despite
the fact that the workload was synthetically
generated, all parameters were carefully controlled in
order to model the workload as accurately as
possible.

Table 1. System parameters.

Parameter Value (Fixed) – (Varied)
Number of files (5000)
File load (heat) Each file has heat defined as hi = λi * ti

Coverage of the file
system

(100%) – each file is accessed at least
once

Number of disks (20) – (8, 12, 16, 20, 24)
Aggregate access
(1/second) rate (200) – (25, 50, 100, 200, 300)

0

200

400

600

800

1000

1200

1400

R
es

po
ns

e
im

pr
ov

em
en

t (
se

co
nd

)

25 50 100 200 300
Aggregate access rate (1/second)

DORA:Replication vs No Replication

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

R
es

po
ns

e
im

pr
ov

em
en

t (
%

)

25 50 100 200 300
Aggregate access rate (1/second)

DORA vs. C-V

 Fig. 5. DORA: Fig. 6. DORA vs. CV:
 Replication vs. No Replication. Response Improvement (%).

0

100000

200000

300000

400000

500000

600000

700000

800000

R
es

po
ns

e
im

pr
ov

em
en

t (
se

co
nd

)

25 50 100 200 300
Aggregate access rate (1/second)

DORA vs. C-V

0

0.2

0.4

0.6

0.8

1

1.2

M
ea

n
di

sk
 u

til
iz

at
io

n

25 50 100 200 300
Aggregate access rate (1/second)

DORA vs. C-V: Aggregate disk utilization DORA CV

 Fig. 7. DORA vs. CV: Fig. 8. DORA vs. CV:
 Response Improvement (seconds). Mean disk utilization.

4.2 Impact of aggregate access rate

Figures 4-8 are based on a Zipfian file
distribution where the workload assumption holds.
The workload assumption states that the popularity,
or heat, of a file is inversely proportional to its size.
The arrival rates are modeled after a Poisson
distribution.

Fig. 5 shows a comparison of DORA with
and without Replication. Similar to the fact that C-V
is essentially the Greedy algorithm with disk cooling,
DORA is SOR extended to be a dynamic algorithm
that uses replication. The results in Fig. 5 show an
increase in response improvement as the aggregate
access rate λ increases. This is expected as replication
is most beneficial for extremely heavy workloads. In
these cases, the wait time for an extremely hot file is
minimized since subsequent requests do not have to
be scheduled onto a single disk, but can instead be
scheduled onto the original disk or any of the
replicated disks. A λ of 200 yields the best results.

Fig. 6 illustrates the response improvement
percentage of DORA over the C-V algorithm. The
results show that the greatest improvement of
response time occurs initially at λ = 25 (77.71%),
decreases sharply at λ = 50 (40.17%), and then
remains relatively stable for higher aggregate access

rates. The sharp decrease is due mainly because the
total amount of requests are much larger after λ = 25.
Since this graph shows percentage and the total
amount of requests is much higher, the percentage
should decrease. Fig. 7 shows the same dataset
displayed in seconds. The results are consistent with
Fig. 6 since even though Fig. 7 shows the highest
response improvement in seconds at λ = 300
(779,396 seconds), the total response time at this rate
is very high. Consequently, Fig. 6 illustrates a more
conclusive representation.

In Fig. 8, we see that the aggregate disk
utilization for DORA is noticeably higher than C-V’s
for larger values of λ. This is expected since DORA’s
use of replication will redistribute the heat of an
extremely hot file to multiple replicated disks, which
effectively load balances the disk array. By using
replication, DORA will minimize the disk idle time
of the disks, thereby increasing the total disk
utilization. Since C-V is only able to scale downward
(using disk cooling), and DORA is able to scale
upward, the results shown correspond to the original
assumption that replication can be used to minimize
response time by load balancing across multiple
disks, thereby increasing overall disk utilization.

4.3 Scalability

From the data, it can be concluded that DORA is

much more scalable than C-V. C-V uses a technique
known as disk cooling. A parallel system using C-V
is able to move hot files from an overheated disk to
the disk that contains the least heat. This disk cooling
technique gives C-V the ability to be downwards
scalable. More precisely, if the overall load of a disk
decreases dramatically, files from the hottest disk can
be moved to the coolest disk. However, C-V does not
have a mechanism to enable it to be upwards
scalable. In contrast, DORA’s use of replication
enables it to scale upwards. For example, when using
C-V, if several requests arrive in close time
proximity for the same file, the FCFS will schedule
the first request to the appropriate disk. It follows
that all subsequent requests will have to be queued
behind the original request, thereby increasing the
wait time and heat on a particular disk. DORA, on
the other hand, will record the heat generated by the
numerous requests during the epoch and will then
create replicas of the file appropriately. During the
next epoch, the benefit of replication will be realized
as multiple requests for the same file that have very
close arrival times can be distributed across several
disks. This allows DORA to be extremely upwards
scalable. DORA also provides the ability to have
limited downwards scalability. For instance, for a
replicated file, once the heat of the file falls below
the designated HEAT_MIN threshold, the replicas of
that file will be deleted, thereby conserving space on
each disk.

5. Conclusions

Fast response time is a technology factor that

end-users demand. Considerable research has been
dedicated to find more efficient ways to arrange data
such that fast response time can be achieved
[1][4][5]. SOR effectively increased file search
efficiencies over other published static algorithms,
yet SOR, being static by nature, is not able to
dynamically re-allocate files based on changing user
demand. We proposed a new dynamic algorithm
DORA that is able to use replication to adjust to
varying user demand. DORA is better suited for a
realistic environment where files’ popularity is
constantly changing.

Experimental results showed that DORA
effectively reduced mean response time with the use
of replication for extremely hot files. Intuitively, it
follows that overall system throughput would also be
reduced since the wait times for subsequent requests

for the same file were minimized. DORA also proved
to be far more scalable than C-V. It was able to use
replication to effectively load balance by
redistributing the heat to multiple disks that were
used in replication. The benefit of replication
becomes evident under extremely heavy workloads
when the aggregate access rate is high. Thus,
DORA’s ability to evolve with changing user
demand and the ability to use replication to load
balance across multiple disks proves that it is suitable
for many real world applications where the
optimization of mean response time is critical.

References

[1] Tao Xie, “SOR: A Static File Assignment Strategy
Immune to Workload Characteristic Assumptions in
Parallel I/O Systems”, IEEE, ICPP, 2007.

[2] H. Huang, W. Hung, and K.G. Shin, “FS2: dynamic
data replication in free disk space for improving disk
performance and energy consumption”, Proc. 12th ACM
SOSP, pp. 263-276, 2005.

[3] W.W. Hsu, A.J. Smith, and H.C. Young, “The
automatic improvement of locality in storage systems”,
ACM Transactions on Computer Systems, Vol. 23, Issue 4,
pp. 424- 473, 2005.

[4] P. Triantafillou, S. Christodoulakis, and C. Georgiadis,
“Optimal data placement on disks: a comprehensive
solution for different technologies”, IEEE Trans.
Knowledge Data Eng., Vol. 12, Issue. 2, pp. 324 - 330,
2000.

[5] Lin-Wen Lee, Peter Scheuermann, and Radek
Vingralek, “File Assignment in Parallel I/O Systems with
Minimal Variance of Service Time”, IEEE
TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 2,, pp.
127 -140, 2000.

[6] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and
D.A. Patterson, “RAID: High-Performance, Reliable
Secondary Storage”, ACM Computing Surveys, Vol. 26,
No.2, pp. 145 -185, 1994.

[7] S.H. Lim, Y.W. Jeong, and K.H. Park, “Interactive
Media Server with Media Synchronized RAID Storage
System”, ACM, NOSSDAV '05, June 2005.

[8] R.L. Graham, “Bounds on Multiprocessing Timing
Anomalies”, SIAM Journal Applied Math, Vol. 7, No. 2,
pp. 416 – 429, 1969.

[9] M. Karlsson and C. Karamanolis, “Choosing replica
placement heuristics for wide-area systems”, Proc. 24th
Int'l Conf. Distributed Computing Systems, pp. 350 - 359,
2004.

[10] T. Loukopoulos and I. Ahmad, “Static and adaptive
data replication algorithms for fast information access in
large distributed systems”, Proc. ICDCS, pp. 385 - 392,
April 2000.

[11] P.Scheuermann, G. Weikum, and P. Zabback,
“Dynamic File Allocation in Disk Arrays”, ACM SIGMOD
Record, Vol 20, Issue 2, pp.406-415, 1991.

[12] Lawrence W. Dowdy and Derrell V. Foster
“Comparative Models of the File Assignment Problem”,
ACM Computing Surveys, Vol 14, No. 2, pp.287-313,
1982.

[13] Kairui Chen, Hui-Chuan Chen, Richard Borie, and
Jonathan C.L.Liu, “File Replication in Video on Demand
Services”, ACM-SE 43, Vol 1, No. 2, pp.162-167, 2005.

[14] S.Bucholz and T.Bucholz, “Replica Placement in
adaptive content distribution networkd”, ACM Symp.
Applied Computing, pp.1705-1710, 2004.

[15] ThanasisLoukopoulos, Petros Lampsas, and Ishfaq
Ahmad, “Continous Replica Placement Schemes in
Distributed Systems”, ACM ICS 2005, pp.284-292, 2005.

[16] C. Cunha, A. Bestavros and M. Crovella,
“Characteristics of WWW Client-based Traces”, Technical
Report, 1995-010, Boston University, 1995.

[17] S. Glassman, “A caching relay for the World Wide
Web,” First conf. World-Wide Web, pp. 165 - 173, 1994.

