
1

17.4 Concurrency control in distributed transactions

 Each server manages a set of objects and is

responsible for ensuring that they remain consistent

when accessed by concurrent transactions
– therefore, each server is responsible for applying concurrency control

to its own objects.

– the members of a collection of servers of distributed transactions are

jointly responsible for ensuring that they are performed in a serially

equivalent manner

– therefore if transaction T is before transaction U in their conflicting

access to objects at one of the servers then they must be in that order

at all of the servers whose objects are accessed in a conflicting

manner by both T and U

•

2

17.4.1 Locking

 In a distributed transaction, the locks on an object

are held by the server that manages it.
– The local lock manager decides whether to grant a lock or make the

requesting transaction wait.

– it cannot release any locks until it knows that the transaction has been

committed or aborted at all the servers involved in the transaction.

– the objects remain locked and are unavailable for other transactions

during the atomic commit protocol

 an aborted transaction releases its locks after phase 1 of the protocol.

•

3

T U

Write(A) at X locks A

Write(B) at Y locks B

Read(B) at Y waits for U

Read(A) at X waits for T

Interleaving of transactions T and U at servers X and Y

 in the example on page 741, we have
– T before U at server X and U before T at server Y

 different orderings lead to cyclic dependencies and
distributed deadlock
– detection and resolution of distributed deadlock in next section

•

4

17.4.2 Timestamp ordering concurrency control

 Single server transactions
– coordinator issues a unique timestamp to each transaction when it starts

– serial equivalence ensured by committing objects in order of timestamps

 Distributed transactions
– the first coordinator accessed by a transaction issues a globally unique

timestamp

– as before the timestamp is passed with each object access

– the servers are jointly responsible for ensuring serial equivalence

 that is if T access an object before U, then T is before U at all objects

– coordinators agree on timestamp ordering

 a timestamp consists of a pair <local timestamp, server-id>.

 the agreed ordering of pairs of timestamps is based on a comparison in

which the server-id part is less significant – they should relate to time

•

5

Timestamp ordering concurrency control (continued)

 The same ordering can be achieved at all servers
even if their clocks are not synchronized
– for efficiency it is better if local clocks are roughly synchronized

– then the ordering of transactions corresponds roughly to the real time
order in which they were started

 Timestamp ordering
– conflicts are resolved as each operation is performed

– if this leads to an abort, the coordinator will be informed

 it will abort the transaction at the participants

– any transaction that reaches the client request to commit should
always be able to do so

 participant will normally vote yes

 unless it has crashed and recovered during the transaction

•

Can the same ordering be achieved at all servers without clock synchronization?

Why is it better to have roughly synchronized clocks?

6

Answer

Problems when local orderings far from real time, e.g. S1 has 10

and S2 has 100 then transactions at S1 are always too late.

 suppose that transactions T and U are started at S1 and S2 with

timestamps <S1, 10> and <S2, 100>

 we have <S2, 100> > <S1, 10> , similarly <S2, 100> > <S1, 11> etc

 so transactions such as T at S1 will find that transactions such as U

at S2 have timestamp < timestamps set by U when reading and

writing objects. so it will be hard for T to succeed

7

Optimistic concurrency control

 each transaction is validated before it is allowed to commit

– transaction numbers assigned at start of validation

– transactions serialized according to transaction numbers

– validation takes place in phase 1 of 2PC protocol

 consider the following interleavings of T and U

– T before U at X and U before T at Y

T U

Read(A) at X Read(B) at Y

Write(A) Write(B)

Read(B) at Y Read(A) at X

Write(B) Write(A)
•

Use backward validation

1. write/read, 2. read/write, 3. write/write

Suppose T & U start validation at about the same time

X validates T first

Y validates U first

each server only validates one transaction at a time, so each server will be

unable to validate the other transaction until the first has completed. Thus,

commitment deadlock

8

Commitment deadlock in optimistic concurrency control

 servers of distributed transactions do parallel validation

– therefore rule 3 must be validated as well as rule 2

 the write set of Tv is checked for overlaps with write sets of earlier

transactions

– this prevents commitment deadlock

– it also avoids delaying the 2PC protocol

 another problem - independent servers may

schedule transactions in different orders
– e.g. T before U at X and U before T at Y

– this must be prevented - some hints as to how on page 743

•

• Global validation after local ones

• Use of globally unique transaction numbers with agreed orderings

9

14.5 Distributed deadlocks

 Single server transactions can experience deadlocks
– prevent or detect and resolve

– use of timeouts is clumsy, detection is preferable.

 it uses wait-for graphs.

 Distributed transactions lead to distributed deadlocks

– in theory can construct global wait-for graph from local ones

– a cycle in a global wait-for graph that is not in local ones is a

distributed deadlock

•

10

Figure 17.12
Interleavings of transactions U, V and W

U V W

d.deposit(10) lock D

b.deposit(10) lock B

a.deposit(20) lock A at Y

at X

c.deposit(30) lock C

b.withdraw(30) wait at Y at Z

c.withdraw(20) wait at Z

a.withdraw(20) wait at X

 objects A, B managed by X and Y ; C and D by Z
– next slide has global wait-for graph

•

U  V at Y

V  W at Z

W  U at X

11

Figure 17.13
Distributed deadlock

D

Waits for

Waits

for

Held by

Held

by

B Waits for

Held

by

X

Y

Z

Held by

W

UV

AC

W

V

U

(a) (b)

 a deadlock cycle has alternate edges showing wait-for and held-by

 wait-for added in order: U  V at Y; V  W at Z and W  U at X

•

12

Deadlock detection - local wait-for graphs

 Local wait-for graphs can be built, e.g.
– server Y: U  V added when U requests b.withdraw(30)

– server Z: V  W added when V requests c.withdraw(20)

– server X: W  U added when W requests a.withdraw(20)

 to find a global cycle, communication between the
servers is needed

 centralized deadlock detection
– one server takes on role of global deadlock detector

– the other servers send it their local graphs from time to time

– it detects deadlocks, makes decisions about which transactions to
abort and informs the other servers

– usual problems of a centralized service - poor availability, lack of fault
tolerance and no ability to scale. Besides, it is costly.

•

13

Figure 17.14
Local and global wait-for graphs

X

T U

Y

V T
T

U V

local wait-for graph local wait-for graph global deadlock detector

 Phantom deadlocks

– a ‘deadlock’ that is detected, but is not really one

– happens when there appears to be a cycle, but one of the transactions

has released a lock, due to time lags in distributing graphs

– in the figure suppose U releases the object at X then waits for V at Y

 and the global detector gets Y’s graph before X’s (T  U  V  T)

•

14

Edge chasing - a distributed approach to deadlock
detection

 a global graph is not constructed, but each server

knows about some of the edges
– servers try to find cycles by sending probes which follow the edges of

the graph through the distributed system

– when should a server send a probe (go back to Fig 17.13)

– edges were added in order U  V at Y; V  W at Z and W  U at X

 when W  U at X was added, U was waiting, but

 when V  W at Z, W was not waiting

– send a probe when an edge T1  T2 when T2 is waiting

– each coordinator records whether its transactions are active or waiting

 the local lock manager tells coordinators if transactions start/stop waiting

 when a transaction is aborted to break a deadlock, the coordinator tells

the participants, locks are removed and edges taken from wait-for graphs

•

15

Edge-chasing algorithms

 Three steps
– Initiation:

 When a server notes that T starts waiting for U, where U is waiting at
another server, it initiates detection by sending a probe containing the
edge < T  U > to the server where U is blocked.

 If U is sharing a lock, probes are sent to all the holders of the lock.

– Detection:

 Detection consists of receiving probes and deciding whether deadlock has
occurred and whether to forward the probes.

• e.g. when server receives probe < T  U > it checks if U is waiting,
e.g. U  V, if so it forwards < T  U  V > to server where V waits

• when a server adds a new edge, it checks whether a cycle is there

– Resolution:

 When a cycle is detected, a transaction in the cycle is aborted to break the
deadlock.

•

16

Figure 17.15
Probes transmitted to detect deadlock

V

Held by

W

Waits forHeld by

Waits
for

Waits for

Deadlock
detected

U

C

A

B

Initiation

WU  V W

WU

WU  V

Z

Y

X

 example of edge chasing starts with X sending <W U>, then Y sends

<W U  V >, then Z sends <W U  V  W>

•

17

Edge chasing conclusion

 probe to detect a cycle with N transactions will require 2(N-1) messages.

– Studies of databases show that the average deadlock involves 2 transactions.

 the above algorithm detects deadlock provided that

– waiting transactions do not abort

– no process crashes, no lost messages

– to be realistic it would need to allow for the above failures

 refinements of the algorithm

– to avoid more than one transaction causing detection to start and then more than one

being aborted

– not time to study these now

•

18

Summary of concurrency control for distributed
transactions

 each server is responsible for the serializability of

transactions that access its own objects.

 additional protocols are required to ensure that

transactions are serializable globally.
– timestamp ordering requires a globally agreed timestamp ordering

– optimistic concurrency control requires global validation or a means of forcing

a global ordering on transactions.

– two-phase locking can lead to distributed deadlocks.

 distributed deadlock detection looks for cycles in the global wait-for graph.

 edge chasing is a non-centralized approach to the detection of distributed

deadlocks

•

19

17.6 Transaction recovery

•

Atomicity property of transactions

durability and failure atomicity

durability requires that objects are saved in permanent storage and will

be available indefinitely

failure atomicity requires that effects of transactions are atomic even

when the server crashes

Recovery is concerned with ensuring that a server’s objects are durable and

that the service provides failure atomicity.

for simplicity we assume that when a server is running, all of its objects

are in volatile memory and all of its committed objects are in a recovery

file in permanent storage

recovery consists of restoring the server with the latest committed

versions of all of its objects from its recovery file

20

Recovery manager

 The task of the Recovery Manager (RM) is:
– to save objects in permanent storage (in a recovery file) for committed

transactions;

– to restore the server’s objects after a crash;

– to reorganize the recovery file to improve the performance of recovery;

– to reclaim storage space (in the recovery file).

 media failures
– i.e. disk failures affecting the recovery file

– need another copy of the recovery file on an independent disk. e.g.

implemented as stable storage or using mirrored disks

 we deal with recovery of 2PC separately (at the end)
– we study logging (17.6.1) but not shadow versions (17.6.2)

•

21

Recovery - intentions lists

 Each server records an intentions list for each of its
currently active transactions
– an intentions list contains a list of the object references and the values

of all the objects that are altered by a transaction

– when a transaction commits, the intentions list is used to identify the
objects affected

 the committed version of each object is replaced by the tentative one

 the new value is written to the server’s recovery file

– in 2PC, when a participant says it is ready to commit, its RM must
record its intentions list and its objects in the recovery file

 it will be able to commit later on even if it crashes

 when a client has been told a transaction has committed, the recovery
files of all participating servers must show that the transaction is
committed,

• even if they crash between prepare to commit and commit

•

22

Types of entry in a recovery file

 For distributed transactions we need information relating to the 2PC as
well as object values, that is:

– transaction status (committed, prepared or aborted)

– intentions list

Type of entry Description of contents of entry

Object A value of an object.

Transaction status Transaction identifier, transaction status (prepared , committed
aborted) and other status values used for the two-phase
commit protocol.

Intentions list Transaction identifier and a sequence of intentions, each of
which consists of <identifier of object>, <position in recovery
file of value of object>.

Figure 17.18

•

Object state flattened to bytes

first entry says prepared

Note that the objects need not be next to one another in the recovery file

23

Logging - a technique for the recovery file

 the recovery file represents a log of the history of all
the transactions at a server
– it includes objects, intentions lists and transaction status

– in the order that transactions prepared, committed and aborted

– a recent snapshot + a history of transactions after the snapshot

– during normal operation the RM is called whenever a transaction
prepares, commits or aborts

 prepare - RM appends to recovery file all the objects in the intentions list
followed by status (prepared) and the intentions list

 commit/abort - RM appends to recovery file the corresponding status

 assume append operation is atomic, if server fails only the last write will
be incomplete

 to make efficient use of disk, buffer writes. Note: sequential writes are
more efficient than those to random locations

 committed status is forced to the log - in case server crashes

•

24

Log for banking service

 Logging mechanism for Fig 17.7 (there would really be other objects in log file)

– initial balances of A, B and C $100, $200, $300

– T sets A and B to $80 and $220. U sets B and C to $242 and $278

– entries to left of line represent a snapshot (checkpoint) of values of A, B and C before T

started. T has committed, but U is prepared.

– the RM gives each object a unique identifier (A, B, C in diagram)

– each status entry contains a pointer to the previous status entry, then the checkpoint

can follow transactions backwards through the file

P0 P1 P2 P3 P4 P5 P6 P7

Object:A Object:B Object:C Object:A Object:B Trans:T Trans:T Object:C Object:B Trans:U
100 200 300 80 220 prepared committed 278 242 prepared

<A, P1> <C, P5>
<B, P2> <B, P6>
P0 P3 P4

Checkpoint
End

of log
Figure 17.19.

prepared status and intentions list

committed status

•

25

Recovery of objects - with logging

 When a server is replaced after a crash

– it first sets default initial values for its objects

– and then hands over to its recovery manager.

 The RM restores the server’s objects to include

– all the effects of all the committed transactions in the correct order and

– none of the effects of incomplete or aborted transactions

– it ‘reads the recovery file backwards’ (by following the pointers)

 restores values of objects with values from committed transactions

 continuing until all of the objects have been restored

– if it started at the beginning, there would generally be more work to do

– to recover the effects of a transaction use the intentions list to find the value of the

objects

 e.g. look at previous slide (assuming the server crashed before T committed)

– the recovery procedure must be idempotent

•

26

Logging - reorganising the recovery file

 RM is responsible for reorganizing its recovery file
– so as to make the process of recovery faster and

– to reduce its use of space

 checkpointing
– the process of writing the following to a new recovery file

 the current committed values of a server’s objects,

 transaction status entries and intentions lists of transactions that have not
yet been fully resolved

 including information related to the two-phase commit protocol

– checkpointing makes recovery faster and saves disk space

 done after recovery and from time to time

 can use old recovery file until new one is ready, add a ‘mark’ to old file

 do as above and then copy items after the mark to new recovery file

 replace old recovery file by new recovery file

•

27

Summary of transaction recovery

 Transaction-based applications have strong requirements for the long life

and integrity of the information stored.

 Transactions are made durable by performing checkpoints and logging in

a recovery file, which is used for recovery when a server is replaced after

a crash.

 Users of a transaction service would experience some delay during

recovery.

 It is assumed that the servers of distributed transactions exhibit crash

failures and run in an asynchronous system,

– but they can reach consensus about the outcome of transactions because crashed

servers are replaced with new processes that can acquire all the relevant information

from permanent storage or from other servers

•

28

Assignment3 (Chapter 17)

 17.1

 17.3

