
Distributed Systems Course

Chapter 17: Distributed transactions

17.1 Introduction

17.2 Flat and nested distributed transactions

17.3 Atomic commit protocols

17.4 Concurrency control in distributed transactions

17.5 Distributed deadlocks

17.6 Transaction recovery

2

Commitment of distributed transactions - introduction

 a distributed transaction refers to a flat or nested

transaction that accesses objects managed by multiple

servers

 When a distributed transaction comes to an end
– either all of the servers commit the transaction

– or all of them abort the transaction.

 one of the servers is coordinator, it must ensure the

same outcome at all of the servers.

 the ‘two-phase commit protocol’ is the most commonly

used protocol for achieving this

•

3

Distributed transactions

Client

X

Y

Z

X

Y

M

NT
1

T
2

T
11

Client

P

T

T
12

T
21

T
22

(a) Flat transaction (b) Nested transactions

T

T

Figure 17.1

A flat client transaction completes each of

its requests before going on to the next

one. Therefore, each transaction accesses

servers’ objects sequentially

In a nested transaction, the top-

level transaction can open

subtransactions, and each

subtransaction can open further

subtransactions down to any

depth of nesting

In the nested case,

subtransactions at the same level

can run concurrently, so T1 and

T2 are concurrent, and as they

invoke objects in different servers,

they can run in parallel.

•

4

Nested banking transaction

 client transfers $10 from A to C and then transfers $20 from B to D

a.withdraw(10)

c.deposit(10)

b.withdraw(20)

d.deposit(20)

Client A

B

C

T
1

T
2

T
3

T
4

T

D

X

Y

Z

T = openTransaction

openSubTransaction
a.withdraw(10);

closeTransaction

openSubTransaction
b.withdraw(20);

openSubTransaction
c.deposit(10);

openSubTransaction
d.deposit(20);

Figure 17.2

requests can be

run in parallel -

with several

servers, the

nested

transaction is

more efficient

•

5

The coordinator of a flat distributed transaction

 Servers execute requests in a distributed transaction
– when it commits they must communicate with one another to

coordinate their actions

– a client starts a transaction by sending an openTransaction request to

a coordinator in any server (next slide)

 it returns a TID unique in the distributed system(e.g. server ID + local

transaction number)

 at the end, it will be responsible for committing or aborting it

– each server managing an object accessed by the transaction is a

participant - it joins the transaction (next slide)

 a participant keeps track of objects involved in the transaction

 at the end it cooperates with the coordinator in carrying out the commit

protocol

– note that a participant can call abortTransaction in coordinator

•

Why might a participant abort a transaction?

Participants aborts it if it crashes and then restarts or if it has a concurrency

control problem, e.g. deadlock or failure of validation in optimistic cc or

failure of an operation in timestamps.

6

A flat distributed banking transaction

 Note that the TID (T) is passed with each request e.g. withdraw(T,3)

..

BranchZ

BranchX

participant

participant

C

D

Client

BranchY

B

A

participantjoin

join

join

T

a.withdraw(4);

c.deposit(4);

b.withdraw(3);

d.deposit(3);

openTransaction

b.withdraw(T, 3);

closeTransaction

T = openTransaction

a.withdraw(4);

c.deposit(4);
b.withdraw(3);
d.deposit(3);

closeTransaction

Note: the coordinator is in one of the servers, e.g. BranchX

Figure 17.3

a client’s (flat)

banking

transaction

involves accounts

A, B, C and D at

servers BranchX,

BranchY and

BranchZ

openTransaction goes to the

coordinator

Each server is shown

with a participant, which

joins the transaction by

invoking the join method

in the coordinator

•

7

The join operation

 The interface for Coordinator is shown in Figure 16.3
– it has openTransaction, closeTransaction and abortTransaction

– openTransaction returns a TID which is passed with each operation so that

servers know which transaction is accessing its objects

 The Coordinator interface provides an additional method,

join, which is used whenever a new participant joins the

transaction:
– join(Trans, reference to participant)

– informs a coordinator that a new participant has joined the transaction Trans.

– the coordinator records the new participant in its participant list.

– the fact that the coordinator knows all the participants and each participant

knows the coordinator will enable them to collect the information that will be

needed at commit time.

•

8

Atomic commit protocols

 transaction atomicity requires that at the end,
– either all of its operations are carried out or none of them.

 in a distributed transaction, the client has requested the
operations at more than one server

 one-phase atomic commit protocol
– the coordinator tells the participants whether to commit or abort

– what is the problem with that?

– this does not allow one of the servers to decide to abort – it may have
discovered a deadlock or it may have crashed and been restarted

 two-phase atomic commit protocol
– is designed to allow any participant to choose to abort a transaction

– phase 1 - each participant votes. If it votes to commit, it is prepared. It cannot
change its mind. In case it crashes, it must save updates in permanent store

– phase 2 - the participants carry out the joint decision

•
The decision could be commit or abort - participants record it in permanent store

9

Failure model for the commit protocols

 Recall the failure model for transactions in Chapter 16.1.2
– this applies to the two-phase commit protocol

 Commit protocols are designed to work in
– asynchronous system (e.g. messages may take a very long time)

– servers may crash

– messages may be lost.

– assume corrupt and duplicated messages are removed.

– no byzantine faults – servers either crash or they obey their requests

 2PC is an example of a protocol for reaching a consensus.
– Chapter 15 says consensus cannot be reached in an asynchronous system if

processes sometimes fail.

– however, 2PC does reach consensus under those conditions.

– because crash failures of processes are masked by replacing a crashed
process with a new process whose state is set from information saved in
permanent storage and information held by other processes.

•

10

The two-phase commit protocol

 During the progress of a transaction, the only

communication between coordinator and participant

is the join request
– The client request to commit or abort goes to the coordinator

 if client or participant request abort, the coordinator informs the

participants immediately

 if the client asks to commit, the 2PC comes into use

 2PC
– voting phase: coordinator asks all participants if they can commit

 if yes, participant records updates in permanent storage and then votes

– completion phase: coordinator tells all participants to commit or abort

– the next slide shows the operations used in carrying out the protocol

•

How many messages are sent between the coordinator and each participant?Why does participant record updates in permanent storage at this stage?

1. Can you commit, 2. Yes/no, 3 do commit/abort, 4 have committed

(confirmation)

2. Use permanent storage because it might crash.

11

Operations for two-phase commit protocol

 participant interface- canCommit?, doCommit, doAbort

coordinator interface- haveCommitted, getDecision

canCommit?(trans)-> Yes / No

Call from coordinator to participant to ask whether it can commit a transaction.

Participant replies with its vote.

doCommit(trans)

Call from coordinator to participant to tell participant to commit its part of a

transaction.

doAbort(trans)

Call from coordinator to participant to tell participant to abort its part of a

transaction.

haveCommitted(trans, participant)

Call from participant to coordinator to confirm that it has committed the transaction.

getDecision(trans) -> Yes / No

Call from participant to coordinator to ask for the decision on a transaction after it

has voted Yes but has still had no reply after some delay. Used to recover from server

crash or delayed messages.
Figure 17.4

•

12

The two-phase commit protocol

Figure 17.5

• Phase 1 (voting phase):

• 1. The coordinator sends a canCommit? request to each of the participants in

the transaction.

• 2. When a participant receives a canCommit? request it replies with its vote

(Yes or No) to the coordinator. Before voting Yes, it prepares to commit by saving

objects in permanent storage. If the vote is No the participant aborts immediately.

• Phase 2 (completion according to outcome of vote):

• 3. The coordinator collects the votes (including its own).

(a)If there are no failures and all the votes are Yes the coordinator decides to

commit the transaction and sends a doCommit request to each of the participants.

(b)Otherwise the coordinator decides to abort the transaction and sends doAbort

requests to all participants that voted Yes.

• 4. Participants that voted Yes are waiting for a doCommit or doAbort request from the

coordinator. When a participant receives one of these messages it acts accordingly and

in the case of commit, makes a haveCommitted call as confirmation to the coordinator.

•

13

Communication in two-phase commit protocol

 Time-out actions in the 2PC

 to avoid blocking forever when a process crashes or a message is lost

– uncertain participant (step 2) has voted yes. it can’t decide on its own

 it uses getDecision method to ask coordinator about outcome

– participant has carried out client requests, but has not had a

Commit?from the coordinator. It can abort unilaterally

– coordinator delayed in waiting for votes (step 1). It can abort and send

doAbort to participants.

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)

prepared to commit

committed

statusstepstatus

Figure 17.6

•

Think about step 2 - what is the problem for the participant?Think about participant before step 2 - what is the problem?Think about the coordinator in step 1 - what is the problem?

Step 2 - participant is uncertain. E.g. coordinator may have crashed Before

step 2.

In step 1 maybe some participants have crashed

14

Performance of the two-phase commit protocol

 if there are no failures, the 2PC involving N

participants requires
– N canCommit? messages and replies, followed by N doCommit

messages.

 the cost in messages is proportional to 3N, and the cost in time is three

rounds of messages.

 The haveCommitted messages are not counted why?

– there may be arbitrarily many server and communication failures

– 2PC is guaranteed to complete eventually, but it is not possible to

specify a time limit within which it will be completed

 delays to participants in uncertain state

 some 3PCs designed to alleviate such delays

• they require more messages and more rounds for the normal case

•

15

17.3.2 Two-phase commit protocol for nested
transactions

 Recall Fig 17.1b, top-level transaction T and subtransactions

T1, T2, T11, T12, T21, T22

 A subtransaction starts after its parent and finishes before it

 When a subtransaction completes, it makes an independent

decision either to commit provisionally or to abort.
– A provisional commit is not the same as being prepared: it is a local decision

and is not backed up on permanent storage.

– If the server crashes subsequently, its replacement will not be able to carry out

a provisional commit.

 A two-phase commit protocol is needed for nested

transactions
– it allows servers of provisionally committed transactions that have crashed to

abort them when they recover.

•

16

Figure 17.7
Operations in coordinator for nested transactions

openSubTransaction(trans) -> subTrans

Opens a new subtransaction whose parent is trans and returns a

unique subtransaction identifier.

getStatus(trans)-> committed, aborted, provisional

Asks the coordinator to report on the status of the transaction

trans. Returns values representing one of the following:

committed, aborted, provisional.

 This is the interface of the coordinator of a subtransaction.
– It allows it to open further subtransactions

– It allows its subtransactions to enquire about its status

 Client starts by using OpenTransaction to open a top-level transaction.

– This returns a TID for the top-level transaction

– The TID can be used to open a subtransaction

 The subtransaction automatically joins the parent and a TID is returned.

The TID of a subtransaction is an extension of its parent's TID, so that a

subtransaction can work out the TID of the top-level transaction.

The client finishes a set of nested transactions by calling closeTransaction or

abortTransacation in the top-level transaction.

•

17

Transaction T decides whether to commit

1

2

T
11

T
12

T
22

T21

abort (at M)

provisional commit (at N)

provisional commit (at X)

aborted (at Y)

provisional commit (at N)

provisional commit (at P)

T

T

T

•

 Recall that
1. A parent can commit even if a subtransaction aborts

2. If a parent aborts, then its subtransactions must abort

– In the figure, each subtransaction has either
provisionally committed or aborted

Figure 17.8

T12 has provisionally committed and T11 has aborted, but the fate of T12

depends on its parent T1 and eventually on the top-level transaction, T.
Although T21 and T22 have both provisionally committed, T2 has

aborted and this means that T21 and T22 must also abort.
Suppose that T decides to commit although T2 has aborted, also

that T1 decides to commit although T11 has aborted

18

Information held by coordinators of nested transactions

Coordinator of

transaction

Child

transactions

Participant Provisional

commit list

Abort list

T T1, T 2 yes T1, T 12 T11 , T 2

T1 T11 , T 12 yes T1, T 12 T11

T2 T21, T 22 no (aborted) T2

T11 no (aborted) T11

T12, T 21 T12 but notT21 T21, T 12

T22 no (parent aborted)T22

•

 When a top-level transcation commits it carries out a 2PC

 Each coordinator has a list of its subtransactions

 At provisional commit, a subtransaction reports its status and
the status of its descendents to its parent

 If a subtransaction aborts, it tells its parent

Figure 17.9

T12 and T21 share a coordinator as they both run at server NWhen T2 is aborted it tells T (no information about descendents)A subtransaction (e.g. T21 and T22) is called an orphan if one of its ancestors abortsan orphan uses getStatus to ask its parent about the outcome. It should abort if its parent has

19

canCommit? for hierarchic two-phase commit protocol

canCommit?(trans, subTrans) -> Yes / No

Call a coordinator to ask coordinator of child subtransaction

whether it can commit a subtransaction subTrans. The first

argument trans is the transaction identifier of top-level

transaction. Participant replies with its vote Yes / No.

•

 Top-level transaction is coordinator of 2PC.

 participant list:
– the coordinators of all the subtransactions that have provisionally committed

– but do not have an aborted ancestor

– E.g. T, T1 and T12 in Figure 17.8

– if they vote yes, they prepare to commit by saving state in permanent store

 The state is marked as belonging to the top-level transaction

 The 2PC may be performed in a hierarchic or a flat manner

Figure 17.10

Hierarchic 2PC - T asks canCommit? to T1 and T1 asks canCommit? to T12

The subTrans argument is used to find the subtransaction to vote on. If absent, vote

no.

The trans argument is used when saving the objects in permanent storage

20

canCommit? for flat two-phase commit protocol

canCommit?(trans, abortList) -> Yes / No

Call from coordinator to participant to ask whether it can

commit a transaction. Participant replies with its vote Yes / No.

•

 Flat 2PC
– the coordinator of the top-level transaction sends canCommit? messages

to the coordinators of all of the subtransactions in the provisional commit
list.

– in our example, T sends to the coordinators of T1 and T12.

– the trans argument is the TID of the top-level transaction

– the abortList argument gives all aborted subtransactions

 e.g. server N has T12 prov committed and T21 aborted

– On receiving canCommit, participant

 looks in list of transactions for any that match trans (e.g. T12 and T21 at N)

 it prepares any that have provisionally committed and are not in abortList and
votes yes

 if it can't find any it votes no

Figure 17.11

Compare the advantages and disadvantages of the flat and nested approaches

Advantage of flat - simpler set of calls, does not depend on lower

levels all replying

Disadvantage - need abort list.

21

Time-out actions in nested 2PC

 With nested transactions delays can occur in the

same three places as before
– when a participant is prepared to commit

– when a participant has finished but has not yet received canCommit?

– when a coordinator is waiting for votes

 Fourth place:
– provisionally committed subtransactions of aborted subtransactions

e.g. T22 whose parent T2 has aborted

– use getStatus on parent, whose coordinator should remain active for a

while

– If parent does not reply, then abort

•

22

Summary of 2PC

 a distributed transaction involves several different servers.
– A nested transaction structure allows

 additional concurrency and

 independent committing by the servers in a distributed transaction.

 atomicity requires that the servers participating in a

distributed transaction either all commit it or all abort it.

 atomic commit protocols are designed to achieve this effect,

even if servers crash during their execution.

 the 2PC protocol allows a server to abort unilaterally.
– it includes timeout actions to deal with delays due to servers crashing.

– 2PC protocol can take an unbounded amount of time to complete but is

guaranteed to complete eventually.

•

