
1

Drawbacks of locking

 Lock maintenance costs an overhead.

 The use of locks can result in deadlock and deadlock

prevention reduces concurrency severely.

 To avoid cascading aborts, locks cannot be released
until the end of the transaction, which may reduce
significantly the potential of concurrency.

2

Exercise about locking (1)

 Explain why serial equivalence requires that once a transaction has
released a lock on an object, it is not allowed to obtain any more
locks.

 A server manages the objects a1, a2, ... an. The server provides two
operations for its clients:

 read (i) returns the value of ai
 write(i, Value) assigns Value to ai
 The transactions T and U are defined as follows:
 T: x= read (i); write(j, 44);
 U: write(i, 55);write(j, 66);
 Describe an interleaving of the transactions T and U in which locks

are released early with the effect that the interleaving is not serially
equivalent (hint: the ordering of different pairs of conflicting
operations of two transactions must be the same).

3

Exercise about locking (2)

4

Exercise about locking (3)

 Initial values of ai and aj are 10 and 20. Which of the
following interleavings are serially equivalent and which
could occur with two-phase locking?

5

Exercise about locking (4)

6

Optimistic concurrency control

 the scheme is called optimistic because the
likelihood of two transactions conflicting is low

 a transaction proceeds without restriction until the
closeTransaction (no waiting, therefore no deadlock)

 it is then checked to see whether it has come into
conflict with other transactions

 when a conflict arises, a transaction is aborted
 each transaction has three phases:

Working phase
–the transaction uses a tentative version of the objects it accesses (dirty reads
can’t occur as we read from a committed version or a copy of it)
–the coordinator records the readset and writeset of each transaction

Validation phase
–at closeTransaction the coordinator validates the transaction (looks for conflicts)
–if the validation is successful the transaction can commit.
–if it fails, either the current transaction, or one it conflicts with is aborted

Update phase
–If validated, the changes in its tentative versions are made permanent.
–read-only transactions can commit immediately after passing validation.

•

With locks we had deadlock
T→ U at i and U→ T at j.
What would happen with the
optimistic scheme?

With optimistic scheme, whichever validates first will
pass and commit, the other will abort.

7

Validation of transactions

 We use the read-write conflict rules
– to ensure a particular transaction is serially equivalent with respect to all other

overlapping transactions

 each transaction is given a transaction number when it starts
validation (the number is kept if it commits)

 the rules ensure serializability of transaction Tv (transaction being
validated) with respect to transaction Ti

Tv Ti Rule

write read 1. Ti must not read objects written by Tv

read write 2. Tv must not read objects written by Ti

write write 3. Ti must not write objects written by Tv and
Tv must not write objects written by Ti

Validation can be simplified by omitting rule 3 (if no overlapping of validate
and update phases)

•

forward

backward

8

Validation of transactions

 Backward validation
 check Tv with preceding overlapping transactions

Earlier committed
transactions

Working Validation Update

T 1

T v
Transaction
being validated

T 2

T 3

Later active
transactions

active 1

active 2

Rule 1 (Tv's write vs Ti's read) is satisfied because reads of earlier transactions
were done before Tv entered validation (and possible updates)

The earlier committed transactions are T1, T2 and T3. T1 committed
before Tv started. (earlier means they started validation earlier)

Rule 2 - check if Tv’s read set overlaps with write sets of earlier Ti
T2 and T3 committed before Tv finished its working phase.

• Rule3 - (write vs write) assume no overlap of update.

9

Backward Validation of Transactions

 startTn is the biggest transaction number assigned to some other committed
transaction when Tv started its working phase

 finishTn is biggest transaction number assigned to some other committed
transaction when Tv started its validation phase

 In figure, StartTn + 1 = T2 and finishTn = T3. In backward validation, the read set
of Tv must be compared with the write sets of T2 and T3.

 the only way to resolve a conflict is to abort Tv

Backward validation of transaction Tv
 boolean valid = true;
 for (int Ti = startTn+1; Ti <= finishTn; Ti++){
 if (read set of Tv intersects write set of Ti) valid = false;
 }
 (Page 709)

to carry out this algorithm, we must keep write sets of recently committed transactions

•

10

Forward validation

 Rule 1. the write set of Tv is compared with the read sets of all
overlapping active transactions
– In Figure 16.28, the write set of Tv must be compared with the read sets of

active1 and active2.
 Rule 2. (read Tv vs write Ti) is automatically fulfilled because the active

transactions do not write until after Tv has completed.

Forward validation of transaction Tv
 boolean valid = true;
 for (int Tid = active1; Tid <= activeN; Tid++){
 if (write set of Tv intersects read set of Tid) valid = false;
 }

read only transactions always pass validation

as the other transactions are still active, we have a choice of aborting them or Tv
if we abort Tv, it may be unnecessary as an active one may anyway abort

•

Go back to conflict rules and Fig. 16.28

the scheme must allow for the fact that read sets of
active transactions may change during validation

11

Comparison of forward and backward validation

 In conflict, choice of transaction to abort
– forward validation allows flexibility, whereas backward validation

allows only one choice (the one being validated)

 In general read sets > than write sets.
– backward validation

 compares a possibly large read set against the old write sets
 overhead of storing old write sets

– forward validation
 checks a small write set against the read sets of active transactions
 need to allow for new transactions starting during validation

 Starvation
– after a transaction is aborted, the client must restart it, but there is no

guarantee it will ever succeed

•
Starvation vs deadlock?

In both cases, aborted transactions are not guaranteed future success deadlock is less likely than starvation because locks make Txs wait Distributed deadlock detection is very hard to implement!

Which is more likely? - starvation or deadlock

12

16.6 Timestamp ordering concurrency control

 each operation in a transaction is validated when it is carried out
– if an operation cannot be validated, the transaction is aborted
– each transaction is given a unique timestamp when it starts.

 The timestamp defines its position in the time sequence of transactions.
– requests from transactions can be totally ordered by their timestamps.

 basic timestamp ordering rule (based on operation conflicts)
– A request to write an object is valid only if that object was last read

and written by earlier transactions.
– A request to read an object is valid only if that object was last written

by an earlier transaction
 this rule assumes only one version of each object
 refine the rule to make use of the tentative versions

– to allow concurrent access by transactions to objects

•

13

Operation conflicts for timestamp ordering

 refined rule
– tentative versions are committed in the order of their timestamps (wait

if necessary) but there is no need for the client to wait
– but read operations wait for earlier transactions to finish

 only wait for earlier ones (no deadlock)
– each read or write operation is checked with the conflict rules

•

as usual write operations are in tentative objects
each object has a write timestamp and a set of tentative versions
each with its own write timestamp and a set of read timestamps

When a write operation is accepted it is put in a tentative version and given a
write timestamp

When a read operation is accepted it is directed to the tentative version with the
maximum write timestamp less than the transaction timestamp

Tc is the current transaction, Ti are other transactions
Ti>Tc means Ti is later than Tc

14

Operation conflicts for timestamp ordering

Rule Tc Ti
1. write read Tc must not write an object that has been read by any Ti where

 this requires that Tc ≥ the maximum read timestamp of the object.

2. write write Tc must not write an object that has been written by any Ti where

Ti > Tc

 this requires that Tc > write timestamp of the committed object.

3. read write Tc must not read an object that has been written by any Ti where
 this requires that Tc > write timestamp of the committed object.

Ti > Tc

Ti > Tc

Figure 16.29

15

Write operations and timestamps

 this illustrates the versions and timestamps, when we do T3 write. for write to
be allowed, T3≥ maximum read timestamp (not shown)

(a) write write

(c) T3 write
object produced
by transaction Ti

 (with write timestamp Ti)

(b) T3 T3

 write (d) T3

T1<T2<T3<T4

Time

Before

After

T 2

T 2 T 3

Time

Before

After

T 2

T 2 T 3

T 1

T 1

Time

Before

After

T 1

T 1

T 4

T 3 T 4

Time

Transaction
aborts Before

After

T 4

T 4

Tentative

Committed

T i

T i

Key:

Figure 16.30

in cases (a), (b) and (c) T3> w.t.s on
committed version and a tentative version
with w.t.s T3 is inserted at an appropriate
place in the list of versions

in case (d), T3< w.t.s on
committed version and the
transaction is aborted

•

16

Timestamp ordering write rule

 by combining rules 1 (write/read) and 2 (write/write)we have the following
rule for deciding whether to accept a write operation requested by
transaction Tc on object D

– rule 3 does not apply to writes

– Note: It is too late in the sense that a transaction with a later timestamp has arleady
read or written the object.

if (Tc ≥ maximum read timestamp on D &&
 Tc > write timestamp on committed version of D)
 perform write operation on tentative version of D with write timestamp Tc
else /* write is too late */
 Abort transaction Tc Page 714

•

17

Timestamp ordering read rule

 by using Rule 3 we get the following rule for deciding what to
do about a read operation requested by transaction Tc on
object D. That is, whether to
– accept it immediately,
– wait or
– reject it

if (Tc > write timestamp on committed version of D) {
 let Dselected be the version of D with the maximum write timestamp ≤ Tc
 if (Dselected is committed)
 perform read operation on the version Dselected
 else
 Wait until the transaction that made version Dselected commits or aborts
 then reapply the read rule
} else
 Abort transaction Tc

Page 714

•

18

Read operations and timestamps

 illustrates the timestamp, ordering read rule, in each case we have T3 read. In
each case, a version whose write timestamp is <= T3 is selected

(b) T3 read

Time

read
proceeds

Selected

T 2

Time

read
proceeds

Selected

T 2 T 4

Time

read waits

Selected

T 1 T 2

Time

Transaction
aborts T 4

Key:

Tentative

Committed

T i

T i

object produced
 by transaction Ti
 (with write timestamp Ti)
 T1 < T2 < T3 < T4

(a) T3 read

(c) T3 read (d) T3 read

Figure 16.31

in cases (a) and (b) the read operation is directed to a committed version,
in (a) this is the only version. In (b) there is a later tentative version

in case (c) the read operation
is directed to a tentative
version and the transaction
must wait until the maker of the
tentative version commits or
aborts

in case (d) there is no suitable
version and T3 must abort

•

19

Transaction commits with timestamp ordering

 when a coordinator receives a commit request, it will always be able to
carry it out because all operations have been checked for consistency
with earlier transactions

– committed versions of an object must be created in timestamp order
– the server may sometimes need to wait, but the client need not wait
– to ensure recoverability, the server will save the ‘waiting to be committed versions’ in

permanent storage

 the timestamp ordering algorithm is strict because
– the read rule delays each read operation until previous transactions that had written the

object had committed or aborted
– writing the committed versions in order ensures that the write operation is delayed until

previous transactions that had written the object have committed or aborted

•

20

Remarks on timestamp ordering concurrency control

 the method avoids deadlocks, but is likely to suffer
from restarts
– modification known as ‘ignore obsolete write’ rule is an improvement

 If a write is too late it can be ignored instead of aborting the transaction,
because if it had arrived in time its effects would have been overwritten
anyway.

 However, if another transaction has read the object, the transaction with
the late write fails due to the read timestamp on the item

– multiversion timestamp ordering (page 715)
 allows more concurrency by keeping multiple committed versions

• late read operations need not be aborted
 there is not time to discuss the method now

•

21

Figure 16.32
Timestamps in transactions T and U

Timestamps and versions of objects
 T U A B C

RTS WTS RTS WTS RTS WTS
{} S {} S {} S

openTransaction
bal = b.getBalance() {T}

openTransaction
b.setBalance(bal*1.1)

bal = b.getBalance()
wait for T

 a.withdraw(bal/10)
commit T T

bal = b.getBalance()
b.setBalance(bal*1.1)
c.withdraw(bal/10) S, U

T, U

S, T

S, T

{U}

Assume that S<T<U; RTS records the maximum read timestamp; WTS records the write
timestamp of each version with timestamps of committed versions in bold.

22

Comparison of methods for concurrency control

 pessimistic approach (detect conflicts as they arise)
– timestamp ordering: serialisation order decided statically
– locking: serialisation order decided dynamically
– timestamp ordering is better for transactions where reads >> writes,
– locking is better for transactions where writes >> reads
– strategy for aborts

 timestamp ordering – immediate
 locking– waits but can get deadlock

 optimistic methods
– all transactions proceed, but may need to abort at the end
– efficient operations when there are few conflicts, but aborts lead to repeating

work
 the above methods are not always adequate e.g.

– in cooperative work there is a need for user notification
– applications such as cooperative CAD need user involvement in conflict

resolution
•

23

Summary

 Operation conflicts form a basis for the derivation of concurrency control
protocols.

– protocols ensure serializability and allow for recovery by using strict executions
– e.g. to avoid cascading aborts

 Three alternative strategies are possible in scheduling an operation in a
transaction:

– (1) to execute it immediately, (2) to delay it, or (3) to abort it
– strict two-phase locking uses (1) and (2), aborting in the case of deadlock

 ordering according to when transactions access common objects
– timestamp ordering uses all three - no deadlocks

 ordering according to the time transactions start.
– optimistic concurrency control allows transactions to proceed without any form of

checking until they are completed.
 Validation is carried out. Starvation can occur.

•

	Drawbacks of locking
	Exercise about locking (1)
	Exercise about locking (2)
	Exercise about locking (3)
	Exercise about locking (4)
	Optimistic concurrency control
	Validation of transactions
	�Validation of transactions
	�Backward Validation of Transactions
	Forward validation
	Comparison of forward and backward validation
	16.6 Timestamp ordering concurrency control
	�Operation conflicts for timestamp ordering
	Operation conflicts for timestamp ordering
	�Write operations and timestamps
	�Timestamp ordering write rule
	�Timestamp ordering read rule
	Read operations and timestamps
	Transaction commits with timestamp ordering
	Remarks on timestamp ordering concurrency control
	Figure 16.32�Timestamps in transactions T and U
	Comparison of methods for concurrency control
	Summary

