
1

Today’s topics

 Nested transactions

 Expectations on final reports

 Locks

2

Nested transactions

 transactions may be composed of other transactions
– several transactions may be started from within a transaction

– we have a top-level transaction and subtransactions which may have

their own subtransactions

•

T : top-level transaction

T1 = openSubTransaction T2 = openSubTransaction

openSubTransaction openSubTransactionopenSubTransaction

openSubTransaction

T1 : T2 :

T11 : T12 :

T211 :

T21 :

prov.commit

prov. commit

abort

prov. commitprov. commit

prov. commit

commit

3

Nested transactions

 To a parent, a subtransaction is atomic with respect
to failures and concurrent access

 transactions at the same level (e.g. T1 and T2) can
run concurrently but access to common objects is
serialised

 a subtransaction can fail independently of its parent
and other subtransactions
– when it aborts, its parent decides what to do, e.g. start another

subtransaction or give up

 The CORBA transaction service supports both flat
and nested transactions

•

4

Advantages of nested transactions (over flat ones)

 Subtransactions may run concurrently with other

subtransactions at the same level.
– this allows additional concurrency in a transaction.

– when subtransactions run in different servers, they can work in parallel.

 e.g. consider the branchTotal operation

 it can be implemented by invoking getBalance at every account in the

branch.

• these can be done in parallel when the branches have different servers

 Subtransactions can commit or abort independently.
– this is potentially more robust Why?

– a parent can decide on different actions according to whether a subtransaction has

aborted or not

•

With a flat transaction, one transaction failure would cause the whole transaction to be

restarted. Based on the example of delivering mail, we can see that a set of nested

transactions is potentially more robust.

5

Commitment of nested transactions

 A transaction may commit or abort only after its child

transactions have completed.

 A subtransaction decides independently to commit

provisionally or to abort. Its decision to abort is final.

 When a parent aborts, all of its subtransactions are aborted.

 When a subtransaction aborts, the parent can decide whether

to abort or not.

 If the top-level transaction commits, then all of the

subtransactions that have provisionally committed can

commit too, provided that none of their ancestors has

aborted.

•

6

Summary on transactions

 We consider only transactions at a single server, they are:

 atomic in the presence of concurrent transactions
– which can be achieved by serially equivalent executions

 atomic in the presence of server crashes
– they save committed state in permanent storage

– they use strict executions to allow for aborts

– they use tentative versions to allow for commit/abort

 nested transactions are structured from sub-transactions
– they allow concurrent execution of sub-transactions

– they allow independent recovery of sub-transactions

•

7

What I’m expecting in your final report (1)

 4~6 pages in the IEEE 2-column format

 Please do use the IEEE template DOC file

 The number of references should be more than 10

 Source code of your program should not be included in

the 4~6 pages

8

What I’m expecting in your final report (2)

 I will focus on your real work and efforts

 Next I will look at your results (How good they are?
Is it a new idea?)

 Survey papers cannot receive high scores

 If you want to compare some existing algorithms or
designs, at least you need to design and conduct
experiments to support your conclusions

9

What I’m expecting in your final report (3)

 No or few obvious grammar errors and typos.

 Correct format (e.g., italic for variables and Abstract).

 Sufficient experimental results in figures/tables.

 Source code can only be attached as Appendix of your

final report.

 If majority parts of your report come from an existing

article, you will receive zero point.

 Send me a separate document, which clearly states

each person’s contributions if there are two students in

one group.

10

Introduction to concurrency control

 Transactions must be scheduled so that their effect on shared
objects is serially equivalent

•

Can you recall the definition of serial equivalence?

for serial equivalence,

(a) all access by a transaction to a particular object must be
serialized with respect to another transaction’s access.

(b) all pairs of conflicting operations of two transactions should
be executed in the same order.

 A server can achieve serial equivalence by
serialising access to objects, e.g. by the use of locks

Two-phase locking - has a ‘growing’ and a ‘shrinking’ phase

to ensure (b), a transaction is not allowed any new locks after it

has released a lock

11

Transactions T and U with exclusive locks

 initially the balances of A, B and C unlocked

Transaction T:

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Transaction U:

balance = b.getBalance()
b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction

bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s

lock on B

closeTransaction unlock A, B

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B, C

when T is about to use B, it is locked for T

when U is about to use B, it is still locked for T

and U waits

when T commits, it unlocks B

U can now continue

the use of the lock on B effectively serialises access to B

•

12

Strict two-phase locking

 strict executions prevent dirty reads and premature

writes (if transactions abort).
– a transaction that reads or writes an object must be delayed until other

transactions that wrote the same object have committed or aborted.

– to enforce this, any locks applied during the progress of a transaction

are held until the transaction commits or aborts.

– this is called strict two-phase locking

– For recovery purposes, locks are held until updated objects have

been written to permanent storage

 granularity - apply locks to small things e.g. bank

balances
– there are no assumptions as to granularity in the schemes we present

•

What are dirty reads?

How can they be prevented?

Dirty read - a transaction reads a value set by another transaction that

subsequently aborts

Prevent dirty reads by delaying reads until the transaction that wrote the

object they want to read has committed or aborted.

13

Read-write conflict rules

 concurrency control protocols are designed to deal with
conflicts between operations in different transactions on the
same object

 we describe the protocols in terms of read and write
operations, which we assume are atomic

 read operations of different transactions do not conflict

 therefore exclusive locks reduce concurrency more than necessary

 The ‘many reader/ single writer’ scheme allows several transactions to
read an object or a single transaction to write it (but not both)

 It uses read locks and write locks
– read locks are sometimes called shared locks

•

What decides whether a pair of operations conflict?

A pair of operations conflict if their combined effect depends on

the order in which they were executed

14

Lock compatibility

 The operation conflict rules tell us that:
1. If a transaction T has already performed a read operation on a

particular object, then a concurrent transaction U must not write that
object until T commits or aborts.

2. If a transaction T has already performed a write operation on a
particular object, then a concurrent transaction U must not read or
write that object until T commits or aborts.

For one object Lock requested

read write

Lock already set none OK OK

read OK wait

write wait wait

to enforce 1, a request for a write lock is delayed by the presence

of a read lock belonging to another transaction

to enforce 2, a request for a read lock or write lock is delayed by

the presence of a write lock belonging to another transaction

•

15

Lock promotion

 Lost updates – two transactions read an object and
then use it to calculate a new value (remember 10%
increase example?).

 Lost updates are prevented by making later transactions
delay their reads until the earlier ones have completed.

 each transaction sets a read lock when it reads and then
promotes it to a write lock when it writes the same object

 when another transaction requires a read lock it will be
delayed (can anyone see a potential danger which does not
exist when exclusive locks are used?)

 Lock promotion: the conversion of a lock to a
stronger lock – that is, a lock that is more exclusive.
– demotion of locks (making them weaker) is not allowed

•

Why not allow demotion of locks?

because the new weaker lock may allow executions by other transactions

that are inconsistent with serial equivalence.

16

Use of locks in strict two-phase locking

 The sever applies locks when the read/write operations are about to be

executed

 the server releases a transaction’s locks when it commits or aborts

1. When an operation accesses an object within a transaction:

(a) If the object is not already locked, it is locked and the operation proceeds.

(b) If the object has a conflicting lock set by another transaction, the transaction must wait

until it is unlocked.

(c) If the object has a non-conflicting lock set by another transaction, the lock is shared and

the operation proceeds.

(d) If the object has already been locked in the same transaction, the lock will be promoted if

necessary and the operation proceeds. (Where promotion is prevented by a conflicting

lock, rule (b) is used.)

2. When a transaction is committed or aborted, the server unlocks all objects it

locked for the transaction.

•

17

Lock implementation

 The granting of locks will be implemented by a separate object in the
server that we call the lock manager.

 the lock manager holds a set of locks, for example in a hash table.

 each lock is an instance of the class Lock (Fig 16.17) and is associated
with a particular object.

– its variables refer to the object, the holder(s) of the lock and its type

 the lock manager code uses wait (when an object is locked) and notify
when the lock is released

 the lock manager provides setLock and unLock operations for use by the
server

•

18

Lock class

public class Lock {

private Object object; // the object being protected by the lock

private Vector holders; // the TIDs of current holders

private LockType lockType; // the current type

public synchronized void acquire(TransID trans, LockType aLockType){

while(/*another transaction holds the lock in conflicing mode*/) {

try {

wait();

}catch (InterruptedException e){/*...*/ }

}

if(holders.isEmpty()) { // no TIDs hold lock

holders.addElement(trans);

lockType = aLockType;

} else if(/*another transaction holds the lock, share it*/)){

if(/* this transaction not a holder*/) holders.addElement(trans);

} else if (/* this transaction is a holder but needs a more exclusive lock*/)

lockType.promote();

}

}

Continues on next slide

19

continued

public synchronized void release(TransID trans){

holders.removeElement(trans); // remove this holder

// set locktype to none

notifyAll();

}

}

20

LockManager class

public class LockManager {
private Hashtable theLocks;

public void setLock(Object object, TransID trans, LockType
lockType){

Lock foundLock;
synchronized(this){

// find the lock associated with object
// if there isn’t one, create it and add to the hashtable

}
foundLock.acquire(trans, lockType);

}

// synchronize this one because we want to remove all entries
public synchronized void unLock(TransID trans) {

Enumeration e = theLocks.elements();
while(e.hasMoreElements()){

Lock aLock = (Lock)(e.nextElement());
if(/* trans is a holder of this lock*/) aLock.release(trans);

}
}

}

21

Deadlock with write locks

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

waits for U’s a.withdraw(200); waits for T’s

lock on B lock on A

The deposit and withdraw methods are atomic.

Although they read as well as write, they acquire

write locks.

When locks are used, each of T and U acquires a lock on one account

and then gets blocked when it tries to access the account the other one

has locked.

We have a 'deadlock'.

The lock manager must be designed to deal with deadlocks. •

T accesses A B

U accesses B AIs this serially equivalent?
Can both T and U be allowed

to commit?
Then what must we do with T

and U?
What can a lock manager do

about deadlocks?

22

The wait-for graph for the previous figure

 Definition of deadlock
– deadlock is a state in which each member of a group of transactions is

waiting for some other member to release a lock.

– a wait-for graph can be used to represent the waiting relationships

between current transactions

B

A

Waits for

Held by

Held by

T UU T

Waits for

In a wait-for graph the nodes represent transactions and the edges represent

wait-for relationships between transactions

•

Transactions wait for

one another indirectly

via objects

Objects can be

omitted (as a

transaction

waits for only

one object)

23

A cycle in a wait-for graph

 Suppose a wait-for graph contains a cycle T … U … V T
– each transaction waits for the next transaction in the cycle

– all of these transactions are blocked waiting for locks

– none of the locks can ever be released (the transactions are deadlocked)

– If one transaction is aborted, then its locks are released and that cycle is broken

U

V

T

•

24

Another wait-for graph

 T, U and V share a read lock on C and

 W holds write lock on B (which V is waiting for)

 T and W then request write locks on C and deadlock

occurs e.g. V is in two cycles - look on the left

C

T

U
V

Held by

Held by

Held by

T

U

V

W

W

B

Held by

Waits for

•

25

Deadlock prevention is unrealistic

 e.g. lock all of the objects used by a

transaction when it starts
– unnecessarily restricts access to shared resources.

– it is sometimes impossible to predict at the start of a transaction which

objects will be used.

 Deadlock can also be prevented by

requesting locks on objects in a predefined

order
– but this can result in premature locking and a reduction in

concurrency

•

26

Deadlock detection

 by finding cycles in the wait-for graph.
– after detecting a deadlock, a transaction must be selected to be

aborted to break the cycle

– the software for deadlock detection can be part of the lock manager

– it holds a representation of the wait-for graph so that it can check it for

cycles from time to time

– edges are added to the graph and removed from the graph by the lock

manager’s setLock and unLock operations

– when a cycle is detected, choose a transaction to be aborted and then

remove from the graph all the edges belonging to it

– it is hard to choose a victim - e.g. choose the oldest or the one in the

most cycles

•

27

Timeouts on locks

 Lock timeouts can be used to resolve deadlocks
– each lock is given a limited period in which it is invulnerable.

– after this time, a lock becomes vulnerable.

– provided that no other transaction is competing for the locked object,

the vulnerable lock is allowed to remain.

– but if any other transaction is waiting to access the object protected by

a vulnerable lock, the lock is broken

 (that is, the object is unlocked) and the waiting transaction resumes.

– The transaction whose lock has been broken is normally aborted

 problems with lock timeouts
 locks may be broken when there is no deadlock

 if the system is overloaded, lock timeouts will happen more
often and long transactions will be penalised

 it is hard to select a suitable length for a timeout •

What are the problems with lock timeouts?

28

Resolution of the deadlock in Figure 16.19

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

waits for U’s a.withdraw(200); waits for T’s

lock on B lock on A

(timeout elapses)

T’s lock on A becomes vulnerable,

unlock A, abort T

a.withdraw(200); write locks A

unlock A, B

29

Drawbacks of locking

 Lock maintenance costs an overhead.

 The use of locks can result in deadlock.

 To avoid cascading aborts, locks cannot be released

until the end of the transaction, which may reduce

significantly the potential of concurrency.

30

Assignment#3 (Chapter 16)

 16.2

 16.3

 16.17

