
Distributed Systems Course

Transactions and Concurrency Control

16.1 Introduction

16.2 Transactions 

16.3 Nested transactions

16.4 Locks 

16.5 Optimistic concurrency control 

16.6 Timestamp ordering



2

Definition of Transactions

 A transaction defines a sequence of server operations

that is guaranteed by the server to be atomic in the

presence of multiple clients and server crashes.



3

Introduction to transactions

 The goal of transactions
– the objects managed by a server must remain in a consistent state 

 when they are accessed by multiple transactions and 

 in the presence of server crashes 

 Recoverable objects 
– can be recovered after their server crashes (recovery in Chapter 17)

– objects are stored in permanent storage

 Failure model
– transactions deal with crash failures of processes and omission 

failures of communication

 Designed for an asynchronous system
– It is assumed that messages may be delayed

•

As transactions use permanent storage

The failure model also  deals with disks

What sort of faults can disks 

suffer from?

How can we deal with omission faults in disks?

File writes may fail 

a) By writing nothing

b) By writing a wrong value, but checksums are 

used so that reads detect bad blocks

Therefore (a) and (b) are omission failures

Writing to the wrong block is an arbitrary failure.



4

Operations of the Account interface

create(name)  account

create a new account with a given name

lookUp(name)  account

return a reference to the account with the given name

branchTotal()  amount

return the total of all the balances at the branch

Operations of the Branch interface

deposit(amount)

deposit amount in the account

withdraw(amount)

withdraw amount from the account

getBalance()  amount

return the balance of the account

setBalance(amount)

set the balance of the account to amount Figure 16.1

Used as an example. Each Account is 

represented by a remote object whose 

interface Account provides operations for 

making deposits and withdrawals and for 

setting and getting the balance.

and each Branch of the bank is represented by a 

remote object whose interface Branch provides 

operations for creating a new account, looking one 

up by name and enquiring about the total funds at 

the branch. It stores a correspondence between 

account names and their remote object references

•



5

Atomic operations at server

 first we consider the synchronisation of client operations 
without transactions

 when a server uses multiple threads it can perform several 
client operations concurrently

 if we allowed deposit and withdraw to run concurrently we 
could get inconsistent results

 objects should be designed for safe concurrent access e.g. in 
Java use synchronized methods, e.g.
– public synchronized void deposit(int amount) throws RemoteException

 atomic operations are free from interference from concurrent 
operations in other threads. 

 use any available mutual exclusion mechanism (e.g. mutex)

•



6

Client cooperation by means of synchronizing server 
operations

 Clients share resources via a server

 e.g. some clients update server objects and others access 
them

 servers with multiple threads require atomic objects

 but in some applications, clients depend on one another to 
progress
– e.g. one is a producer and another a consumer

– e.g. one sets a lock and the other waits for it to be released

 it would not be a good idea for a waiting client to poll the 
server to see whether a resource is yet available

 it would also be unfair (later clients might get earlier turns)

 Java wait and notify methods allow threads to communicate 
with one another and to solve these problems
– e.g. when a client requests a resource, the server thread waits until it is 

notified that the resource is available •



7

Failure model for transactions

 Lampson’s failure model deals with failures of disks, servers 
and communication. 
– algorithms work correctly when predictable faults occur. 

– but if a disaster occurs, we cannot say what will happen

 Writes to permanent storage may fail
– e.g. by writing nothing or a wrong value (write to wrong block is a disaster)

– reads can detect bad blocks by checksum 

 Servers may crash occasionally.
– when a crashed server is replaced by a new process its memory is cleared 

and then it carries out a recovery procedure to get its objects’ state

– faulty servers are made to crash so that they do not produce arbitrary failures 

 There may be an arbitrary delay before a message arrives. 
A message may be lost, duplicated or corrupted.
– recipient can detect corrupt messages (by checksum)

– forged messages and undetected corrupt messages are disasters

•



8

Transactions

 Some applications require a sequence of client requests to a 

server to be atomic in the sense that: 
1. they are free from interference by operations being performed on behalf of 

other concurrent clients; and 

2. either all of the operations must be completed successfully or they must have 

no effect at all in the presence of server crashes.

 Transactions originate from database management systems

 Transactional file servers were built in the 1980s

 Transactions on distributed objects late 80s and 90s

 Middleware components e.g. CORBA Transaction service. 

 Transactions apply to recoverable objects and are intended 

to be atomic.

•
Servers 'recover' - they are restarted and 

get their objects from permanent storage



9

A client’s banking transaction

 This transaction specifies a sequence of related 
operations involving bank accounts named A, B and 
C and referred to as a, b and c in the program

 the first two operations transfer $100 from A to B

 the second two operations transfer $200 from C to B

Transaction T:

a.withdraw(100);

b.deposit(100);

c.withdraw(200);

b.deposit(200);

•



10

Atomicity of transactions

 The atomicity has two aspects 

1. All or nothing:
– it either completes successfully, and the effects of all of its operations 

are recorded in the objects, or (if it fails or is aborted) it has no effect 
at all. This all-or-nothing effect has two further aspects of its own:

– failure atomicity:

 the effects are atomic even when the server crashes;

– durability:

 after a transaction has completed successfully, all its effects are saved in 
permanent storage.

2. Isolation:
– Each transaction must be performed without interference from other 

transactions - there must be no observation by other transactions of a 
transaction's intermediate effects

•

Concurrency control ensures isolation



11

Failure atomicity and durability

 To support failure atomicity and durability, the objects

must be recoverable.

1. When a server process crashes unexpectedly due to a

hardware fault or software error, the changes due to all

completed transactions must be available in permanent

storage so that …

2. By the time a server acks the completion of a client’s

transaction, all of the transaction’s changes to the objects

must have been recorded in permanent storage.



12

Two ways for synchronization

 Perform the transactions serially

 Concurrency control

1. The aim for any server that supports transactions is to

maximize concurrency.

2. Transactions are allowed to execute concurrently if

they would have the same effect as a serial execution.



13

Operations in the Coordinator interface

 transaction capabilities may be added to a  server of 
recoverable objects
– each transaction is created and managed by a Coordinator object 

whose interface follows:

openTransaction() -> trans;

starts a new transaction and delivers a unique TID trans. This 

identifier will be used in the other operations in the transaction.

closeTransaction(trans) -> (commit, abort);

ends a transaction: a commit return value indicates that the 

transaction has  committed; an abort return value indicates that 

it has aborted.

abortTransaction(trans);

aborts the transaction.

the client uses OpenTransaction to get TID from the coordinator

the client passes the TID with each request in the transaction 

e.g. as an extra argument or transparently (The CORBA transaction 

service does uses 'context' to do this).

The client asks either to commit or abort

To commit - the client uses closeTransaction and the coordinator ensures 

that the objects are saved in permanent storage

To abort - the client uses abortTransaction and the coordinator ensures 

that all temporary effects are invisible to other transactions

•



14

Transaction life histories

 A transaction is either successful (it commits)
– the coordinator sees that all objects are saved in permanent storage

 or it is aborted by the client or the server
– make all temporary effects invisible to other transactions

– how will the client know when the server has aborted its transaction?

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction

operation operation operation

operation operation operation

server aborts

transaction

operation operation operation ERROR

reported to client

closeTransaction abortTransaction

the client finds out next time it tries to access an object at the server. 
•

Why might a server abort a transaction?

because of concurrency control problems or if it crashes and then recovers



15

Concurrency control

 We will illustrate the ‘lost update’ and the ‘inconsistent 

retrievals’ problems which can occur in the absence of 

appropriate concurrency control
– a lost update occurs when two transactions both read the old value of a 

variable and use it to calculate a new value

– inconsistent retrievals occur when a retieval transaction observes values that 

are involved in an ongoing updating transaction

 we show how serial equivalent executions of transactions can 

avoid these problems

 we assume that the operations deposit, withdraw, getBalance

and setBalance are synchronized operations - that is, their 

effect on the account balance is atomic.

•



16

The lost update problem

 the initial balances of accounts A, B, C are $100, $200. $300

 both transfer transactions increase B’s balance by 10%

Transaction T :

balance = b.getBalance();

b.setBalance(balance*1.1);

a.withdraw(balance/10)

Transaction U:

balance = b.getBalance();

b.setBalance(balance*1.1);

c.withdraw(balance/10)

balance =  b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

the net effect should be to increase B by 10% 

twice - 200, 220, 242.

but it only gets to  220. T’s update is lost.

•



17

The inconsistent retrievals problem

 The balances of A and B are both initially $200

 V transfers $100 from A to B while W calculates branch total (which 
should be $400 for account A and account B)

Transaction V:

a.withdraw(100)

b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

total = a.getBalance() $100

total = total+b.getBalance() $300

total = total+c.getBalance()

b.deposit(100) $300

we see an inconsistent retrieval 

because V has only done the 

withdraw part when W sums 

balances of A and B

•



18

Serial equivalence

 if each one of a set of transactions has the correct 

effect when done on its own

 then if they are done one at a time in some order the 

effect will be correct

 a serially equivalent interleaving is one in which the 

combined effect is the same as if the transactions 

had been done one at a time in some order

 the same effect means
– the read operations return the same values

– the instance variables of the objects have the same values at the end

•

The transactions are scheduled to avoid 

overlapping access to the accounts 

accessed by both of them



19

A serially equivalent interleaving of T and U
(lost updates cured)

 if one of T and U runs before the other, they can’t get a lost update, 

 the same is true if they are run in a serially equivalent ordering 

Transaction T:

balance = b.getBalance()

b.setBalance(balance*1.1)

a.withdraw(balance/10)

Transaction U:

balance = b.getBalance()

b.setBalance(balance*1.1)

c.withdraw(balance/10)

balance =  b.getBalance() $200

b.setBalance(balance*1.1) $220

balance = b.getBalance() $220

b.setBalance(balance*1.1) $242

a.withdraw(balance/10) $80

c.withdraw(balance/10) $278

their access to B is serial, the other part can overlap

•



20

A serially equivalent interleaving of V and W
(inconsistent retrievals cured) 

 if W runs before or after V, the problem will not occur

 therefore it will not occur in a serially equivalent ordering of V and W

 the illustration is serial, but it need not be

Transaction V:

a.withdraw(100);

b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400

total = total+c.getBalance()

...

we could overlap the first line of W with the second line of V 

•



21

Read and write operation conflict rules

 Conflicting operations

 a pair of operations conflicts if their combined effect depends 
on the order in which they were performed
– e.g. read and write (whose effects are the  result returned by read and the 

value set by write)

Operations of different
transactions

Conflict Reason

read read No Because the effect of a pair of read operations

does not depend on the order in which they are

executed

read write Yes Because the effect of a read and a write operation

depends on the order of their execution

write write Yes Because the effect of a pair of write operations

depends on the order of their execution

•



22

Serial equivalence 
defined in terms of conflicting operations

 For two transactions to be serially equivalent, it is 

necessary and sufficient that all pairs of conflicting 

operations of the two transactions be executed in 

the same order at all of the objects they both access

 Consider
– T: x = read(i); write(i, 10); write(j, 20);

– U: y = read(j); write(j, 30); z = read (i); 

•

–serial equivalence requires that either

T accesses i before U and T accesses j before U. or

U accesses i before T and U accesses j before T.

Serial equivalence is used as a criterion for 
designing concurrency control schemes

T and U access i and j

Which of their operations conflict?

T’s  write(i) conflicts with U’s read (i)

U’s read (j) and write(j) conflict with T’s write(j)



23

A non-serially equivalent interleaving of operations of 
transactions T and U

 Each transaction’s access to i and j is serialised with respect 
to one another, but

 T makes all accesses to  i before U does 

 U makes all accesses to  j before T does 

 therefore this interleaving is not serially equivalent •

Transaction T: Transaction U:

x = read(i)

write(i, 10)
y = read(j)

write(j, 30)

write(j, 20)
z = read (i)



24

Recoverability from aborts

 if a transaction aborts, the server must make sure that other 
concurrent transactions do not see any of its effects

 we study two problems:

 ‘dirty reads’ 
– an interaction between a read operation in one transaction and an earlier write

operation on the same object (by a transaction that then aborts)

– a transaction that committed with a ‘dirty read’ is not recoverable

 ‘premature writes’
– interactions between write operations on the same object by different 

transactions, one of which aborts

 (getBalance is a read operation and setBalance a write 
operation)

•



25

A dirty read when transaction T aborts

 U has committed, so it cannot be undone

Transaction T:

a.getBalance()

a.setBalance(balance + 10)

Transaction U:

a.getBalance()

a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110

balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

abort transaction

•

U reads A’s balance (which was set 
by T) and then commits

T subsequently aborts.

U has performed a dirty read

What is the problem?

These executions are serially equivalent



26

Recoverability of transactions

 If a transaction (like U) commits after seeing the effects of a 

transaction that subsequently aborted, it is not recoverable

•

e.g. U waits until T commits or aborts

if T aborts then U must also abort

For recoverability:

A commit is delayed until after the commitment of any other 

transaction whose state has been observed

What the potential problem?

cascading aborts



27

Cascading aborts

 Suppose that U delays committing until after T aborts.

– then, U must abort as well. 

– if any other transactions have seen the effects due to U, they too must 

be aborted. 

– the aborting of these latter transactions may cause still further 

transactions to be aborted. 

 Such situations are called cascading aborts.

•

To avoid cascading aborts
transactions are only allowed to read objects written by committed transactions.

to ensure this, any read operation must be delayed until other transactions that 
applied a write operation to the same object have committed or aborted.

Avoidance of cascading aborts is a stronger condition than recoverability

e.g. U waits to perform getBalance until T commits or aborts

For recoverability - delay commits



28

Premature writes - overwriting uncommitted values

Transaction T:

a.setBalance(105)

Transaction U:

a.setBalance(110)

$100

a.setBalance(105) $105

a.setBalance(110) $110

some database systems keep ‘before images’ and restore them 

after aborts.
–e.g. $100 is before image of T’s write, $105 is before image of U’s write

–if U aborts we get the correct balance of $105, 

–But if U commits and then T aborts, we get $100 instead of $110

•

interaction between write operations 

when a transaction aborts

serially equivalent 

executions of T and U

before T and U the 

balance of A was 

$100



29

Strict executions of transactions

 Curing premature writes:
– if a recovery scheme uses before images 

 write operations must be delayed until earlier transactions that updated the same 

objects have either committed or aborted

 Strict executions of transactions
– to avoid both ‘dirty reads’ and ‘premature writes’. 

 delay both read and write operations 

– executions of transactions are called strict if both read and write operations on 

an object are delayed until all transactions that previously wrote that object 

have either committed or aborted. 

– the strict execution of transactions enforces the desired property of isolation

 Tentative versions are used during progress of a transaction
– objects in tentative versions are stored in volatile memory

•


