0

Ordered Multicast

« What if ordering of messages is critical to system?
— basic algorithm does not make guarantees about order

 Ordered Multicast

— FIFO Ordering

« |f correct process issues multicast(g,m) and then
multicast(g,n), then every correct process that delivers n
will deliver m before n

— Causal Ordering

- |If multicast(g,m) —» multicast(g,n), where — is restricted to
group g messages, then every correct process that
delivers n will deliver m before n

— Total Ordering

» If correct process delivers m before n, then every correct
process that delivers n will deliver m before n

© Pearson Education 2005

gin

0

HD i e e e ik i e i e i i e i i e i i e i i i i i i i i i i i i HD

L

Total, FIFO, Causal Ordering
of Multicast Messages

» consistent ordering
of totally ordered
messages T, and T,
* FIFO-related
messages F, and F,
- causally related
messages C, and C,
- otherwise
arbitrary delivery
ordering of
messages.

gin

T']

F,]
Fz — 1"
|>_ _-‘—_____...--"‘""’

JTime

HD i e e ke i i e i e i i e i i e i i i e e i e i i i i i i i i i i i i HD
"

Ordering Relationships

FIFO Ordering is a partial
order

— messages of different
processes

Causal Ordering is a partial
order
— concurrent multicasts

Causal Ordering implies
FIFO Ordering

— multicasts of same process
always causally related

Total Ordering is
Independent of FIFO and
Causal Orderings

— can define hybrid FIFO-
Total and Causal-Total
Orderings

Ordered multicast can be
unreliable

— p delivers m and then n, g
delivers m but not n

— hybrids of ordered and
reliable protocols

— atomic multicast
- reliable and total

© Pearson Education 2005

gin

0

-

Bulletin Board Example

What kind of multicast delivery guarantees might be
useful?
— Reliable
« every user sees every message eventually
— FIFO
- same user’s messages ordered correctly
— Causal
- threads have correct ordering
— Total
- consistent numbering of messages
— What do real-life bulletin boards guarantee?
- nada, nothing, zilch
« postin order received - Why?

© Pearson Education 2005

gin

0

HD e ke ki h ah e ke o e i e e e e o e e i il e e s ke e ke) HD
k]

Bulletin Board Program

Bulletin Board

ltem From

23 A. Hops
24 B. Moss
25 C. Chops
26 A. Hops
27 D. Snobs

© Pearson Education 2005

0s.interesting
Subject

Mach
Microkernel
Re: Mach
RPC

Re: RPC

0

0

HD TN T T Y T YN Y Y YT Y Y Y YT T T Y Y T T T Y Y T Y T Y YT T YT YT Y T YT T YT Y T YT T YT Y T Y Y Y YT YTYwTYw HD
-

Implementing FIFO Ordering

* How can we achieve < Similar to algorithm

FIFO-ordered B except for using

multicast? basic B-multicast

— seguence numbers — use sequence

— Algorithm B for number piggy
reliable multicasting backed on messages
obeys FIFO ordering — hold back any

— Can we enforce message that is
FIFO on top of any future sequence
basic multicast? — overlapping groups?

— reliability?

© Pearson Education 2005

00

LJ

HD i e ks ks ks Rk e e i e ke kb e ek i i ik i i i] HD
.

Implementing Total Ordering

 How can we achieve -+ Possible

Total-ordered
multicast?

— totally ordered
seguence numbers

— delivery algorithm
same as FIFO
ordering

— group-specific
sequence numbers
Instead of process-
specific

Implementations

— use sequencer
process to assign
unique number that
IS piggy backed on
messages

— distributed
agreement on
sequence numbering

— overlapping groups?

uuuuuuuuuuuuuuuuuuuuuuu

gin

]

I

i e ke i i e i i e i e i i e ik b i e e i o e i o]

Total Ordering with Sequencer

1. Algorithm for group member p
On initialization: r g7 0;

To TO-multicast message m to group g
B-multicasf g \ {sequencer(g)}, <m, i>);

On B-deliver(<m, i>) with g = group(m)
Place <m, i> in hold-back queue;

On B-deliver(<“order”, i, $>) with g = group(m)
wait until <m, i> 1 hold-back queue and § = r, :
TO-deliver m; // (after deleting 1t from the hold-back queue)

F'g:S+l;

0

L]

J

.

Total Ordering with Sequencer

L 2. Algorithm for sequencer of g

On initialization: s . 0;

On B-deliver(<m, i>) with g = group(m)
B-multicast(g, <“order”, i, Sg>);

S, 1T 8, l;

Sequencer Issues?

HD e ki e ik e i e e i e e e i e i il e kb

© Pearson Education 2005

L]

0

HD i e e s ki i e i i i e i i e i i e i i i i i i i i i i i i HD
-

Causal Ordering using Vector
Timestamps

Algorithm for group member p; (i = 1,2..., N)

On initialization
gr oy . _ :
Vojl=0(= 1,2...,N);

To CO-multicast message m (o group g
VELiL = Ve + 1
B- muh‘:msr(g, < V m=>);

On B- delwer{fi Vg m>) from P with g = group(m)
place < Ve, m> n hUld—back queue;
wait until VL1 = ViLj1+ 1and VK]S VA (k# j);
CO-deliver m // after removing it from the hold-back queue
VEL) = VELT 1

gin

0

Consensus and related problems

consensus

Byzantine generals

Interactive consistency

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Consensus

How do a group of processes come to a decision?

Suppose a number of generals want to attack a target. They know that
they will only succeed if they all attack. If anybody backs out then it is
going to be a defeat.

The example becomes more complicated if one of the generals

becomes a traitor and starts to try and confuse the other generals. By
saying yes I'm going to attack to one and no I'm not to another.

How do we reach consensus when there are Byzantine failures? It
depends on if the communication is synchronous or asynchronous

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

System model

We have N processes P=(p;, Py, ---; Pn)
Communication is reliable
Processes may fail (arbitrary and crash)

Assume that signing does not happen (digital
signing makes it impossible for a faulty process
to make a false claim about the values that a
correct process has sent to it)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Problem definitions

Each process p; starts in the undecided state

And then proposes a single value v; from a set D
(i=1,2,...,N)

The processes communicate with each other through
exchanging values

Each process then sets the value of a decision variable d.
It enters the decided state and may no longer change d.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Consensus for three processes

d, :=proceed d,:=proceed

= < P,

v, =proceed V,=proceed

4

Consensus algorithm

vg=abort

>< P, (crashes)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Requirements

Agreement: correct processes can propose different values but A
eventually the decision value of all correct processes is the same. °

Integrity: correct processes ALL proposed the SAME value, then
any correct process in the decided state had chosen that value.

Agreement. The decision value of all correct
processes Is the same

Integrity: If the correct processes all proposed the
same value, then any correct process in the
decided state had chosen that value

Differences between Agreement and Integrity?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

If processes cannot fall

The consensus problem is easy to solve

Each process reliably multicast its proposed value
to the members of the group

Each process waits until it has collected all N
values (including its own)

It then evaluates the function majority(v,, Vv, ...,

Vy), Which returns the value that occurs most
often among its arguments, or the special value

not belong to D
All the three requirements are satisfied

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

If a process can crash or fall in arbitrary ways

If processes can crash then it is not clear whether
a run of the consensus algorithm can terminate
(asynchronous)

If processes can fall in arbitrary ways, then faulty
processes can in principle communicate random
values to the others

In this case, correct processes must compare
what they have received with what other
processes claim to have received

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Byzantine generals problem

3 or more generals are to agree to attack or to retreat
One, the commander, issues the order
The others are to decide to attack or retreat

But one or more of the generals may be “treacherous”
(faulty)

If the commander is treacherous, he proposes attacking
to one general and retreating to another

If a normal general is treacherous, he tells one of his
peers that the commander told him to attack and
another that they are to retreat

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

The three requirements

Termination: Eventually each correct process sets
Its decision variable

Agreement. The decision value of all correct
processes Is the same.

Integrity: If the commander is correct, then all
correct processes decide on the commander’s
value

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Difference from the general consensus?

The difference here Is that Iin the byzantine
general problem a distinguished process
supplies a value that the others are to agree

upon, instead of each of them proposing a
value.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Interactive consistency

Another variant of consensus, in which every
process proposes a single value

The goal Is for the correct processes to agree on a
vector of values (decision vector), one for each
process

For example, the goal could be for each of a set of
processes to obtain the same information about
their respective states

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

3 requirements

Termination: Eventually each correct process sets
Its decision variable

Agreement. The decision vector of all correct
processes Is the same.

Integrity: If p; is correct, then all correct processes
decide on v; as the ith component of their vector

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Consensus in a synchronous system

Use a basic multicast protocol

Assume that up to f of the N processes exhibit
crash failures (not arbitrary failures)

To reach consensus, each correct process collects
proposed values from the other processes

The algorithm proceeds in f+1 rounds, in each of
which the correct processes B-multicast the values
between themselves

The algorithm guarantees that at the end of the
rounds all the correct processes that have
survived are in a position to agree

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Algorithm

Algorithm for process p; € g; algorithm proceeds in f + 1 rounds

On initialilzation 0
Values; .= {v.}; Values; = {};

Inroundr(l<r<f+l) »
B-multicast(g, Values} — Values); // Send only values that have not been sent

Valuesr - = Values; ;
while (m round r)
{

On B- delzver(V) from some p,

Valueswr = Values u V

;

After (f + 1) rounds
Assign d; = minimum(Values

1
f+)

2

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

The three properties

Termination Is obvious because the system is
synchronous

Each process arrives at the same set of values at
the end of the final round

Thus, agreement and integrity will follow because
the processes apply the minimum function to this
set

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

From NVMW 2018

Storage diversification

O
15|23
DR/".M E Qcé
S|&
NVM (soon) £ | S
=l
SSD 10 us 0.25 = %
HDD 10 ms 0.02 21

Large erasure blocks need to be sequentially written
Random writes: 5~6x slowdown due to GC [FAST’15]

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

From NVMW 2018

Problems in today’s file systems

» Kernel mediates every operation
NVM is so fast that kernel is the bottleneck

 Tied to a single type of device
For low-cost capacity with high performance,
must leverage multiple device types

NVM (soon), SSD, HDD

» Aggressive caching in DRAM,
write to device only when you must (fsync)

Applications struggle for crash consistency

© Pearson Education 2005

From NVMW 2018

trata:
A Cross Media File System

Performance: espe 1ally

Low-cost capacity: leverage N\VM

Simplicity:

From NVMW 2018

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

From NVMW 2018

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

From NVMW 2018

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

From NVMW 2018

Undo Logging

1. Compute: Compute the new value (V = A - 50)

og: Write old value of data to log spacé |
ersistent memory (Log [A, 100])

3. Modify: Modi y data in-place (A = V)

[Logging is essentieilly ad

ata Mmovement task.

UICT d U UocC : 1) UULCU
© Pearson Education 2005

