About the midterm exam
Basic concepts
Questions have similar styles as our Assignments

Keep your answer concisely and list the point one
by one

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Common Issues in Proposals

Some proposals have low research merits (e.g., only
comparing some existing algorithms)

Inappropriately capitalizing the first letter of some words
such as “Distributed Computing” even in the middle of a
sentence.

Obvious grammar errors and long sentences (e.g., see next
slide)

Copy a figure from other papers or figures are very large

Forget to embed references into the body of text or put
references in a wrong position.

Poor formatting (e.g., inconsistent in capitalization, zigzag)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Example of A Very Long Sentence

Problem with the above system is its static and
such as occlusion and shadow overlapping exist
In this algorithm these problems can be handled
by applying efficient shadow removal and
occlusion removal techniques however they are
not efficient due to several shortcomings in the
algorithm itself that is every shadow of the venhicle
IS treated as an object which leads to wrong
computation of the traffic density.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Zigzag

The remaming part of the proposzal proceeds as
follows: Section 2 describes the motivation behind the

project, history of the problem and presents related

work. The following section gives a brief description of
what the project aims to achieve. Section 4 presents the

details of the projects as to what will be implemented,

how 1t will be implemented and during what time
frame. It also affirms possible challenges and 1s50es

that may appear.

Examples of Poor Formatting

DYNAMIC TRAFFIC SWITCHING USING
PROXIMITY SENSORS

Ultra-Large-Scale Systems: Geographical
Analytics and its growing superiority in the
modern world

Forget to indent the first line of a paragraph

It should be “Xie et al. [5]" instead of “Tao Xie et
al. [9]

Many short paragraphs (see next slide)

Many Short Paragraphs

Like most replication algorithms, the DAR algorithm seeks to balance the
server load, and it is successful under simplified and constrained conditions [1]. Server
load is characterized by the number of movie requests that cannot be fulfilled by peers,
and must be fulfilled by a centralized server.

When a peer watches a movie and has to decide to replicate the movie or not
it has to talk to each peer streaming the movie at that point in time and then calculate the
average streaming rate of the movie.

The subject of interest in this project is how peers exchange information
concerning movie download speeds with other peers. One existing solution is to store
global information in a central server or servers. However, servers become over loaded
when large numbers of peers exchange information via a centralized server [2].

The other option is searching the peer to peer network to retrieve the
information. Many original open source p2p networks used simple search algorithms. For
example Gnuttela protocol implemented a modified Breadth-First Search (BFS)
mechanism[5]. More recent P2P networks implement distributed hash tables as an
overlay network to more efficiently route information among peers [2].

Regardless of the methodology employed for communication among peers in
a network, reducing the number of peers to be queried is the problem we address is this
project.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Research Project

Your idea Is critical
The new the better

Your efforts In terms of implementation and
experiment results are very important.

Results: The more the better
Your writing performance will also be evaluated

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Final grading policy

Grading Policy:
m % % &2 T M M é & X ¥ 0 0
| A A | B+|B| B |C+|C|C|D+| DD |F]

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Election Requirements

* Unique process must be selected even if
multiple runs initiated concurrently

* Pick process with largest identifier

— Identifiers under our control
— unique, total ordering

* elected, - track elected process

E2
(liveness)

electedg is either 1 or non-crashed process P
with the largest identifier

every process p either picks electedk #1 or
crashes

© Pearson Education 2005

FT T T YT YT YT YT T T Y Y T r Y Y T YT r Y Y T YT r Y Y T T Y T T T T Y T T Y YT Y Y T YT Y YT rTYTYTYl

N

|

Ring-Based Election
Chang and Roberts

Notes:
« The election was 3 T~
started by process / u
17. . \
. The highest /
process identifier

encountered so far ©®
s 24.
« Participant
processes are =
shown AN 28

0

T T YT T T T T YT T T T Y T T T T Y T T T T YT T T T T T T T T T Y T T T T Y T T T T Y T T T T Y T YT YTy

|

|

Ring Election Algorithm

Initialize
participate .= FALSE,;
coordinate := FALSE;
elected = 1;

On calling election
participate .= TRUE;

Send election message <p; > to
next process

Elected message [p;] at p,
participate := FALSE;
elected = p; ;
if (not coordinate)

Send [p;] to next process;
end if

Election message <p; > at p,
If(p; > py) then
Send <p; > to next process;
else if (p; = p,) then
coordinator := TRUE;
participate := FALSE;
elected = p, ;
Send [p,] to next process;
else if (not participate)
participate .= TRUE;
Send <p, > to next process;
end if

rson kEducation 20U

0

0

B

|

T T T T T T YT T T T T YT T T T T YT T T T T YT T T T YT T T T T YT Y T T T T T T T T T T T T Y Y T Y T Y Y TYTY

B

|

E1 Satisfied
Proof by contradiction

« Suppose two processes p and q both
set themselves as coordinators

— Since only the winner of comparison is
forwarded and identifiers are unique:
 p is the largest of all identifiers
g Is the largest of all identifiers

— a contradiction
» process crashes during run?
— Ring broken, none elected

© Pearson E ducation 2005

0

O

T T YT T T T T YT T T T T T YT T T T T Y T T T T Y T YT T T YT T T T T T T T T T T YT T T T T T YT YTy T

B

|

E2 is Satisfied
Direct Proof

* |f there are no failures
— all messages traverse the ring

— comparison logic and the role of participate ensure
that
+ largest identifier circulates
» only one run is maintained

» therefore, process with largest identifier sets itself as
the coordinator and sends elected message

 therefore, all processes set elected to be largest
identifier

* |f there are failures
— none elected

© Pearson Education 2005

0

0

T T YT T T T YT YT YT T T T T T Y T T T T T T T T YT T T T T T T T T T T T T T T T T YT Y rTrYTYTY

* Characteristics
— Bandwidth Ring Election
» the number of — Bandwidth

B

|

Characterizing Ring Election

Algorithm

 Characteristics of

messages sent to

reach agreement — Turnaround Time

— Turnaround Time * Failure Handling
* number of serialized — election essentially
transmitted from _
initiation to — cletection and
termination of a reconfiguration
single run needed to handle
failure

LJ

0

Ring-based algorithm

Performance:
one election, best case, when?
? election messages N
? elected messages N
turnaround: ? messages 2N

one election, worst case, when?

Drawback?

*2N - 1 election messages
*N elected messages
turnaround: 3N - 1 messages

can't tolerate failures,
not very practical

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Bully Algorithm
Garcia and Molina

Goal is handling
process failures

Assumptions

— synchronous system

— no message failures

— processes know set
of processes and
identifiers

Timeout used to

iIdentify process

failures

0

0

e e ik o ke i e ke ik ek i ke ko e ik e ks i i ik kB ah ok bk ki]

]

|

Bully Algorithm Basics

+ Reliable Fault
Detector

— timeout=2T, . .+ T

trans pr

* Types of Messages

— election message

» upon detection of
coordinator failure

— answer message
» acknowledgment

— coordinator message

« dnnounce new
ranrcdinatnr

0

 Basic ldea

— process with highest
id can elect itself

— processes with lower
ids ask higher
processes

* If answer does not
come, elect self
* If answer comes

— await coordinator
message

— restart election if Dl
necessary

E .
Bully Algorithm
Initialize Election message <p, > at p,
participate = FALSE; Send answer message to p;
elected = L; if (not participate) then
call ?Iectian; _ call election;
On calling election end if

T T T T T T YT YT T T Y YT YT T Y T T YT T YT Y T YT T YT Y T YT T Y T T T T Y T T T T Y T T YT Y rTY T YTyl

i

|

participate .= TRUE,;

Send election message <p; > to Coordinator message [p;] at

each process with higher id P
if (no answer within time T) participate == FALSE;
elected = p;; elected ;= p; ;

Send coordinator message to each
process with lower id;

else if (no coordinator within
time T7)

begin election;
end if

© Pearson bEducation ZUU>

0

0

election

The Bully Algorithm

“ election ‘\\ C
Stage 1 p. answer . . l
answer
election
. .‘ election ".‘ election ™ C
. Stage 2
The election o1 p "0 p
of coordinator 2 3
1?2'] afterfthe _—
Aeolp s @ @ XX
and then p, o -
L 2 Ps p4
Eventually.....
vemHaly coordinator
f,..--"—_—"-\ C
et @ © X X
pl p2 p3 p4

© Pearson Education 2005

T T T YT YT YT YT T T Y YT T T Y YT T T T YT Y T T T YT Y T T T YT T T T T Y T T T T Y T T T T Y T YTYrYTTYl

B

|

Bully Algorithm
Safety Property E1

* Assume no process
crashes

— consider any two (p
and q) processes

— let p be higher id
process

— channel failure is
Impossible

— g cannot be elected,
since p will answer

— highest id process
elected

What if processes crash or
timeout values fail?

— Process crash

» say coordinator p
crashes

+ q decides it is new
coordinator

* new process spawned to
replace p also elects
itself

* processes may receive [p]
and [q] in different orders

— timeout value fails

*+ new coordinator elected

+ old coordinator is still
alive

0

0

B

|

FTT T T T T YT T T T T T T T T T T Y T T T T T T T T T T T T T T T T T T YT T T T T YT T T YT T YT Y T Y T YTl

B

|

Bully Algorithm
Liveness Condition E2

 Messages do not fall

— all elected messages reach alive
destinations

— all answer and coordinator messages also
reach alive destinations

— timeouts will detect failed processes

— by earlier argument, highest id process that
s alive will elect itself as the coordinator

0

0

The bully algorithm

properties:

safety:
a lower-id process always yields to a higher-id process
However, during an election, if a failed process is replaced

the low-id processes might have two different coordinators: the
newly elected coordinator and the new process,

failure detection might be unreliable
liveness: all processes participate and know the
coordinator at the end

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

FTT T T T T YT T T T T YT Y T T T YT Y T T YT T T T T YT T T T T YT T T T T T T T T T YT T T T YT Y T Y T Y Y YTl

B

|

Multicast Communication

Multicast

— group
communication

— requires coordination
and agreement

— Issues

 delivery guarantees

« time and bandwidth
nheeds

« group membership
rules

earson Education 2005

0

T T T T T T Y T T T T YT T YT T T T T YT T T T T Y T T T T T YT T T T T T T T Y T T T T T T T T Y Y YT TY T

B

|

0

Multicast Communication

* Basics - Efficiency
— set of member — same message is to be

. delivered to all in group
Processes Is Known
— one copy per

— one multicast communication link over
operation to send to distribution tree
each member in — network hardware
group support where available
- allows improved « Delivery Guarantees
efficiency — multiple independent
- allow stronger sends offer no control
delivery guarantees — multicast model can offer

additional controls]

© Pearson Education 2005

FT T YT T YT YT T YT YT YT T T T Y T T Y T YT Y T YT T Y Y T YT T Y T T T T Y T T T T Y T T T T Y TrrTrYy

N

|

* Basics * Operations
— Set or processes — multicasting
— reliable channels * multicast(g,m)
sends the message
— processes can crash m to all members of
— process may belong group g Why not
to more than one — delivering “receiving”?
group » deliver(m) delivers
message to calling
process
— message m identifies
sender(m) and

~ group(m)

0

]

Open and Closed Groups

.sed group
X

Open group
O O :
()
== |

e i e o ki bk ke ke ok ok ke ik ok kb ki ko ks ke kb ok ko ko ke b o Bk b bk ki]

B

|

0

Basic Multicast
* Basic Multicast * Implementation
— multicast primitive — use a reliable one-to-
with guarantee that one send as the
correct process will underlying
eventually deliver the mechanism
message « B-multicast(m)
— unless multicaster — send(p,m) for each
crashes >IN grotip g
. * Onreceive(m) atp
— operations — B-deliver(m) at p
- B-multicast — problem
» B-deliver

» ack-implosion I

© Pearson Education 200>

Reliable Multicast

Reliable Multicast Operations
+ R-multicast
» R-deliver
Reliable Multicast Properties
Integrity

- A correct process p delivers a message m at most once,
where p is in group(m) and m was multicast by sender(m)

Validity

- If a correct process multicasts a message m then it will
eventually deliver m

Agreement

- If a correct process delivers message m, then all other
correct processes in group(m) will eventually deliver m

© Pearson Education 2005

0

0

FTT T T T YT YT T T T Y YT T Y Y YT T T Y Y T T T Y T T Y Y Y Y T YT T Y T T YT YT Y T T T T Y T T Y rTYY YTl

B

|

]
Reliable Multicast Algorithm A _

On initialization
Received = {};

For process p to R-multicast message m to group g
B-multicast(g, m); // p € g i1s included as a destination

On B-deliver(m) at process g with g = group(m)
if (m ¢ Received)

then
Received = Received \w {m};
if (q # p) then B-multicast(g, m), end if
R-deliver m;

end if

0

© Pearson Education 200>

T T YT T T T T T T T T Y T T T T Y T T T T Y T T T T YT Y T T T Y T T T T Y T T T T Y T T T T Y T YT rTrTYTY

|

|

r

Reliable Multicast Algorithm A

Integrity and Validity

* Integrity

— B-multicast channel
reliability

— therefore, there is a
B-deliver(m)

— check for receipt of

m in the algorithm

* R-deliver executed
on first receipt of m

 additional copies of
m are ignored

« Validity

— B-multicast channel
reliability
— therefore, there is a
B-deliver(m) at p
— since, Received is
initially empty
« p add m to Received
* p R-delivers m

UUUUUUUUUUUU

L]

B

|

T T T T T YT T T T T YT T T T T Y T T T YT Y T T T YT T T YT T YT Y T T T YT Y T T T Y T T T Y Y YT T T Y Y YTl

B

|

Each message 1s sent |g| times to each process.

Reliable Multicast Algorithm A
Agreement

« B-deliver at process p implies R-deliver
at process p

— Obvious from algorithm

« Suppose correct processes p and g
differ on R-delivery

— without loss of generality, p does R-deliver
and g does not
- only happen if no B-deliver at g

* impossible due to B-multicast channel
reliability Efficiency?

]

s e i i ok ke ki h h h o ke ki ke ke ik ke ik i e ok ok kb ki sk ok i ki]

B

|

Reliable Multicast over
|P Multicast

* |P Multicast
Properties

— messages may be
lost

— no acknowledgments

* How can we add
reliability on top of
IP multicast?

— acknowledgments

— efficiency of UDP
lost?

* How can we
maintain the

efficiency of UDP?

— piggy back
acknowledgments

* no separate acks
— negative
acknowledgments

» indicate that
expected message
did not arrive

0

0

HD e ke k. ik ke e e e ke e i ik e i i e e e e i e e i i i i e o e e e ki ki] HD
-

Reliable Multicast Algorithm B

Initialize
S.g :=0; // group sequence #
Rlg.p] :=-1; /| message seq #
F.g .= self; // from process
R-multicast(g,m)
piggy back S.g on m;
piggy back <F.g, R[g,F.g] > on
m;
IP-multicast(g,m)]|
S.g=S.g+1,
Holdback Queue Handling?

Negative acknowledgment
handling?

On IP-receive(m) at q

Sm = group-seq(m);

Rm = msg-seq(m);

Fm = from(m);

if(Sm < R[g.Fm]+ 1) then
discard m;

else if (Sm = R[g,Fm] + 1) then
R-deliver m;
R[g.Fm] := R[g,Fm] + 1;
F.g = Fm;

else if (Sm > R[g,Fm] + 1 or
Rm > R[g,Fm]) then
add m to holdback queue;
send negative acks to ...;

end if

L)

0

-
- 14

Holdback Queue for Arriving
I\/Iulticast Messages

Message
processing

I‘deliver

Hold-back
Delivery queue

queue
_
\ _
When delivery

guarantees arg

_ met
Incoming

messages

L]

© Pearson Education 2005

HD e i ki s ik e e ke i e i e i e i i il i e i e i e e i k) HD

Reliable Multicast Algorithm B

Integrity and Validity

* |ntegrity
— duplicate detection

« duplicates are
detected and
discarded

— |[P-multicast property

- corrupt messages
are discarded

* rerequested as
necessary

« Validity
— |P-multicast may
drop messages

— correct process and
reliable channels
imply

* missing messages
detected

* hegative
acknowledgment
sent

arson Education 2005

]

0

HD ek k. i i ik e i i ke i e i e il e i i il i i e e e i e e i e i i i) HD

L&

Reliable Multicast Algorithm B
Agreement

* Suppose correct processes p and g
disagree on a message m

— p delivered m but g did not

— g will send a negative acknowledgment for
m

— Can some process redeliver m?

- only if a copy of message m exists at some
process

- must hold delivered messages indefinitely
for agreement to hold

© Pearson Education 2005

L]

]

HD i ke ki e ke e e e e i e i i i ik ik HD
b

Reliable Multicast
Uniform Properties

» Uniform Property

— a uniform property holds

independent of the

correctness of Processes

— we can define uniform
versions of any desired
property

« Uniform Agreement

— If any process deliver
message m, then all
correct processes in
group(m) will eventually
deliver m

* Consider algorithm
A for Reliable
Multicast

C arson Education 2005

every process B-
multicasts message
prior to R-delivery

therefore, algorithm
A satisfies the
Uniform Agreement

property

0

n

