
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Attention please!

March 12 class is cancelled.

Assignment#2 will be due in class on March 19.

The text of Assignment#2 is also online.

The project intermediate report will be due on April 2

in class.

Midterm Exam is re-scheduled to April 18 in class and

it will cover all chapters except Chapter 17.

Please read the new Class Schedule online.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Global state of a distributed system

Local state of each process

The messages that are currently in transit (sent

but not received)

Purpose: Finding out whether a particular property

is true of a distributed system as it executes.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Who cares, globally speaking?

When it is known that local computations have

stopped and that there are no more messages in

transit, the system has obviously entered a state

in which no more progress can be made.

deadlocked?

correctly terminated?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

They all need a global state!

p2p1

message

garbage object

object

reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1

activate

passive passivec. Termination

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

It’s much harder…

To observe the succession of states of an

individual process is relatively easy

To ascertain a global state of a distributed system,

which includes a collection of processes, is much

harder

Why? No global time

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

How to record the global state

Distributed snapshot

reflects a state in which the distributed system might

have been

reflects a consistent global state

If we have recorded that process P has received a msg

from another process Q, then we should also have

recorded that process Q had actually sent the msg

The reverse condition (Q has sent a msg that P has not

yet received) is allowed.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Important Terms (P612-614)

 History(pi)=hi

 The global history of a distributed system is the union of

the individual process histories

 A global state corresponds to initial prefixes of the

individual process histories

 A cut of the system’s execution is a subset of its global

history

 A cut is consistent if, for each event it contains, it also

contains all the events that happened-before that event

 A consistent global state is one that corresponds to a

consistent cut

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Cut!

A cut frontier represents the last event that has

been recorded for each of several processes.

All recorded msg receipts have a corresponding

recorded send event

An inconsistent cut would have a receipt of a

msg but no corresponding send event

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Cut examples

m1 m2

p1

p2
Physical

time

e1

0

Consistent cut

Inconsistent cut

e 1

1
e 1

2
e 1

3

e 2
0

e 2
1

e 2
2

<e1
0, e2

0> and <e1
2, e2

2>

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Consistent Global State

A consistent global state is one that corresponds to

a consistent cut.

The execution of a distributed system is a series of

transitions between global states of the system:

In each transition, precisely one event occurs at

some single process in the system.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Global State Predicates

Detecting a condition such as deadlock or
termination amounts to evaluating a global state
predicate.

A global state predicate is a function that maps
from the set of global states of processes in the
system to {True, False}.

Once the system enters a state in which the
predicate is True, it remains True in all future
states reachable from that state.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

The Snapshot Algorithm

The goal of this algorithm is to record a set of

process and channel states (a ‘snapshot’) for a

set of processes pi such that, even though the

combination of recorded states may never have

occurred at the same time, the recorded global

state is consistent.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Assumptions for Chandy & Lamport Algorithm

Neither channels nor processes fail

Channels are unidirectional and provide FIFO-

ordered message delivery

The graph of processes and channels is strongly

connected

Any process may initiate a global snapshot at any

time

The processes may continue their execution and

send and receive normal messages while the

snapshot takes place

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

The algorithm (Chandy & Lamport)

Assume the distributed system can be

represented as a collection of processes

connected to each other through uni-directional

point-to-point communication channels.

Any process may initiate the algorithm.

P records its own local state

It sends a marker along each of its outgoing channels,

indicating that the receiver should participate in

recording the global state

...

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Marker

 A marker is a special message, which is distinct

from any other messages that the processes

send and receive

 It has two roles:

1. As a prompt for the receiver to save its own

state, if it has not already done so

2. As a means of determining which messages to

include in the channel state

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Chandy & Lamport algorithm (continued)

When process Q receives the marker through an

incoming channel C, its action depends on

whether or not it has already saved its local state

If it has not

it first records its local state and also sends a marker

along its own outgoing channels

If it has

the marker on channel C is an indicator that Q should

record the state of the channel, namely, the sequence of

messages received by Q since the last time it recorded

its own local state and before it received the marker.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Chandy & Lamport algorithm (continued)

A process has finished its part of the algorithm
when it has received a marker along each of its
incoming channels and processed each one.

Its recorded local state as well as the state it
recorded for each incoming channel, can be
collected and sent to the process that initiated the
snapshot

The initiator can subsequently analyze the current
state

Meanwhile, the distributed system as a whole can
continue to run normally

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 11.10

Marker receiving rule for process pi

On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it

records its process state now;

records the state of c as the empty set;

turns on recording of messages arriving over other incoming channels;

else

pi records the state of c as the set of messages it has received over c

since it saved its state.

end if

Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c:

pi sends one marker message over c

(before it sends any other message over c).

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Two rules

The marker sending rule obligates processes to

send a marker after they have recorded their

state, but before they send any other messages

The marker receiving rule obligates a process

that has not recorded its state to do so.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Photo album

Because any process can initiate the algorithm, the

construction of several snapshots may be in

progress at the same time

A marker is tagged with the identifier and possibly

also a version number of the process that initiated

the snapshot

Only after a process has received that marker

through each of its incoming channels, can it finish

its part in the construction of the marker’s

associated snapshot

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Initializer

Any process may begin the algorithm at any time.

It acts as if it has received a marker (over a non-

existent channel) and follows the marker receiving

rule.

Thus, it records its state and begins to record

messages arriving over all its incoming channels.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Example (Initial State)

p1 p2
c2

c1

account widgets

$1000 (none)

account widgets

$50 2000

Initial state: Process P2 has already received an order of five widgets,

which it will shortly dispatch to P1.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Example (The execution of the processes)

p1 p2
(empty)<$1000, 0> <$50, 2000>

(empty)

c2

c1

1. Global state S 0

2. Global state S 1

3. Global state S 2

4. Global state S 3

p1 p2
(Order 10, $100), M<$900, 0> <$50, 2000>

(empty)

c2

c1

p1 p2
(Order 10, $100), M<$900, 0> <$50, 1995>

(five widgets)

c2

c1

p1 p2
(Order 10, $100)<$900, 5> <$50, 1995>

(empty)

c2

c1

(M = marker message)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Explanation to Last Slide

1. P1 records its state in S0, when P1’s state is <$1000,0>.
Following the marker sending rule, P1 then emits a marker
message M over its outgoing channel C2 before it sends the next
order message (Order 10, $100) over C2. The system enters
actual global state S1;

2. Before P2 receives the marker, it emits an application message
(five widgets) over C1 in response to P’s previous order, yielding a
new actual global state S2.

3. Now P1 receives P2’s message (five widgets), and P2 receives
the marker. Following the marker receiving rule, P2 records its
state as <$50, 1995> and that of C2 as the empty sequence.
Following the marker sending rule, it sends a marker message
over C1.

4. When P1 receives P2’s marker message, it records the state of
C1 as the single message (five widgets) that it received after it first
recorded its state. The final actual global state is S3.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Within a finite time!

We assume that a process that has received a
marker message records its state within a finite
time and sends marker messages over each
outgoing channel within a finite time.

If there is a path from Pi to Pj, Pj will record its
state a finite time after Pi recorded its state.

We assume that the graph of processes and
channels are strongly connected.

So, all processes will have recorded their states
and the states of incoming channels in a finite
time after some process initially records its state.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Termination Detection of the Snapshot

If a process Q receives the marker requesting a

snapshot for the first time,

considers the process that sent that marker as its

predecessor

When Q completes its part of the snapshot, it

sends its predecessor a DONE msg.

By recursion, when the initiator of the distributed

snapshot has received a DONE msg from all of

its successors, it knows the snapshot has been

completely taken

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

What if msgs still in transit?

A snapshot may show a global state in which msgs
are still in transit

Suppose a process records that it had rec’d msgs
along one of its incoming channels
between the point where it had recorded its local state

and the point where it received the marker through that
channel

Cannot conclude the distributed computation is
completed

Termination requires a snapshot in which all
channels are empty

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Modified algorithm

When a process Q finishes its part of a

snapshot, it either returns DONE or CONTINUE

to its predecessor

A DONE msg is returned only when

All of Q’s successors have returned a DONE msg

Q has not received any msg between the point it

recorded its own local state and the point it had

received the marker along each of its incoming

channels

In all other cases, Q sends a CONTINUE msg to

its predecessor

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Modified algorithm (continued)

The original initiator of the snapshot will either

receive at least one CONTINUE or only DONE

msgs from its successors

When only DONE messages are received, it is

known that no regular msgs are in transit

Conclusion? The computation has terminated.

If a CONTINUE appears, P initiates another

snapshot and continues to do so until only DONE

msgs are returned.

(There are lots of other algorithms, too.)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Assignment#2 (chapter 14)

14.1

14.2

14.4

14.13

