
Slides for Chapter 14:

Time and Global State

From Coulouris, Dollimore and Kindberg

Distributed Systems:

Concepts and Design

Edition 5, © Pearson Education 2011

Learning Objectives

To understand the notions of physical and logical

time and global states

To understand the key features of Cristian's

synchronization algorithm, the Berkeley algorithm.

To understand the utility of logical clocks (Lamport

and vector) and the rules for updating them and their

limitations

How processes can synchronize

Multiple processes must be able to cooperate in

granting each other temporary exclusive access

to a resource

Also, multiple processes may need to agree on

the ordering of events, such as whether

message m1 from process P was sent before or

after message m2 from process Q.

Centralized system

Time is unambiguous

If a process wants to know the time, it makes a

system call and finds out

If process A asks for the time and gets it and

then process B asks for the time and gets it, the

time that B was told will be later than the time

that A was told.

Physical Clocks

Physical computer clocks are not clocks; they
are timers
Quartz crystal that oscillates at a well-defined

frequency that depends on physical properties

Two registers: counter and a holding register

Each oscillation decrements the counter by one

When counter reaches zero, generates an interrupt
and the counter is reloaded from the holding register

Each interrupt is called a clock tick

Interrupt service procedure adds 1 to time
stored in memory so the software clock is kept
up to date

The one and the many

What if the clock is “off” by a little?

All processes on single machine use the same clock

so they will still be internally consistent

What matters is relative time

Impossible to guarantee that crystals in different

computers run at exactly the same frequency

Gradually software clocks get out of synch -- skew

A program that expects time to be independent of the

machine on which it is run ... fails

Skew between computer clocks in a distributed system

Network

NIST and WWV

NIST: National Institute of Standards and

Technology

WWV is the call sign of NIST's shortwave radio

station located in Fort Collins, Colorado

WWV's main function is the continuous

dissemination of official U.S. Government time

signals

Hey buddy, can you spare me a second?

To provide UTC (Universal Coordinated Time) to

those who need precise time, NIST operates a

shortwave radio station WWV from Fort Collins,

CO

WWV broadcasts a short pulse at the start of each

second

There are stations in other countries plus satellites

Using either shortwave or satellite services

requires an accurate knowledge of the relative

position of the sender and receiver.

To WWV or not to WWV

If one computer has a WWV receiver, the goal is

keeping all the others synchronized to it.

If no machines have WWV receivers, each

machine keeps track of its own time

Goal -- keep all machines together as well as

possible

There are many algorithms

Underlying model for synchronization models

Each machine has a timer that interrupts H times

a second

Interrupt handler adds 1 to a software clock that keeps

track of the number of ticks since some agreed-upon

time in the past

Call the value of the clock C

Notationally, when UTC time is t, the value of the

clock on machine p is Cp(t)

In a perfect world, Cp (t) = t for all p and all t

Back to reality

 Theoretically, a timer with H=60 should generate

216,000 ticks per hour

 Relative error is about 10^-5 meaning a particular

machine gets a value in the range 215,998 to 216,002

 There is a constant called the maximum drift rate and a

timer will work with “perfect” + maximum drift rate.

 If two clocks are drifting in the opposite direction at a

time delta-t after they were synchronized

may be as much as twice the max drift rate apart

To differ by no more than delta, clocks must be resynchronized

every (delta/2*max-drift-rate) seconds

Cristian’s algorithm (1)

Well suited to one machine with a WWV

receiver and a goal to have all other machines

stay synchronized with it.

Call the one with the WWV receiver the time

server

Periodically, each machine sends a message to

the time server asking for the current time

Machine responds with CUTC as fast as it can

Clock synchronization using a time server

mr

m t

p Time server,S

Cristian’s algorithm (2)

Tround : round-trip time taken to send the request mr

and receive the reply mt

Tround is in the order of 1-10 milliseconds on a LAN

A clock with a drift rate of 10-6 seconds/second is

sufficient

A simple estimate of the time to which p should set

its clock is t + Tround /2, assuming that the elapsed

time is split equally before and after S placed t in mt

What is the problem?

Big Trouble

Major problem

The single time server becomes bottleneck (multiple

time servers can be used)

A faulty time server can reply an incorrect time

If sender’s clock was fast, CUTC will be smaller than

the sender’s current value of C

Change must be introduced gradually
If timer generates 100 interrupts/second, each interrupt adds 10 ms

to the time

To slow down, ISR adds only 9 ms until correct

To speed up, add 11 ms at each interrupt

Little Trouble

Minor problem

Takes a nonzero amount of time for the time server’s

reply to get back to the sender

Delay may be large and vary with network load

To improve accuracy, measure several and

average

If no WWV Receiver

Berkeley UNIX algorithm

The time server (actually time daemon) is active,
not passive

It polls every machine and asks what time it is

Based on answers, it computes an average time
and tells all machines to adjust their clocks to the
new time

The time daemon’s time is set manually by the
operator periodically

Centralized algorithm though the time daemon
does not have a WWV receiver

Berkeley Algorithm

It eliminates readings from faulty clocks

The master takes a fault-tolerant average, a subset

of clocks is chosen that do not differ from one

another by more than a specified amount

If the master fails, another can be elected to take

over

Decentralized synchronization

Cristian and Berkeley UNIX are centralized
algorithms with the usual downside.

They are intended primarily for use within intranets

There are several decentralized algorithms, for
example:
Divide time into fixed length resynchronization intervals

At the beginning of each interval, every machine
broadcasts its current time

Each starts a local timer to collect all broadcasts arriving
during a certain interval

Algorithm to compute a new time based on some/all

Internet Synchronization

New hardware and software technology in the past

few years make it possible to keep millions of

clocks synchronized to within a few ms of UTC

New algorithms using these synchronized clocks

are beginning to appear

Synchronized clocks can be used

to achieve cache consistency

to use time-out tickets in distributed system

authentication

to handle commitment in atomic transactions

Logical Clocks

For many purposes, it is sufficient that machines

agree on the same time even if it is not the “right”

time

Internal consistency of the clocks matters

Clock synchronization is possible but does not have

to be absolute

If 2 processes do not interact, their clocks need not be

synchronized; the lack of synch would not be seen

What is important is that all processes agree on the order

in which events occur

Lamport timestamps

a happens-before b means that all processes
agree that first event a occurs, then afterward,
event b occurs

We write a happens-before b as a --> b

If a occurs before b in the same process, we say a
--> b is true

If the event a sends a message and event b
receives that message in another process, a --> b
is also true because a message cannot be
received until after it is sent.

happens-before is transitive

Events occurring at three processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

We can say that a -> f

What we can say?

We cannot say …

If x and y happen in different processes that do not

exchange messages, then

we cannot say x --> y

we cannot say y --> x

nothing can be said about when the events happened or

which event happened first

we call these events concurrent: a and e occur at different

processes and there’s no chain of messages intervening

between them. We say that a || e

Invent time

Need a way of measuring time so that for every
event we can assign a time C(a) on which all
processes agree.
Such that, if a --> b, then C(a) < C(b)

If a and b are two events in the same process and a
happens before b, then C(a) < C(b)

If a is the sending of a msg by one process and b is the
receiving of that msg by another, then C(a) and C(b)
must be assigned so that everyone agrees on the
values of C(a) and C(b) with C(a) < C(b)

Corrections to C can only be made by addition, never
subtraction so that the clock time always goes forward

If msg leaves at time N, it arrives at >= N+1

 Each message carries the time according to its sender’s

clock

When it arrives, if the receiver’s clock shows a value prior

to the time the message was sent, the receiver fast

forwards its clock to be 1 more than the sending time

 Between every two events the clock must tick at least once

If a process sends or receives 2 messages in quick succession, it

must advance its clock by (at least) 1 tick in between

Sometimes: no 2 events ever occur at exactly the same time

Lamport Algorithm

LC1: Li is incremented before each event is

issued at process pi:

Li:=Li+1

LC2: (a) When Pi sends a message m, it

piggybacks on m the value t=Li.

(b) On receiving (m,t), a process pj

computes Lj:=max(Lj,t) and then applies LC1

before timestamping the event receive(m).

Lamport timestamps for the events

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Each of the processes has its logical clock initialized to 0.

e -> e’ => L(e) < L(e’), correct?

The converse is also correct? How about b and e?

L(b) > L(e) but b || e.

Totally-ordered Multicast

 Consider a bank with replicated data in San Francisco and

New York City.

 Customer in SF wants to add $100 to the account of $1000

Meanwhile, a bank employee in NY initiates an update by

which the customer’s account will be increased with 1%

interest.

 Due to communication delays, the instructions could arrive

at the replicated sites in different orders with differing final

answers

 Should have been performed at both sites in same order

Limitation of Lamport Timestamps

With Lamport timestamps, nothing can be said

about the relationship between a and b simply

by comparing their timestamps C(a) and C(b).

Just because C(a) < C(b), doesn’t mean a happened

before b (remember concurrent events)

Vector Clock

A vector clock for a system of N processes is an

array of N integers

Each process keeps its own vector clock Vi, which

it uses to timestamp local event

Processes piggyback vector timestamps on the

messages they send to one another

Vector timestamps for the events

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector clocks

Lamport clocks: L(e) < L(e') doesn't imply e -> e'

each process keeps its own vector clock Vi

piggyback timestamps on messages

updating vector clocks:

 VC1: Initially, Vi[j] := 0 for pi, j=1.. N (N processes)

 VC2: before pi timestamps an event, Vi[i] := Vi[i]+1

 VC3: pi piggybacks t = Vi on every message it sends

 VC4: when pi receives a timestamp t, it sets Vi[j] :=

max(Vi[j] , t[j]) for j=1..N (merge operation)

Vector clocks

At pi

Vi[i] is the number of events pi timestamped

Vi[j] (j≠i) is the number of events that have

occurred at pj that pi has potentially been

affected by

Could more events than Vi[j] have occurred at

pj? Yes or No

Vector timestamps (Fig 14.7)

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

V(a) < V(f), which tells us that a -> f

c||e can be seen from the fact that neither V(c)<=V(e) nor V(e)<=V(c)

Comparing vector timestamps

V = V’ iff

 V[j] = V’[j], j = 1 .. N

V <= V’ iff

 V[j] <= V’[j], j = 1 .. N

V < V' iff

V <= V' and V ≠ V‘
Different from less than in all elements

Vector timestamps

if e -> e', then V(e) < V(e')

if V(e) < V(e'), then e -> e'. (Exercise 14.13)

Figure 14.7
neither V(c) <= V(e) nor V(c) >= V(e)

c || e

Disadvantage compared to Lamport

timestamps?

Taking up an amount of storage and message payload that is

proportional to N

Assignment#2 (chapter 14)

14.1

14.2

14.4

14.13

