
Slides for Chapter 14:

Time and Global State

From Coulouris, Dollimore and Kindberg

Distributed Systems:

Concepts and Design

Edition 5, © Pearson Education 2011

Learning Objectives

To understand the notions of physical and logical

time and global states

To understand the key features of Cristian's

synchronization algorithm, the Berkeley algorithm.

To understand the utility of logical clocks (Lamport

and vector) and the rules for updating them and their

limitations

How processes can synchronize

Multiple processes must be able to cooperate in

granting each other temporary exclusive access

to a resource

Also, multiple processes may need to agree on

the ordering of events, such as whether

message m1 from process P was sent before or

after message m2 from process Q.

Centralized system

Time is unambiguous

If a process wants to know the time, it makes a

system call and finds out

If process A asks for the time and gets it and

then process B asks for the time and gets it, the

time that B was told will be later than the time

that A was told.

Physical Clocks

Physical computer clocks are not clocks; they
are timers
Quartz crystal that oscillates at a well-defined

frequency that depends on physical properties

Two registers: counter and a holding register

Each oscillation decrements the counter by one

When counter reaches zero, generates an interrupt
and the counter is reloaded from the holding register

Each interrupt is called a clock tick

Interrupt service procedure adds 1 to time
stored in memory so the software clock is kept
up to date

The one and the many

What if the clock is “off” by a little?

All processes on single machine use the same clock

so they will still be internally consistent

What matters is relative time

Impossible to guarantee that crystals in different

computers run at exactly the same frequency

Gradually software clocks get out of synch -- skew

A program that expects time to be independent of the

machine on which it is run ... fails

Skew between computer clocks in a distributed system

Network

NIST and WWV

NIST: National Institute of Standards and

Technology

WWV is the call sign of NIST's shortwave radio

station located in Fort Collins, Colorado

WWV's main function is the continuous

dissemination of official U.S. Government time

signals

Hey buddy, can you spare me a second?

To provide UTC (Universal Coordinated Time) to

those who need precise time, NIST operates a

shortwave radio station WWV from Fort Collins,

CO

WWV broadcasts a short pulse at the start of each

second

There are stations in other countries plus satellites

Using either shortwave or satellite services

requires an accurate knowledge of the relative

position of the sender and receiver.

To WWV or not to WWV

If one computer has a WWV receiver, the goal is

keeping all the others synchronized to it.

If no machines have WWV receivers, each

machine keeps track of its own time

Goal -- keep all machines together as well as

possible

There are many algorithms

Underlying model for synchronization models

Each machine has a timer that interrupts H times

a second

Interrupt handler adds 1 to a software clock that keeps

track of the number of ticks since some agreed-upon

time in the past

Call the value of the clock C

Notationally, when UTC time is t, the value of the

clock on machine p is Cp(t)

In a perfect world, Cp (t) = t for all p and all t

Back to reality

 Theoretically, a timer with H=60 should generate

216,000 ticks per hour

 Relative error is about 10^-5 meaning a particular

machine gets a value in the range 215,998 to 216,002

 There is a constant called the maximum drift rate and a

timer will work with “perfect” + maximum drift rate.

 If two clocks are drifting in the opposite direction at a

time delta-t after they were synchronized

may be as much as twice the max drift rate apart

To differ by no more than delta, clocks must be resynchronized

every (delta/2*max-drift-rate) seconds

Cristian’s algorithm (1)

Well suited to one machine with a WWV

receiver and a goal to have all other machines

stay synchronized with it.

Call the one with the WWV receiver the time

server

Periodically, each machine sends a message to

the time server asking for the current time

Machine responds with CUTC as fast as it can

Clock synchronization using a time server

mr

m t

p Time server,S

Cristian’s algorithm (2)

Tround : round-trip time taken to send the request mr

and receive the reply mt

Tround is in the order of 1-10 milliseconds on a LAN

A clock with a drift rate of 10-6 seconds/second is

sufficient

A simple estimate of the time to which p should set

its clock is t + Tround /2, assuming that the elapsed

time is split equally before and after S placed t in mt

What is the problem?

Big Trouble

Major problem

The single time server becomes bottleneck (multiple

time servers can be used)

A faulty time server can reply an incorrect time

If sender’s clock was fast, CUTC will be smaller than

the sender’s current value of C

Change must be introduced gradually
If timer generates 100 interrupts/second, each interrupt adds 10 ms

to the time

To slow down, ISR adds only 9 ms until correct

To speed up, add 11 ms at each interrupt

Little Trouble

Minor problem

Takes a nonzero amount of time for the time server’s

reply to get back to the sender

Delay may be large and vary with network load

To improve accuracy, measure several and

average

If no WWV Receiver

Berkeley UNIX algorithm

The time server (actually time daemon) is active,
not passive

It polls every machine and asks what time it is

Based on answers, it computes an average time
and tells all machines to adjust their clocks to the
new time

The time daemon’s time is set manually by the
operator periodically

Centralized algorithm though the time daemon
does not have a WWV receiver

Berkeley Algorithm

It eliminates readings from faulty clocks

The master takes a fault-tolerant average, a subset

of clocks is chosen that do not differ from one

another by more than a specified amount

If the master fails, another can be elected to take

over

Decentralized synchronization

Cristian and Berkeley UNIX are centralized
algorithms with the usual downside.

They are intended primarily for use within intranets

There are several decentralized algorithms, for
example:
Divide time into fixed length resynchronization intervals

At the beginning of each interval, every machine
broadcasts its current time

Each starts a local timer to collect all broadcasts arriving
during a certain interval

Algorithm to compute a new time based on some/all

Internet Synchronization

New hardware and software technology in the past

few years make it possible to keep millions of

clocks synchronized to within a few ms of UTC

New algorithms using these synchronized clocks

are beginning to appear

Synchronized clocks can be used

to achieve cache consistency

to use time-out tickets in distributed system

authentication

to handle commitment in atomic transactions

Logical Clocks

For many purposes, it is sufficient that machines

agree on the same time even if it is not the “right”

time

Internal consistency of the clocks matters

Clock synchronization is possible but does not have

to be absolute

If 2 processes do not interact, their clocks need not be

synchronized; the lack of synch would not be seen

What is important is that all processes agree on the order

in which events occur

Lamport timestamps

a happens-before b means that all processes
agree that first event a occurs, then afterward,
event b occurs

We write a happens-before b as a --> b

If a occurs before b in the same process, we say a
--> b is true

If the event a sends a message and event b
receives that message in another process, a --> b
is also true because a message cannot be
received until after it is sent.

happens-before is transitive

Events occurring at three processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

We can say that a -> f

What we can say?

We cannot say …

If x and y happen in different processes that do not

exchange messages, then

we cannot say x --> y

we cannot say y --> x

nothing can be said about when the events happened or

which event happened first

we call these events concurrent: a and e occur at different

processes and there’s no chain of messages intervening

between them. We say that a || e

Invent time

Need a way of measuring time so that for every
event we can assign a time C(a) on which all
processes agree.
Such that, if a --> b, then C(a) < C(b)

If a and b are two events in the same process and a
happens before b, then C(a) < C(b)

If a is the sending of a msg by one process and b is the
receiving of that msg by another, then C(a) and C(b)
must be assigned so that everyone agrees on the
values of C(a) and C(b) with C(a) < C(b)

Corrections to C can only be made by addition, never
subtraction so that the clock time always goes forward

If msg leaves at time N, it arrives at >= N+1

 Each message carries the time according to its sender’s

clock

When it arrives, if the receiver’s clock shows a value prior

to the time the message was sent, the receiver fast

forwards its clock to be 1 more than the sending time

 Between every two events the clock must tick at least once

If a process sends or receives 2 messages in quick succession, it

must advance its clock by (at least) 1 tick in between

Sometimes: no 2 events ever occur at exactly the same time

Lamport Algorithm

LC1: Li is incremented before each event is

issued at process pi:

Li:=Li+1

LC2: (a) When Pi sends a message m, it

piggybacks on m the value t=Li.

(b) On receiving (m,t), a process pj

computes Lj:=max(Lj,t) and then applies LC1

before timestamping the event receive(m).

Lamport timestamps for the events

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Each of the processes has its logical clock initialized to 0.

e -> e’ => L(e) < L(e’), correct?

The converse is also correct? How about b and e?

L(b) > L(e) but b || e.

Totally-ordered Multicast

 Consider a bank with replicated data in San Francisco and

New York City.

 Customer in SF wants to add $100 to the account of $1000

Meanwhile, a bank employee in NY initiates an update by

which the customer’s account will be increased with 1%

interest.

 Due to communication delays, the instructions could arrive

at the replicated sites in different orders with differing final

answers

 Should have been performed at both sites in same order

Limitation of Lamport Timestamps

With Lamport timestamps, nothing can be said

about the relationship between a and b simply

by comparing their timestamps C(a) and C(b).

Just because C(a) < C(b), doesn’t mean a happened

before b (remember concurrent events)

Vector Clock

A vector clock for a system of N processes is an

array of N integers

Each process keeps its own vector clock Vi, which

it uses to timestamp local event

Processes piggyback vector timestamps on the

messages they send to one another

Vector timestamps for the events

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector clocks

Lamport clocks: L(e) < L(e') doesn't imply e -> e'

each process keeps its own vector clock Vi

piggyback timestamps on messages

updating vector clocks:

 VC1: Initially, Vi[j] := 0 for pi, j=1.. N (N processes)

 VC2: before pi timestamps an event, Vi[i] := Vi[i]+1

 VC3: pi piggybacks t = Vi on every message it sends

 VC4: when pi receives a timestamp t, it sets Vi[j] :=

max(Vi[j] , t[j]) for j=1..N (merge operation)

Vector clocks

At pi

Vi[i] is the number of events pi timestamped

Vi[j] (j≠i) is the number of events that have

occurred at pj that pi has potentially been

affected by

Could more events than Vi[j] have occurred at

pj? Yes or No

Vector timestamps (Fig 14.7)

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

V(a) < V(f), which tells us that a -> f

c||e can be seen from the fact that neither V(c)<=V(e) nor V(e)<=V(c)

Comparing vector timestamps

V = V’ iff

 V[j] = V’[j], j = 1 .. N

V <= V’ iff

 V[j] <= V’[j], j = 1 .. N

V < V' iff

V <= V' and V ≠ V‘
Different from less than in all elements

Vector timestamps

if e -> e', then V(e) < V(e')

if V(e) < V(e'), then e -> e'. (Exercise 14.13)

Figure 14.7
neither V(c) <= V(e) nor V(c) >= V(e)

c || e

Disadvantage compared to Lamport

timestamps?

Taking up an amount of storage and message payload that is

proportional to N

Assignment#2 (chapter 14)

14.1

14.2

14.4

14.13

