# Slides for Chapter 14: Time and Global State 



## Learning Objectives

$\mathscr{H}$ To understand the notions of physical and logical time and global states
$\mathscr{H}$ To understand the key features of Cristian's synchronization algorithm, the Berkeley algorithm.
$\mathscr{H}$ To understand the utility of logical clocks (Lamport and vector) and the rules for updating them and their limitations

## How processes can synchronize

\& Multiple processes must be able to cooperate in granting each other temporary exclusive access to a resource
\&Also, multiple processes may need to agree on the ordering of events, such as whether message $m_{1}$ from process $P$ was sent before or after message $m_{2}$ from process $Q$.

## Centralized system

$\mathscr{H}$ Time is unambiguous
$\mathscr{H}$ If a process wants to know the time, it makes a system call and finds out
$\mathscr{H}$ If process $A$ asks for the time and gets it and then process $B$ asks for the time and gets it, the time that $B$ was told will be later than the time that A was told.

## Physical Clocks

\&Physical computer clocks are not clocks; they are timers
©Quartz crystal that oscillates at a well-defined frequency that depends on physical properties
$\triangle$ Two registers: counter and a holding register
$\triangle$ Each oscillation decrements the counter by one
$\triangle$ When counter reaches zero, generates an interrupt and the counter is reloaded from the holding register
©Each interrupt is called a clock tick
\& Interrupt service procedure adds 1 to time stored in memory so the software clock is kept up to date

## The one and the many

\&What if the clock is "off" by a little?
$\triangle$ All processes on single machine use the same clock so they will still be internally consistent
$\triangle$ What matters is relative time
$\mathscr{H}$ Impossible to guarantee that crystals in different computers run at exactly the same frequency
$\triangle$ Gradually software clocks get out of synch -- skew
$\triangle$ A program that expects time to be independent of the machine on which it is run ... fails

## Skew between computer clocks in a distributed system



## NIST and WWV

\&NIST: National Institute of Standards and Technology
$\mathscr{H W W V}$ is the call sign of NIST's shortwave radio station located in Fort Collins, Colorado
$\mathscr{H W V}$ 's main function is the continuous dissemination of official U.S. Government time signals

## Hey buddy, can you spare me a second?

\& To provide UTC (Universal Coordinated Time) to those who need precise time, NIST operates a shortwave radio station WWV from Fort Collins, CO
\&WWV broadcasts a short pulse at the start of each second
$\mathscr{H}$ There are stations in other countries plus satellites
\&Using either shortwave or satellite services requires an accurate knowledge of the relative position of the sender and receiver.

## To WWV or not to WWV

\& If one computer has a WWV receiver, the goal is keeping all the others synchronized to it.
If If no machines have WWV receivers, each machine keeps track of its own time
$\triangle$ Goal -- keep all machines together as well as possible
$\triangle$ There are many algorithms

## Underlying model for synchronization models

$\mathscr{H}$ Each machine has a timer that interrupts H times a second
©Interrupt handler adds 1 to a software clock that keeps track of the number of ticks since some agreed-upon time in the past
$\triangle$ Call the value of the clock C
\& Notationally, when UTC time is $t$, the value of the clock on machine $p$ is $C_{p}(t)$
\& In a perfect world, $\mathrm{C}_{\mathrm{p}}(\mathrm{t})=\mathrm{t}$ for all p and all t

## Back to reality

If Theoretically, a timer with $\mathrm{H}=60$ should generate 216,000 ticks per hour
\& Relative error is about $10^{\wedge}$-5 meaning a particular machine gets a value in the range 215,998 to 216,002
$\mathscr{H}^{\circ}$ There is a constant called the maximum drift rate and a timer will work with "perfect" $\pm$ maximum drift rate.
$\mathscr{H}$ If two clocks are drifting in the opposite direction at a time delta-t after they were synchronized
$\triangle$ may be as much as twice the max drift rate apart
© To differ by no more than delta, clocks must be resynchronized every (delta/2*max-drift-rate) seconds

## Cristian's algorithm (1)

\&Well suited to one machine with a WWV receiver and a goal to have all other machines stay synchronized with it.
$\mathscr{H}$ Call the one with the WWV receiver the time server
\&Periodically, each machine sends a message to the time server asking for the current time
\& Machine responds with $\mathrm{C}_{\text {utc }}$ as fast as it can

## Clock synchronization using a time server


$p$
Time server,S

## Cristian's algorithm (2)

$\mathscr{H} T_{\text {round }}$ : round-trip time taken to send the request $m_{r}$ and receive the reply $m_{t}$
$\mathscr{H} T_{\text {round }}$ is in the order of $1-10$ milliseconds on a LAN
$\mathscr{A}$ clock with a drift rate of $10^{-6}$ seconds/second is sufficient
$\mathscr{H}$ A simple estimate of the time to which $p$ should set its clock is $t+T_{\text {round }} / 2$, assuming that the elapsed time is split equally before and after $S$ placed $t$ in $m_{t}$
$\mathscr{H}$ What is the problem?

## Big Trouble

## \&Major problem

$\triangle$ The single time server becomes bottleneck (multiple time servers can be used)
$\triangle$ A faulty time server can reply an incorrect time
©lf sender's clock was fast, Cutc will be smaller than the sender's current value of $C$
$\triangle$ Change must be introduced gradually
$\boxtimes$ If timer generates 100 interrupts/second, each interrupt adds 10 ms to the time
$\boxtimes$ To slow down, ISR adds only 9 ms until correct
$\boxtimes$ To speed up, add 11 ms at each interrupt

## Little Trouble

\& Minor problem
$\triangle$ Takes a nonzero amount of time for the time server's reply to get back to the sender
$\triangle$ Delay may be large and vary with network load
$\mathscr{H}$ To improve accuracy, measure several and average

## If no WWV Receiver

\&Berkeley UNIX algorithm
\&The time server (actually time daemon) is active, not passive
$\mathscr{H}$ It polls every machine and asks what time it is
HBased on answers, it computes an average time and tells all machines to adjust their clocks to the new time
${ }^{\circ}$ The time daemon's time is set manually by the operator periodically
\&Centralized algorithm though the time daemon does not have a WWV receiver

## Berkeley Algorithm

H It eliminates readings from faulty clocks
$\mathscr{H}$ The master takes a fault-tolerant average, a subset of clocks is chosen that do not differ from one another by more than a specified amount
\& If the master fails, another can be elected to take over

## Decentralized synchronization

\& Cristian and Berkeley UNIX are centralized algorithms with the usual downside.
$\not \&$ They are intended primarily for use within intranets
$\mathscr{H}$ There are several decentralized algorithms, for example:
$\triangle$ Divide time into fixed length resynchronization intervals
$\triangle$ At the beginning of each interval, every machine broadcasts its current time
©Each starts a local timer to collect all broadcasts arriving during a certain interval
$\triangle$ Algorithm to compute a new time based on some/all

## Internet Synchronization

$\mathscr{H}$ New hardware and software technology in the past few years make it possible to keep millions of clocks synchronized to within a few ms of UTC
$\mathscr{H}$ New algorithms using these synchronized clocks are beginning to appear
$\nleftarrow$ Synchronized clocks can be used
$\triangle$ to achieve cache consistency
®to use time-out tickets in distributed system authentication
©to handle commitment in atomic transactions

## Logical Clocks

$\mathscr{H}$ For many purposes, it is sufficient that machines agree on the same time even if it is not the "right" time
\& Internal consistency of the clocks matters
$\mathscr{H}$ Clock synchronization is possible but does not have to be absolute
©lf 2 processes do not interact, their clocks need not be synchronized; the lack of synch would not be seen
$\triangle$ What is important is that all processes agree on the order in which events occur

## Lamport timestamps

Ha happens-before $b$ means that all processes agree that first event a occurs, then afterward, event $b$ occurs
$\mathscr{H}$ We write $a$ happens-before $b$ as $a-->b$
$\mathscr{H}$ If $a$ occurs before $b$ in the same process, we say $a$ --> $b$ is true
$\mathscr{H}$ If the event $a$ sends a message and event $b$ receives that message in another process, $a$--> $b$ is also true because a message cannot be received until after it is sent.
\& happens-before is transitive

## Events occurring at three processes

What we can say?


We can say that a $->$ f

## We cannot say ...

If If $x$ and $y$ happen in different processes that do not exchange messages, then
©we cannot say x --> y
©we cannot say y --> x
$\triangle$ nothing can be said about when the events happened or which event happened first
$\triangle$ we call these events concurrent: a and e occur at different processes and there's no chain of messages intervening between them. We say that a \| e

## Invent time

$\mathscr{H}$ Need a way of measuring time so that for every event we can assign a time $C(a)$ on which all processes agree.
$\triangle$ Such that, if $a$--> $b$, then $\mathrm{C}(a)<\mathrm{C}(b)$
©If $a$ and $b$ are two events in the same process and $a$ happens before $b$, then $\mathrm{C}(a)<\mathrm{C}(b)$
UIf $a$ is the sending of a msg by one process and $b$ is the receiving of that msg by another, then $\mathrm{C}(a)$ and $\mathrm{C}(b)$ must be assigned so that everyone agrees on the values of $\mathrm{C}(a)$ and $\mathrm{C}(b)$ with $\mathrm{C}(a)<\mathrm{C}(b)$
$\triangle$ Corrections to $C$ can only be made by addition, never subtraction so that the clock time always goes forward

## If msg leaves at time N , it arrives at $>=\mathrm{N}+1$

\& Each message carries the time according to its sender's clock
$\not \&$ When it arrives, if the receiver's clock shows a value prior to the time the message was sent, the receiver fast forwards its clock to be 1 more than the sending time
\& Between every two events the clock must tick at least once
© If a process sends or receives 2 messages in quick succession, it must advance its clock by (at least) 1 tick in between
$\triangle$ Sometimes: no 2 events ever occur at exactly the same time

## Lamport Algorithm

$\mathscr{L C} 1: \mathrm{Li}$ is incremented before each event is issued at process pi: Li:=Li+1
\&LC2: (a) When Pi sends a message $m$, it piggybacks on $m$ the value $t=$ Li.
(b) On receiving ( $\mathrm{m}, \mathrm{t}$ ), a process pj computes $\mathrm{Lj}:=\max (\mathrm{Lj}, \mathrm{t})$ and then applies LC1 before timestamping the event receive(m).

## Lamport timestamps for the events

$\mathrm{L}(\mathrm{b})>\mathrm{L}(\mathrm{e})$ but $\mathrm{b} \| \mathrm{e}$.


Each of the processes has its logical clock initialized to 0 .
e -> e' $=>\mathrm{L}(\mathrm{e})<\mathrm{L}\left(\mathrm{e}^{\prime}\right)$, correct?
The converse is also correct? How about b and e?

## Totally-ordered Multicast

It Consider a bank with replicated data in San Francisco and New York City.
$\mathscr{H}$ Customer in SF wants to add $\$ 100$ to the account of $\$ 1000$
\& Meanwhile, a bank employee in NY initiates an update by which the customer's account will be increased with $1 \%$ interest.
$\mathscr{H}$ Due to communication delays, the instructions could arrive at the replicated sites in different orders with differing final answers
$\mathscr{H}$ Should have been performed at both sites in same order

## Limitation of Lamport Timestamps

\& With Lamport timestamps, nothing can be said about the relationship between $a$ and $b$ simply by comparing their timestamps $C(a)$ and $C(b)$.
$\triangle J u s t ~ b e c a u s e ~ C(a)<C(b)$, doesn't mean a happened before $b$ (remember concurrent events)

## Vector Clock

$\mathscr{H}^{\mathrm{A}}$ vector clock for a system of $N$ processes is an array of $N$ integers
\& Each process keeps its own vector clock $V_{i}$, which it uses to timestamp local event
\&Processes piggyback vector timestamps on the messages they send to one another

## Vector timestamps for the events



## Vector clocks

\& Lamport clocks: $L(e)<L\left(e^{\prime}\right)$ doesn't imply $e$-> $e^{\prime}$
Heach process keeps its own vector clock $V_{i}$ piggyback timestamps on messages
\&updating vector clocks:
VC1: Initially, $V_{i}[j]:=0$ for $p_{i}, j=1 . . N$ ( $N$ processes)
® VC 2 : before $p_{i}$ timestamps an event, $V_{i}[i]:=V_{i}[i]+1$
$\triangle \mathrm{VC} 3: p_{i}$ piggybacks $t=V_{i}$ on every message it sends
$\triangle \mathrm{VC} 4$ : when $p_{i}$ receives a timestamp $t$, it sets $V_{i}[j]:=$ $\max \left(V_{i}[j], t[j]\right)$ for $j=1 . . N$ (merge operation)

## Vector clocks

$\mathscr{H A t} p_{i}$
$\triangle V_{i}[i]$ is the number of events $p_{i}$ timestamped
$\triangle V_{i}[j](\mathrm{j} \neq \mathrm{i})$ is the number of events that have occurred at $p_{j}$ that $p_{i}$ has potentially been affected by
$\triangle$ Could more events than $V_{i}[j]$ have occurred at $p_{j}$ ? Yes or No

## Vector timestamps (Fig 14.7)


$\mathrm{V}(\mathrm{a})<\mathrm{V}(\mathrm{f})$, which tells us that a $->\mathrm{f}$
$\mathrm{c} \| \mathrm{e}$ can be seen from the fact that neither $\mathrm{V}(\mathrm{c})<=\mathrm{V}(\mathrm{e})$ nor $\mathrm{V}(\mathrm{e})<=\mathrm{V}(\mathrm{c})$

## Comparing vector timestamps

$\mathscr{H} V=V^{\prime}$ iff
© $V[j]=V^{\prime}[j], j=1 . . N$
$\mathscr{H} V<=V^{\prime}$ iff
$\triangle V[j]<=V^{\prime}[j], j=1 . . N$
$\mathscr{H} V<V^{\prime}$ iff
$\triangle V<=V^{\prime}$ and $V \neq V^{*}$
$\boxtimes$ Different from less than in all elements

## Vector timestamps

\&if $e->e^{\prime}$, then $V(e)<V\left(e^{\prime}\right)$
\&if $V(e)<V\left(e^{\prime}\right)$, then $e->e^{\prime}$. (Exercise 14.13)
©Figure 14.7
区neither $V(c)<=V(e)$ nor $V(c)>=V(e)$
$\boxtimes c \| e$
\&Disadvantage compared to Lamport timestamps?

Taking up an amount of storage and message payload that is proportional to N

## Assignment\#2 (chapter 14)

\& 14.1
\& 14.2
\& 14.4
\& 14.13

