Slides for Chapter 14:
Time and Global State

NS From Coulouris, Dollimore and Kindberg
Distributed Systems:
Concepts and Design

MEdition 5, © Pearson Education 2011

Learning Objectives

To understand the notions of physical and logical
time and global states

To wunderstand the key features of Cristian's
synchronization algorithm, the Berkeley algorithm.

To understand the utility of logical clocks (Lamport

and vector) and the rules for updating them and their
limitations

How processes can synchronize

Multiple processes must be able to cooperate In
granting each other temporary exclusive access
to a resource

Also, multiple processes may need to agree on
the ordering of events, such as whether
message m, from process P was sent before or
after message m, from process Q.

Centralized system

Time IS unambiguous

If a process wants to know the time, it makes a
system call and finds out

If process A asks for the time and gets it and
then process B asks for the time and gets it, the
time that B was told will be later than the time
that A was told.

Physical Clocks

Physical computer clocks are not clocks; they
are timers

Quartz crystal that oscillates at a well-defined
frequency that depends on physical properties

Two registers: counter and a holding register
Each oscillation decrements the counter by one

When counter reaches zero, generates an interrupt
and the counter is reloaded from the holding register

Each interrupt is called a clock tick

Interrupt service procedure adds 1 to time
stored in memory so the software clock iIs kept
up to date

The one and the many

What if the clock is “off” by a little?

All processes on single machine use the same clock
so they will still be internally consistent

What matters is relative time

Impossible to guarantee that crystals in different
computers run at exactly the same frequency

Gradually software clocks get out of synch -- skew

A program that expects time to be independent of the
machine on which it is run ... fails

Skew between computer clocks in a distributed system

Network

NIST and WWV

NIST: National Institute of Standards and
Technology

WWYV is the call sign of NIST's shortwave radio
station located in Fort Collins, Colorado

WWV's main function Is the continuous
dissemination of official U.S. Government time
signals

Hey buddy, can you spare me a second?

To provide UTC (Universal Coordinated Time) to
those who need precise time, NIST operates a
shortwave radio station WWV from Fort Collins,
CO

WWYV broadcasts a short pulse at the start of each
second

There are stations in other countries plus satellites

Using either shortwave or satellite services
requires an accurate knowledge of the relative
position of the sender and recelver.

To WWYV or not to WWV

f one computer has a WWYV recelver, the goal is
Keeping all the others synchronized to it.

f no machines have WWYV recelvers, each
machine keeps track of its own time

Goal -- keep all machines together as well as
possible

There are many algorithms

Underlying model for synchronization models

Each machine has a timer that interrupts H times
a second

Interrupt handler adds 1 to a software clock that keeps
track of the number of ticks since some agreed-upon
time in the past

Call the value of the clock C

Notationally, when UTC time is t, the value of the
clock on machine p is Cy(t)

In a perfect world, C,, (t) =tfor all pand all t

Back to reality

Theoretically, a timer with H=60 should generate
216,000 ticks per hour

Relative error is about 10"-5 meaning a particular
machine gets a value in the range 215,998 to 216,002

There is a constant called the maximum drift rate and a
timer will work with “perfect” + maximum drift rate.

If two clocks are drifting in the opposite direction at a
time delta-t after they were synchronized
may be as much as twice the max drift rate apart

To differ by no more than delta, clocks must be resynchronized
every (delta/2*max-drift-rate) seconds

Cristian’s algorithm (1)

Well suited to one machine with a WWV
receiver and a goal to have all other machines
stay synchronized with it.

Call the one with the WWV receiver the time
server

Periodically, each machine sends a message to
the time server asking for the current time

Machine responds with Cyc as fast as it can

Clock synchronization using a time server

()

)

P Time server,S

Cristian’s algorithm (2)

T,oung - Found-trip time taken to send the request m,

and receive the reply m,
T.oung IS IN the order of 1-10 milliseconds on a LAN

r

A clock with a drift rate of 10° seconds/second is
sufficient

A simple estimate of the time to which p should set
its clock ist + T,,,,4/2, assuming that the elapsed
time is split equally before and after S placed t in m,

What Is the problem?

Big Trouble

Major problem

The single time server becomes bottleneck (multiple
time servers can be used)

A faulty time server can reply an incorrect time

If sender’s clock was fast, Cytc will be smaller than
the sender’s current value of C

Change must be introduced gradually

If timer generates 100 interrupts/second, each interrupt adds 10 ms
to the time

To slow down, ISR adds only 9 ms until correct
To speed up, add 11 ms at each interrupt

Little Trouble

Minor problem

Takes a nonzero amount of time for the time server’s
reply to get back to the sender

Delay may be large and vary with network load

To Improve accuracy, measure several and
average

If no WWV Recelver

Berkeley UNIX algorithm

The time server (actually time daemon) is active,
not passive

It polls every machine and asks what time it is

Based on answers, it computes an average time
and tells all machines to adjust their clocks to the
new time

The time daemon’s time is set manually by the
operator periodically

Centralized algorithm though the time daemon
does not have a WWV recelver

Berkeley Algorithm

It eliminates readings from faulty clocks

The master takes a fault-tolerant average, a subset
of clocks Is chosen that do not differ from one
another by more than a specified amount

If the master fails, another can be elected to take
over

Decentralized synchronization

Cristian and Berkeley UNIX are centralized
algorithms with the usual downside.

They are intended primarily for use within intranets

There are several decentralized algorithms, for

example:
Divide time into fixed length resynchronization intervals
At the beginning of each interval, every machine
broadcasts its current time
Each starts a local timer to collect all broadcasts arriving
during a certain interval

Algorithm to compute a new time based on some/all

Internet Synchronization

New hardware and software technology in the past
few years make it possible to keep millions of
clocks synchronized to within a few ms of UTC

New algorithms using these synchronized clocks
are beginning to appear

Synchronized clocks can be used

to achieve cache consistency

to use time-out tickets in distributed system
authentication

to handle commitment in atomic transactions

Logical Clocks

For many purposes, it is sufficient that machines
agree on the same time even If it is not the “right”
time

Internal consistency of the clocks matters

Clock synchronization is possible but does not have
to be absolute

If 2 processes do not interact, their clocks need not be
synchronized; the lack of synch would not be seen

What is important is that all processes agree on the order
In which events occur

Lamport timestamps

a happens-before b means that all processes
agree that first event a occurs, then afterward,
event b occurs

We write a happens-before b asa-->Db

If a occurs before b in the same process, we say a
--> b Is true

If the event a sends a message and event b
receives that message in another process, a --> b
IS also true because a message cannot be
received until after it is sent.

happens-before Is transitive

Events occurring at three processes

What we can say?

P1 ® °
time
C d\
p3 > 5 >
e f

We can say thata -> f

We cannot say ...

If x and y happen in different processes that do not
exchange messages, then

we cannot say X -->y

we cannot say y --> X

nothing can be said about when the events happened or
which event happened first

we call these events concurrent: a and e occur at different
processes and there’s no chain of messages intervening
between them. We say that a || e

Invent time

Need a way of measuring time so that for every
event we can assign a time C(a) on which all
Processes agree.

Such that, if a --> b, then C(a) < C(b)

If a and b are two events in the same process and a

happens before b, then C(a) < C(b)

If a is the sending of a msg by one process and b is the
receiving of that msg by another, then C(a) and C(b)
must be assigned so that everyone agrees on the
values of C(a) and C(b) with C(a) < C(b)

Corrections to C can only be made by addition, never
subtraction so that the clock time always goes forward

If msg leaves at time N, It arrives at >= N+1

Each message carries the time according to its sender’s
clock
When it arrives, if the receiver’s clock shows a value prior

to the time the message was sent, the receiver fast
forwards its clock to be 1 more than the sending time

Between every two events the clock must tick at least once

If a process sends or receives 2 messages in quick succession, it
must advance its clock by (at least) 1 tick in between

Sometimes: no 2 events ever occur at exactly the same time

Lamport Algorithm

LC1: Liis iIncremented before each event is
Issued at process pi:

Li:=Li+1

LC2: (a) When Pi sends a message m, it
on m the value t=LlI.

(b) On receiving (mM,t), a process pj
computes Lj:=max(L},t) and then applies LC1
before timestamping the event receive(m).

Lamport timestamps for the events

L(b) > L(e) but b || e.

1 2
p &
1 a b m,
3 4 .
0, o o - Physical
c d time
m;
1 5
p3 L ‘. |
e f

Each of the processes has its logical clock 1nitialized to 0.
e ->¢ =>L(e) <L(e’), correct?

The converse 1s also correct? How about b and e?

Totally-ordered Multicast

Consider a bank with replicated data in San Francisco and
New York City.

Customer in SF wants to add $100 to the account of $1000

Meanwhile, a bank employee in NY initiates an update by
which the customer’s account will be increased with 1%
Interest.

Due to communication delays, the instructions could arrive
at the replicated sites in different orders with differing final
answers

Should have been performed at both sites in same order

Limitation of Lamport Timestamps

With Lamport timestamps, nothing can be said

about the relationship between a and b simply

by comparing their timestamps C(a) and C(b).
Just because C(a) < C(b), doesn’t mean a happened
before b (remember concurrent events)

Vector Clock

A vector clock for a system of N processes is an
array of N integers

Each process keeps its own vector clock V;, which
It uses to timestamp local event

Processes piggyback vector timestamps on the
messages they send to one another

Vector timestamps for the events

(1,0,0) (2,0,0)

P2 -
time
(0,0,2) (2,2,2)
&

P3 s -

e f

Vector clocks

Lamport clocks: L(e) < L(e') doesn'timply e -> e
each process keeps its own vector clock V.
piggyback timestamps on messages

updating vector clocks:
VCL1: Initially, Vi[j] := O for p;, J=1.. N (N processes)
VC2: before p; timestamps an event, Vi[1] :==Vi[1]+1
VC3: p; piggybacks t = V; on every message it sends

VC4: when p; receives a timestamp t, it sets Vi[]] :=
max(Vi[J], t[]]) for j=1..N (merge operation)

Vector clocks

At P

Vi[1] Is the number of events p; timestampec

Vi[]] (J#1) Is the number of events that have
occurred at p; that p; has potentially been
affected by

Could more events than Vi[j] have occurred at
p;? Yes or No

Vector timestamps (Fig 14.7)

P1

P2

P3

(1,0,0) (2,0,0)

a t\

time
(2,2,2)

(0,0,1)
°

e

N
f

V(a) < V(f), which tells us that a -> f
c|le can be seen from the fact that neither V(c)<=V(e) nor V(e)<=V(c)

Comparing vector timestamps

V=" Iff
vl =v’l, 1=1..N
V<=V’ Iiff

Vijl<=7r7[], j=1..N
V< V'Iff
V<=V'andV#V*

Different from less than in all elements

Vector timestamps

ife->e', then V(e) < V(e")
If V(e) <V(e'), thene->e'. (Exercise 14.13)

Figure 14.7
neither V(c) <= V(e) nor V(c) >=V(e)
clle
Disadvantage compared to Lamport
timestamps?

Taking up an amount of storage and message payload that is
proportional to N

Assignment#2 (chapter 14)

£14.1
14.2
14.4
214,13

