
Chapter 10

Peer-to-Peer Systems

From Coulouris, Dollimore and Kindberg

Distributed Systems:

Concepts and Design

Edition 5, © Addison-Wesley 2011

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Learning Objectives

Understand the conceptual basis for the design of

general-purpose peer-to-peer services

Understand the algorithms that enable them to

function effectively

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A Good Resource For P2P System Learning

Very good papers in P2P area:

http://www.eecs.harvard.edu/~mema/courses/cs264/cs

264.html

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Purpose of P2P Systems

To support useful distributed services and applications

using data and computing resources available in the

personal computers that are present on the Internet

You will study some general techniques that simplify

the construction of P2P applications and enhance their

scalability, reliability and security

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Classification Of Peer-to-peer Networks

Pure peer-to-peer: (Gnutella and Freenet)

 Peers act as equals, merging the roles of clients and server

 There is no central server managing the network

 There is no central router

Hybrid peer-to-peer: (JXTA)

 Has a central server that keeps information on peers and responds to requests
for that information.

 Peers are responsible for hosting available resources (as the central server
does not have them), for letting the central server know what resources they
want to share, and for making its shareable resources available to peers that
request it.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Key Aspect Of A P2P System Design

Algorithms for the placement and subsequent retrieval

of information objects

Deliver a service that is fully decentralized and self-

organizing, dynamically balancing the storage and

processing loads between all the participating

computers as computers join and leave the service.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Characteristics of P2P Systems

Each user contributes resources to the system

All the nodes have the same functional capabilities

and responsibilities

Correct operation does not depend on the existence of

any centrally-administered systems

Offer a limited degree of anonymity to the providers

and users of resources

An algorithm for the placement of data across many

hosts so that the workload balancing and availability

can be provided

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Three Generations Of P2P System

Napster music exchange service

File sharing with greater scalability and fault tolerance

including Freenet and Gnutella

Middleware layers for the application-independent

management of distributed resources on a global

scale (Pastry, Tapestry, CAN, Chord, etc.)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Overlay Network

An overlay network is a computer network which is built

on top of another network.

Nodes in the overlay can be thought of as being

connected by virtual or logical links, each of which

corresponds to a path, perhaps through many physical

links, in the underlying network.

For example, many peer-to-peer networks are overlay

networks because they run on top of the Internet.

Dial-up Internet is an overlay upon the telephone

network.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Uses Of Overlay Networks

Overlay networks can be constructed in order to

permit routing messages to destinations not

specified by an IP address.

For example, Freenet and distributed hash tables

can be used to route messages to a node storing a

specified file, whose IP address is not known in

advance.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 10.1: Distinctions between IP and overlay routing for peer-to-peer

applications

IP Application-level routing overlay

Scale IPv4 is limited to 232 addressable nodes. The

IPv6 nam e space is much more generous

(2128), but addresses in both versions are

hierarchically structured and much of the space

is pre-allocated according to adm inistrative

requirements.

Peer-to-peer sy stems can address more objects.

The GUID name space is very large and flat

(>2128), allowing it to be much more fully

occupied.

Load balanc ing Loads on routers are determined by network

topology and associated traffic patterns.

Object locations can be random ized and hence

traffic patterns are divorced from the network

topology .

Network dynamics

(addition/deletion of

objects/nodes)

IP routing tables are updated asynchronously on

a best-efforts basis with tim e constants on the

order of 1 hour.

Routing tables can be updated synchronously or

asy nchronously with fractions of a second

delay s.

Fault tolerance Redundancy is designed into the IP network by

its managers, ensuring tolerance of a single

router or network connectivity failure. n-fold

replication is costly .

Routes and object references can be replicated

n-fold, ensuring tolerance of n failures of nodes

or connections.

Target identification Each IP address m aps to exactly one target

node.

Messages can be routed to the nearest replica of

a target object.

Security and anonymity Addressing is only secure when all nodes are

trusted. Anony mity for the owners of addresses

is not achievable.

Security can be achieved even in environments

with limited trust. A limited degree of

anony mity can be provided.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Napster And Its Legacy

The first application in which a demand for a globally-

scalable information storage and retrieval service

emerged in 1999.

Several million users were registered and thousands

were swapping music files simultaneously.

Centralized indexes but users supplied the files, which

were stored and accessed on their personal

computers.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 10.2: Napster: peer-to-peer file sharing with a centralized,

replicated index

Napster server

Index1. File location

2. List of peers

request

of f ering the f ile

peers

3. File request

4. File deliv ered
5. Index update

Napster server

Index

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Lessons Learned from Napster

Demonstrating the feasibility of building a useful large-

scale service which depends wholly on data and

computers owned by ordinary Internet users.

Napster takes account of network locality when

allocating a server to a client requesting a song.

Limitations:

Music files are never updated

No guarantees are required concerning the availability

of individual files

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Flooding-Style Networks (How it works)

Old Internet P2P applications typically provide locator functions
using time to-live (TTL) controlled-flooding mechanisms

 The querying node wraps the query in a single message and
sends it to all known neighbors

 The neighbors then check to see whether they can reply to the
query by matching it to keys in their internal database

 If they find a match, they reply; otherwise, they forward the
query to their own neighbors and increase the message’s hop
count

 If the hop count passes the TTL limit, forwarding stops

 The TTL value thus defines a boundary or “horizon” for the
query that controls its propagation

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Flooding-Style Networks (An Example)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Flooding-Style Networks (Limitations)

However, flooding-based systems don’t scale well

because of the bandwidth and processing

requirements they place on the network

They provide no guarantees as to lookup times or

content accessibility

Overlay networks can address these issues

Overlay networks have a network semantics layer

above the basic transport protocol

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Overlay Networks (Features)

Guaranteed data retrieval

Provable lookup-time horizons (typically O(logN) with

N being the number of network nodes)

Automatic load balancing

Self-organization

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

How They work?

 Each overlay node has two neighbors: the node whose value

is the next available (higher) integer, and the node whose

value is the previous available (lower) integer

 If the current node is the network’s lowest or highest

identifier, one of the neighbors will be the opposite value in

the available node range (that is, the highest or the lowest,

respectively)

 To join the network, a node must perform an out-of-band

request — such as a broadcast — to find another network

node.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Overlay Networks

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Peer-to-peer Middleware

Meet the need for the automatic placement and

subsequent location of the distributed objects

managed by P2P systems and applications

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Functional Requirements

Simplify the construction of services that are

implemented across many hosts in a widely distributed

network

Enable clients to locate and communicate with any

individual resource made available to a service

The ability to add new resources and to remove them

at will

The ability to add hosts to the service and remove

them

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Non-functional Requirements

Global scalability: access millions of objects on hundreds
of thousands of hosts

Load balancing: random placement and replicas

Optimization for local interactions between neighboring
peers: place resources close to the nodes that access
them the most

Accommodating to highly dynamic host availability:
provide a dependable service on many dynamic factors

Security of data: trust must be built up by authentication
and encryption mechanisms

Anonymity, deniability and resistance to censorship: deny
responsibility for holding or supplying data

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Partitioned and Distributed Location Knowledge

Knowledge of the locations of objects must be

partitioned and distributed throughout the network

 Each node is made responsible for maintaining

detailed knowledge of the locations of nodes and

objects in a portion of the same space as well as a

general knowledge of the topology of the entire name

space

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 10.3: Distribution of information in a routing overlay

Object:

Node:

D

CÕs routing knowledge

DÕs routing knowledgeAÕs routing knowledge

BÕs routing knowledge

C

A

B

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Routing Overlays

A distributed algorithm takes responsibility for locating

nodes and object

The middleware takes the form of a layer that is

responsible for routing requests from any client to a host

that holds the object to which the request is addressed

A routing mechanism in the application layer that is

different from IP routing

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Main Tasks of A Routing Overlay

A client wishing to invoke an operation on an object

submits a request including the object’s GUID to the

routing overlay, which routes the request to a node at

which a replica of the object resides

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Other Tasks Of Routing Overlay

A node wishing to make a new object available to a

p2p service computes a GUID for the object and

announces it to the routing overlay, which then

ensures that the object is reachable by all other clients

When clients request the removal of objects from the

service the routing overlay must make them

unavailable

Nodes may join and leave the service

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 10.4: Basic programming interface for a distributed hash table (DHT)

as implemented by the PAST API over Pastry

put(GUID, data)

The data is stored in replicas at all nodes responsible for the object

identified by GUID.

remove(GUID)

Deletes all references to GUID and the associated data.

value = get(GUID)

The data associated with GUID is retrieved from one of the nodes

responsible it. Q: After put(GUID, data), what will happen?

The DHT layer takes responsibility for choosing a location for it, storing it

(with replicas to ensure availability) and providing access to it via get()

operation.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 10.5: Basic programming interface for distributed object location and

routing (DOLR) as implemented by Tapestry

publish(GUID)

GUID can be computed from the object (or some part of it, e.g. its

name). This function makes the node performing a publish operation the

host for the object corresponding to GUID.

unpublish(GUID)

Makes the object corresponding to GUID inaccessible.

sendToObj(msg, GUID, [n])

Following the object-oriented paradigm, an invocation message is sent to

an object in order to access it. This might be a request to open a TCP

connection for data transfer or to return a message containing all or part

of the object’s state. The final optional parameter [n], if present, requests

the delivery of the same message to n replicas of the object.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Functions of DOLR

Objects can be stored anywhere and the DOLR layer is

responsible for maintaining a mapping between GUIDs and

the addresses of the nodes at which replicas of the objects

are located.

Objects may be replicated and stored with the same GUID

at different hosts and the routing overlay takes

responsibility for routing requests to the nearest available

replica.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

DHT and DOLR

DHT: a data item with GUID X is stored at the node

whose GUID is numerically closest to X

DOLR: Locations for the replicas of data objects are

decided outside the routing layer and the host address

of each replica is notified to the DOLR using the

publish() operation

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Overlay Case Study

Pastry

128-bit GUID: For nodes using public key; For objects

using hash function;

Time complexity: O(logN)

Tapestry

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Circular routing alone is correct but inefficient (no routing table)

The dots depict live nodes.

The space is considered as

circular: node 0 is adjacent to

node (2128-1). The diagram

illustrates the routing of a

message from node 65A1FC

to D46A1C using leaf set

information alone, assuming

leaf sets of size 8 (l = 4). This

is a degenerate type of

routing that would scale very

poorly; it is not used in

practice. Complexity: ~N/2l

Without a routing table

0 FFFFF....F (2128-1)

65A1FC

D13DA3

D471F1

D467C4

D46A1C

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 10.7: First four rows of a Pastry routing table

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 10.8: Pastry routing example Based on Rowstron and Druschel [2001]

0 FFFFF....F (2128-1)

65A1FC

D13DA3

D4213F

D462BA

D471F1

D467C4

D46A1C

Routing a message from node 65A1FC to D46A1C.

With the aid of a well-populated routing table the

message can be delivered in ~ log 16(N) hops.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 10.9: Pastry’s routing algorithm

To handle a message M addressed to a node D (where R[p,i] is the element at column i,

row p of the routing table):

1. If (L-l < D < Ll) { // the destination is within the leaf set or is the current node.

2. Forward M to the element Li of the leaf set with GUID closest to D or the current

node A.

3. } else { // use the routing table to despatch M to a node with a closer GUID

4. find p, the length of the longest common prefix of D and A. and i, the (p+1)th

hexadecimal digit of D .

5. If (R[p,i] ? null) forward M to R[p,i] // route M to a node with a longer common

prefix.

6. else { // there is no entry in the routing table

7. Forward M to any node in L or R with a common prefix of length i, but a

GUID that is numerically closer.

}

}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Assignment #2 (Chapter 10)

10.4

10.5

