Energy-Efficient and Reliability-Aware Data Management in Mobile Storage Systems

Tao Xie

Supported by NSF under grant CNS-0834466

Department of Computer Science San Diego State University

Content

- Introduction and Motivation
- Research Tasks and Preliminary Results
- Education-Related Activities
- Future Research Directions

2/19/2018

Introduction

- This project develops a hybrid disk array architecture, which integrates small capacity flash disks with hard disk drives to form a robust and energy-efficient storage system for mobile data-intensive applications.
- An array of new data management techniques for dataintensive mobile applications will be developed.
 - A prototype and a simulation toolkit will be implemented.
- It will also promote teaching, learning, and training by exposing students to technological and scientific underpinnings in the field of energy-efficient storage systems.

Department of Computer Science San Diego State University

Stationary Data Centers

2/19/2018

Mobile Disk Arrays

- Existing mobile disk array consists of an array of independent small form factor hard disks connected to a host by a storage interface in a mobile computing environment.
- Hard disks have some intrinsic limitations such as long access latencies, high annual disk replacement rates, fragile physical characteristics, and energy-inefficiency.

Due to their severe application environments, mobile disk arrays must be energy-efficient, extremely reliable, highly faulttolerant and physically robust.

Application One: Remote Surgery

Department of Computer Science San Diego State University

2/19/2018

Application Two: Mobile Data Center

Department of Computer Science San Diego State University

New Challenges of Mobile Disk Arrays

- Very limited power supply
- Stringent reliability requirement
- High demands on fault-tolerance
- Robust physical characteristics

2/19/20<u>18</u>

File Open Issues That Will Be Addressed

- 1. The lack of a high-performance, highly reliable, and energy-efficient storage architecture
- 2. New energy-saving data management schemes for mobile data-intensive applications
- 3. Understanding of the relationship between disk energy saving techniques and disk reliability
- The absence of an energy-ware fault-tolerant mechanism
- 5. A prototype and a simulation toolkit

Five Research Tasks

- 1. Develop a hybrid disk storage architecture
- 2. Develop a reliability model
- 3. Establish an energy conservation infrastructure
- 4. Develop an energy-aware fault-tolerant mechanism
- 5. Implement a mobile disk array prototype and a simulation toolkit

Education Objectives

- To train 1 Ph.D. student and 2 undergraduate students
- To conduct a training workshop

2/19/2018

 To develop one senior-level undergraduate course on energy-aware storage systems

Task 1: Developing a flash-hard hybrid disk storage architecture

- We are implementing a novel <u>flash</u> d<u>isk</u> s<u>torage</u> architecture (FIT) for high performance, energy conservation and highly reliable mobile disk arrays.
- The basic idea of the FIT architecture is to construct mobile disk arrays by using both non-volatile NAND flash memory based SSD (solid state disk) and small-factor hard disk drives.

Flash SSD

- They are physically robust with high vibration-tolerance and shock-resistance.
- They inherently consume much less energy than mechanical mechanism based hard disks.
- 3. They offer much fast read access times.

2/19/2018

 Very recent breakthrough largely relaxes the three constraints on existing flash disks: small capacity, low throughput, and limited erasure cycles.

Department of Computer Science

San Diego State University

Flash SSD vs. HDD

2.5" SATA 3.0Gbps SSD		2.5" SATA 3.0Gbps HDD
Solid NAND flash based	Mechanism type	Magnetic rotating platters
64GB	Density	80GB
73g	Weight	365g
Read: 100MB/s, Write :80MB/s	Performance	Read: 59MB/s, Write: 60MB/s
1VV	Active Power consumption	3.86VV
20G (10~2000Hz)	Operating Vibration	0.5G (22~350Hz)
1,500G for 0.5ms	Shock resistance	170G for 0.5ms
0°C to 70°C	Operating temperature	5°C to 55°C
None	Acoustic Noise	0.3 dB
MTBF ≻2M hours	Endurance	MTBF < 0.7M hours

Department of Computer Science San Diego State University

Internal Structure of a SSD with Four Elements

Department of Computer Science San Diego State University

2/19/2018

STATE SALES

The FIT Architecture

Department of Computer Science San Diego State University

Task 2: Developing a disk reliability predictor

- 1. Developing a reliability predictor that is capable of estimating failure rate for both hard disks and flash disks is challenging.
- 2. A deep understanding of the relationship between energy saving techniques and disk reliability is an open question.

3. The a <u>reliability predictor</u> (REP) will be built.

The Reliability Predictor (REP)

Department of Computer Science San Diego State University

The PRAISE Model

- PRAISE: <u>predictor of reliability for flash-assisted disk</u> <u>storage</u>
- The top three reliability functions are dedicated for hard disk reliability estimation, whereas the bottom three reliability functions are reserved for flash disk reliability prediction.
 - We plan to use data mining approaches to discover the relationship between reliability-affecting factors and the reliability level.

Preliminary Results of Task 2

- We developed an empirical reliability model, called PRESS (Predictor of Reliability for Energy Saving Schemes) [Xie and Sun, IPDPS'08]
- Fed by operating temperature, disk utilization, disk speed transition frequency, three energy-savingrelated reliability affecting factors, PRESS estimates the reliability of entire hard disk array

Operating Temperature

- High temperature was discovered as a major culprit for a number of disk reliability problems.
- Results from both camps indicate that disk operating temperature generally has observable effects on disk reliability.

Department of Computer Science San Diego State University

A Two-Speed Disk

- Assume that the low speed mode is 3,600 RPM (revolutions per minute) and the high speed mode is 10,000 RPM.
- Based on related work, we derive the temperatures of two-speed disks as "[45, 50] C for the high speed mode" and "[35, 40] C for the low speed mode".

From Google Data [Pinheiro et al. 2007]

Department of Computer Science San Diego State University

2/19/2018

23

Disk Utilization

- Disk utilization is defined as the fraction of active time of a drive out of its total power-on-time.
- A conclusion that higher utilizations in most cases affect disk reliability negatively has been generally confirmed by two widely recognized studies ([Cole 2000] and [Pinheiro et al. 2007]).

Department of Computer Science San Diego State University

9/2018

From Google Data [Pinheiro et al. 2007]

Department of Computer Science San Diego State University

Disk Speed Transition Frequency

The disk speed transition frequency (hereafter called frequency) is defined as the number of disk speed transitions in one day.

The frequency-reliability function is built on a combination of the spindle start/stop failure rate adder suggested by IDEMA and the modified Coffin-Manson model.

Spindle Start/Stop Failure Rate Adder (IDEMA)

Department of Computer Science San Diego State University

Modified Coffin-Manson Model

$$N_f = A_0 f^{-\alpha} \Delta T^{-\beta} G(T_{\max})$$

 N_f is the number of cycles to failure, A_0 is a material constant, f is the cycling frequency, ΔT is the temperature range during a cycle, and $G(T_{max})$ is an Arrhenius term evaluated at the maximum temperature reached in each cycle.

Department of Computer Science San Diego State University

Frequency-reliability Function

$$R(f) = 1.51e^{-5}f^2 - 1.09e^{-4}f + 1.39e^{-4}, f \in [0,1600]$$

Department of Computer Science San Diego State University

PRESS It Altogether

Department of Computer Science San Diego State University

2/19/2018

100

The Idea of READ

- The general idea of READ is to control disk speed transition frequency based on the statistics of the workload.
- It employs a dynamic file redistribution scheme to periodically redistribute files across a disk array in an even manner.
 - A low disk speed transition frequency and an even distribution of disk utilizations imply a lower AFR based on our PRESS model.

Reliability

Department of Computer Science San Diego State University

2/19/2018

32

Performance

Department of Computer Science San Diego State University

2/19/2018

33

Energy Conservation

Department of Computer Science San Diego State University

Task 3: Developing data management schemes

 Traditional data management schemes like data placement algorithms only concentrated on improving system performance data reliability, while normally overlooked energy efficiency.

An array of energy-aware data management software modules: data placement algorithms, data redistribution strategies, data replication policies, and data prefetching schemes will be developed.

Modules in Task 3

- Energy-Efficient Data Placement Algorithms
- Self-Adaptive and Reliability-Aware Data Redistribution Strategies
- Self-Triggered Data Replication Policies
- Automatic Data Prefetching Schemes

2/19/2018

Preliminary Results of Task 3

- "Dynamic Data Reallocation in Hybrid Disk Arrays" [Xie and Sun, IEEE TPDS]
- "PEARL: Performance, Energy, and Reliability Balanced Dynamic Data Redistribution for Next Generation Disk Arrays" [Xie and Sun, MASCOTS'08]

 "SAIL: Self-Adaptive File Reallocation on Hybrid Disk Arrays" [Xie and Madathil, HiPC'08]

> Department of Computer Science San Diego State University

PEARL

Department of Computer Science San Diego State University

2/19/2018

38

Task 4: Developing an energy-aware faulttolerant mechanism for FIT

- Data reconstruction algorithms, which are executed in the presence of disk failure, for mobile storage systems must be reliability-aware, performance-driven and energy-efficient.
- We developed two novel reconstruction strategies that can be applied to mobile storage systems to noticeably save energy while providing shorter reconstruction times and user response times.

Preliminary Results of Task 4

 "MICRO: A Multi-level Caching-based Reconstruction Optimization for Mobile Storage Systems" [Xie and Wang, IEEE Transactions on Computers, October 2008]

 "Collaboration-Oriented Data Recovery for Mobile Disk Arrays" [Xie and Sharma, ICDCS'09]

> Department of Computer Science San Diego State University

MICRO

 MICRO collaboratively utilizes storage cache and disk array controller cache to diminish the number of physical disk accesses caused by reconstruction.

> Department of Computer Science San Diego State University

Architecture of MICRO

Department of Computer Science San Diego State University

2/19/2018

DE CANDAR ADAMS

Experimental Results of MICRO

Department of Computer Science San Diego State University

2/19/2018

43

CORE

 We developed a flash assisted data reconstruction strategy called CORE (<u>collaboration-oriented</u> <u>reconstruction</u>) on top of a hybrid disk array architecture.

> Department of Computer Science San Diego State University

Experimental Results of CORE

Department of Computer Science San Diego State University

2/19/2018

45

Research Task 5: a prototype and a simulation toolkit

- We will implement a FIT prototype, which will be the first of its kind.
- Although existing simulation tools can model disk arrays, they are inadequate for the modeling of a combination of energyaware data management techniques for mobile disk arrays without adversely affecting system reliability.

We will implement a simulation software toolkit called FITSim Toolkit, which consists of the FIT architecture, a disk reliability model, a power consumption model, a trace generator, and an array of energy-aware data management techniques.

> Department of Computer Science San Diego State University

The FIT Prototype

Implement a FIT prototype to work on Linux

9/2018

- Evaluate the FIT architecture and the new data management schemes' performance and tradeoffs
- Address the issues that will arise during the realization of the FIT architecture

FITSim

Department of Computer Science San Diego State University

2/19/2018

COMPANY MANAGER (MICH

48

Funded Projects

- A Device-Array Based Flash Storage System for Emerging Data-Intensive and Mission-Critical Mobile Applications: from Architecture Redesign to New File System (PI, NSF CNS-1320738, \$440,727, 10/2013 ~ 09/2016)
- CAREER: Architectural Support for Integrating NAND Flash Solid State Disks into Enterprise-Class Storage Systems (PI, NSF CNS-0845105, \$436,000, 09/2009~ 08/2014)
- Energy-Efficient and Reliability-Aware Data Management in Mobile Storage Systems (PI, NSF CNS-0834466, \$160,000, 09/2008 ~ 08/2010)

San Diego State University

Questions?

Department of Computer Science San Diego State University

50