
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File service architecture

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File service architecture

 Flat file service
The flat file service is concerned with implementing operations on the contents of files. A
unique file identifier (UFID) is given to the flat file service to refer to the file to be
operated on. The UFID is unique over all the files in the distributed system. The flat file
service creates a new UFID for each new file that it creates.

 Directory service
The directory service provides a mapping between text names and their UFIDs. The
directory service creates directories and can add and delete files from the directories.
The directory service is itself a client of the flat file service since the directory files are
stored there.

 Client module
 integrate/extend the operations of the flat file and directory services

 provide a common application programming interface (can emulate different file
interfaces)

 stores location of flat file and directory services

 Though the client module is shown as directly supporting application programs, in
practice it integrates into a virtual file system.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Virtual File System

 A virtual file system (VFS) is an abstraction layer on top of a

more concrete file system.

 Its purpose is to allow client applications to access different

types of concrete file systems in a uniform way.

 A VFS can, for example, be used to access local and network

storage devices transparently without the client application

noticing the difference.

 Also, it can be used to bridge the differences in Windows,

Mac OS and Unix file systems, so that applications can

access files on local file systems of those types without

having to know what type of file system they're accessing.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Flat file service operations

Read(FileId, i, n) -> Data
— throwsBadPosition

If 1 ≤ i ≤ Length(File): Reads a sequence of up to n items
from a file starting at item i and returns it in Data.

Write(FileId, i, Data)
— throwsBadPosition

If 1 ≤ i ≤ Length(File)+1: Writes a sequence of Data to a
file, starting at item i, extending the file if necessary.

Create() -> FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes the file from the file store.

GetAttributes(FileId) -> Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not
shaded in Figure 12.3).

1. Access to the SetAttributes operation would normally be restricted to the

directory service that provides access to the file.

2. The values of the length and timestamp portions of the attribute record are

maintained separately by the flat file service itself.

Any differences between this interface and the UNIX file system primitives?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Differences

Flat file service has no open and close operations. Files

can be accessed immediately by quoting the appropriate

UFID.

The Read and Write requests include a parameter

specifying a starting point within the file for each transfer,

whereas the equivalent UNIX operations do not.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Flat file service interface

 UNIX interface requires that the UNIX file system maintains state,
i.e. a file pointer, that is manipulated during reads and writes.

 The flat file service interface differs from the UNIX interface mainly
for reasons of fault tolerance:

1. repeatable operations - with the exception of Create(), the
operations are idempotent, allowing the use of at-least-once RPC
semantics. Clients may repeat calls to which they receive no reply.

2. stateless server - the flat file service does not need to maintain any
state and can be restarted after a failure and resume operation
without any need for clients or the server to restore any state.

 Also note that UNIX files require an explicit open command (why?)
before they can be accessed, while files in the flat file service can
be accessed immediately.

Because the read-write pointer’s value has to be retained by the server as long

as the relevant file is open.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File service access control

 UNIX checks access rights when a file is opened
 subsequent checks during read/write are not necessary

 distributed environment
 server has to check

Question: Can server store any access control state ?

 stateless approaches
1. access check once when UFID is issued

• client gets an encoded "capability" (who can access and how)

• capability is submitted with each subsequent request

2. access check for each request.

 second is more common (NFS and AFS)

The server cannot store any access control state as this would

break the idempotent property.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Directory service interface

 The primary purpose of the directory service is to provide a

translation from file names to UFIDs.

 The directory server maintains directory files that contain

mappings between text file names and UFIDs. The directory

files are stored in the flat file server and so the directory

server is itself a client to the flat file server.

 A hierarchical file system can be built up from repeated

accesses. E.g., the root directory has name “/” and it contains

subdirectories with names “usr”, “home”, “etc”, which

themselves contain other subdirectories or files. A client

function can make requests for the UFIDs in turn, to proceed

through the path to the file or directory at the end.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Directory service operations

Lookup(Dir, Name) -> FileId
— throws NotFound

Locates the text name in the directory and returns the
relevant UFID. If Name is not in the directory, throws an
exception.

AddName(Dir, Name, FileId)
— throws NameDuplicate

If Name is not in the directory, adds (Name, File) to the
directory and updates the file’s attribute record.
If Name is already in the directory: throws an exception.

UnName(Dir, Name)
— throws NotFound

If Name is in the directory: the entry containing Name is
removed from the directory.
If Name is not in the directory: throws an exception.

GetNames(Dir, Pattern) -> NameSeq Returns all the text names in the directory that match the
regular expression Pattern.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File groups

 A file group is a collection of files located on a given server.
A server may hold several file groups and file groups can be
moved between servers, but a file cannot change file group.

 File groups support the allocation of files to the servers in
larger logical units and enable the file service to be
implemented over several servers.

 Files are given UFIDs that ensure uniqueness across
different servers, e.g. by concatenating the server IP address
(32 bits) with a date that the file was created (16 bits). This
allows the files in a group, i.e. that have a common part to
their UFID called the file group identifier, to be relocated to a
different server without conflicting with files already there.

 The file service needs to maintain a mapping of UFIDs to
servers. This can be cached at the client module.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File group identifier

IP address date

32 bits 16 bits

file group identifier:

No, because a file group may be moved to another server. Thus, a mapping

between group identifiers and servers should be maintained by the file

service.

Can we use the IP address to locate the file group ?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Case Study: Sun Network File System (Sun NFS)

Industry standard for local networks since the 1980’s

OS independent

The Sun Network File System (NFS) follows the

abstract system shown earlier

There are many implementations of NFS and they all

follow the NFS protocol using a set of RPCs that

provide the means for the client to perform operations

on the remote file store

We consider a UNIX implementation

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

NFS architecture: virtual file system

UNIX kernel

protocol

Client computer Server computer

system calls

Local Remote

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

NFS

UNIX

UNIX kernel

Virtual file systemVirtual file system

O
th

e
r

fi
le

 s
y
s
te

m

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Virtual file system

 UNIX uses a virtual file system (VFS) to provide transparent
access to any number of different file systems.

 The VFS maintains a VFS structure for each filesystem in use.
The VFS structure relates a remote filesystem to the local
filesystem.

 The VFS maintains a v-node for each open file, and this records
an indicator as to whether the file is local or remote.

 If the file is local then the v-node contains a reference to the
file's i-node on the UNIX file system.

 If the file is remote then the v-node contains a reference to the
file's NFS file handle which is a combination of filesystem
identifier, i-node number and whatever else the NFS server
needs to identify the file.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

i-node

 An inode is a data structure on a traditional Unix-

style file system such as UFS.

An inode stores basic information about a regular

file, directory, or other file system object.

Each file has an inode and is identified by an inode

number (often "i-number" or even shorter, "ino") in

the file system where it resides.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Unix file system

 The boot block contains the code to bootstrap the OS.

 The super block contains information about the entire disk.

 The I-node list a list of inodes

 The data blocks contains the actual data in the form of

directories and files.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Unix filesystem

 The standard Unix filesystem, generically referred to as the

"ufs" filesystem, is arranged on a disk partition using a "linked-

list" of pointers to data.

 The structure of a partition begins with, or is defined by, the

"superblock."

 The superblock is a data structure which includes information

about the: type of filesystem (i.e. "ufs", "ext2fs", etc.), size and

modification time of the the filesystem, list of free and allocated

blocks and the first inode, which points to (you guessed it) the

root directory, "/".

 The superblock is always replicated, to provide fault tolerance

against disk failure in the first superblock.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client integration

The NFS client is integrated within the kernel so that (advantages):

 user programs can access files via UNIX system calls without
recompilation or reloading;

 a single client module serves all of the user-level processes, with
a shared cache;

 the encryption key used to authenticate user IDs passed to the
server can be retained in the kernel, preventing impersonation by
user-level clients.

The client transfers blocks of files from the server host to the
local host and caches them, sharing the same buffer cache as
used for local input-output system. Since several hosts may be
accessing the same remote file, caching presents a problem of
consistency.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Access control

The NFS server is stateless and doesn't keep open

files for clients

So the server must check the user’s identity against

the file’s access permission attributes afresh on

each request (uid and gid)

Using DES encryption of the user’s authentication

information to close a security loophole.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Server interface

The NFS server interface integrates both the directory

and file operations in a single service. The creation and

insertion of file names in directories is performed by a

single create operation, which takes the text name of

the new file and file handle for the target directory as

arguments.

The primitives of the interface largely resemble the

UNIX filesystem primitives.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

NFS server operations (simplified)

lookup(dirfh, name) -> fh, attr Returns file handle and attributes for the file name in the directory
dirfh.

create(dirfh, name, attr) ->
newfh, attr

Creates a new file name in directory dirfh with attributes attr and
returns the new file handle and attributes.

remove(dirfh, name) status Removes file name from directory dirfh.

getattr(fh) -> attr Returns file attributes of file fh. (Similar to the UNIX stat system
call.)

setattr(fh, attr) -> attr Sets the attributes (mode, user id, group id, size, access time and
modify time of a file). Setting the size to 0 truncates the file.

read(fh, offset, count) -> attr, data Returns up to count bytes of data from a file starting at offset.
Also returns the latest attributes of the file.

write(fh, offset, count, data) -> attr Writes count bytes of data to a file starting at offset. Returns the
attributes of the file after the write has taken place.

rename(dirfh, name, todirfh, toname)
-> status

Changes the name of file name in directory dirfh to toname in
directory to todirfh.

link(newdirfh, newname, dirfh, name)
-> status

Creates an entry newname in the directory newdirfh which refers to
file name in the directory dirfh. Continues on next slide ...

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

NFS server operations (simplified) – 2

symlink(newdirfh, newname, string)
-> status

Creates an entry newname in the directory newdirfh of type
symbolic link with the value string. The server does not interpret
the string but makes a symbolic link file to hold it.

readlink(fh) -> string Returns the string that is associated with the symbolic link file
identified by fh.

mkdir(dirfh, name, attr) ->

newfh, attr
Creates a new directory name with attributes attr and returns the
new file handle and attributes.

rmdir(dirfh, name) -> status Removes the empty directory name from the parent directory dirfh.
Fails if the directory is not empty.

readdir(dirfh, cookie, count) ->

entries
Returns up to count bytes of directory entries from the directory
dirfh. Each entry contains a file name, a file handle, and an opaque
pointer to the next directory entry, called a cookie. The cookie is
used in subsequent readdir calls to start reading from the following
entry. If the value of cookie is 0, reads from the first entry in the
directory.

statfs(fh) -> fsstats Returns file system information (such as block size, number of
free blocks and so on) for the file system containing a file fh.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Mount service(1)

 The process of including a new filesystem is called mounting

 A mount service is a separate service process that runs at user level on
each NFS server computer.

 On each server, there is a file “/etc/exports”, which has the names of local
filesystems that are available for remote mounting

 Clients use a modified mount command to request mounting of a remote
filesystem

 hard-mounted

 user process is suspended until request is successful

when server is not responding

 request is retried until it's satisfied

 soft-mounted

 if server fails, client returns failure after a small # of retries

 user process handles the failure

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Mount service(2)

 Each server maintains a file that describes which parts of the

local filesystems that are available for remote mounting.

aharwood@htpc:~$ cat /etc/exports

/etc/exports: the access control list for

filesystems which may be exported

to NFS clients. See exports(5).

/store 192.168.1.0/255.255.255.0(rw)

In the above example all hosts on the subnet can mount the

filesystem directory /store with read and write access.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Local and remote file systems

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server 1;

the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

Programs running at Client can access files at Server 1 and Server 2 by

using pathnames such as /usr/students/jon and /usr/staff/ann.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Server caching(1)

 In conventional UNIX systems, data read from the disk is
retained in a main memory buffer cache and are evicted
when the buffer space is required for other pages. Accesses
to cached data does not require a disk access.

 Read-ahead anticipates read accesses and fetches the
pages following those that have been recently read.

 Delayed-write (or write-back) optimizes writes to the disk by
only writing pages when both they have been modified and
when they are evicted. A UNIX sync operation flushes
modified pages to disk every 30 seconds.

This works for a conventional files system, on a single host,
because there is only one cache and all file accesses
cannot bypass the cache.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Server caching(2)

Use of the cache at the server for client reads does not introduce
any problems. However use of the cache for writes requires
special care to ensure that client can be confident that the writes
are persistent, especially in the event of a server crash.

Write-through - data is written to cache and also directly to the
disk. This increases disk I/O and increases the latency for write
operations. The operation completes when the data has been
written to disk.

 Commit - data is written to cache and is written to disk when a
commit operation is received for the data. A reply to the commit is
sent when the data has been written to disk.

 Servers use Write-through and clients Commit

 Pro and Con for each option?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Pros and Cons

Write-through is poor when the server receives a

large number of write requests for the same data. It

however saves network bandwidth.

 Commit uses more network bandwidth and may

lead to uncommitted data being lost. However it

receives the full benefit of the cache.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client caching

Why? In order to reduce the number of requests
transmitted to servers

What? Caches results of read, write, getattr, lookup,
readdir

Problem?

How? Clients responsibility to poll the server for
consistency

1. Client caching introduces the potential for different versions of files or portions of files to exist in

different client nodes.

2. Caching at the client introduces the cache consistency problem since now there is a cache at the client and

the server, and there may be more than one client as well, each with its own cache.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client caching: reading (1)

 timestamp-based methods for consistency validation

 Tc: time when the cache entry was last validated by the client

 Tm: time when the block was last modified at the server

 cache entry is valid at time T if:

1. T - Tc < t, where t is the freshness interval
 t is adaptively adjusted:

• files: 3 to 30 seconds depending on frequency of updates

• directories: 30 to 60 seconds

2. OR Tmclient
= Tmserver

The data has not been modified at the server since the cache entry was

made. Tm client : the value of Tm recorded at the client matches the

value of Tm at the server since the cache entry was made.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client caching: reading (2)

 need validation for all cache accesses

 condition “1" can be determined by the client alone--
performed first (does not require network I/O)

 Reducing getattr() to the server [for getting Tmserver]
1. new value of Tmserver is received, apply to all cache entries

from the same file

2. piggyback getattr() on file operations

3. adaptive algorithm for update t

 validation doesn't guarantee the same level of
consistency as one-copy because recent updates are
not always visible to clients sharing a file

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client caching: writing

dirty: modified page in cache

flush to disk: file is closed or sync from client

bio-daemon (block input-output, at client side)

read-ahead: after each read request, request the next file

block from the server as well

delayed write: after a block is filled by a client operation,

it's sent to the server

reduce the time to wait for read/write

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Performance

overhead/penalty is low

main problems

frequent getattr() for cache validation (piggybacking)

relatively poor performance is write-through used on the

server

write < 5%

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Summary for NFS

 Access transparency: Yes. Applications programs are usually not aware that files are
remote and no changes are need to applications in order to access remote files.

 Location transparency: Not enforced. NFS does not enforce a global namespace
since client file systems may mount shared file systems at different points. Thus an
application that works on one client may not work on another.

 Mobility transparency: No. If the server changes then each client must be updated.

 Scalability: Good, could be better. The system can grow to accommodate more file
servers as needed. Bottlenecks are seen when many processes access a single file.

 File replication: Not supported for updates. Additional services can be used to
facilitate this.

 Hardware and operating system heterogeneity: Good. NFS is implemented on almost
every known operating system and hardware platform.

 Fault tolerance: Acceptable. NFS is stateless and idempotent. Options exist for how to
handle failures.

 Consistency: Tunable. NFS is not recommended for close synchronization between
processes.

 Security: Kerberos is integrated with NFS. Secure RPC is also an option being
developed.

 Efficiency: Acceptable. Many options exist for tuning NFS.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Assignment#2 (Chapter 12)

12.5

12.10

