
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Please note:

Please start working your research project (proposal will

be due on Feb. 19 in class)

Each group needs to turn in a printed version of their

proposal and intermediate report. Also, before class

each group needs to email me a DOC version.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Remote Procedure Call (1):

at-least-once or at-most-once semantics

client: "stub" instead of "proxy" (same function, different

names)

behaves like a local procedure, marshal arguments, communicate

the request

server:

dispatcher

"stub": unmarshal arguments, communicate the results back

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Remote Procedure Call (2)

client

Request

Reply

CommunicationCommunication

modulemodule dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Sun RPC (1):

 Designed for client-server communication in the SUN NFS
(network file system)

 Supplied as a part of SUN and other UNIX operating systems

 Over either UDP or TCP

 Provides an interface definition language (IDL)
initially XDR is for data representation, extended to be IDL

less modern than CORBA IDL and Java
program numbers (obtained from a central authority) instead of interface names

procedure numbers (used as a procedure identifier) instead of procedure names

only a single input parameter is allowed (then we have to use a ?)

 Offers an interface compiler (rpcgen) for C language, which
generates the following:
client stub

server main procedure, dispatcher, and server stub

XDR marshalling, unmarshaling

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Sun RPC (2): Sun XDR

const MAX = 1000;

typedef int FileIdentifier;

typedef int FilePointer;

typedef int Length;

struct Data {

int length;

char buffer[MAX];

};

struct writeargs {

FileIdentifier f;

FilePointer position;

Data data;

};

struct readargs {

FileIdentifier f;

FilePointer position;

Length length;

};

program FILEREADWRITE {

version VERSION {

void WRITE(writeargs)=1; 1

Data READ(readargs)=2; 2

}=2;

} = 9999;

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Sun RPC (3):

A local binding service running at a well-known port

local binder—port mapper

server registers its program/version/port numbers with port

mapper

client contacts the port mapper at a fixed port with

program/version numbers to get the server port

different instances of the same service can be run on different

computers--different ports

authentication

request and reply have additional fields to allow authentication

unix style (uid, gid), shared key for signing, Kerberos

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Case Study: Java RMI (1): Remote interface

import java.rmi.*;

import java.util.Vector;

public interface Shape extends Remote {

int getVersion() throws RemoteException;

GraphicalObject getAllState() throws RemoteException; 1

}

public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2

Vector allShapes() throws RemoteException;

int getVersion() throws RemoteException;

}

Same syntax but different semantics for local and remote invocationsBoth ordinary objects and remote objects can appear as arguments and

results in a remote interface

When the type of a parameter or result value is defined as a remote

interface, it is always passed as a remote object reference. (see line 2)
All serializable non-remote objects are copied and passed by value. (see

line 1 for return value of getAllState)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Java RMI (3): Server main method

import java.rmi.*;

public class ShapeListServer{

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager());

try{

ShapeList aShapeList = new ShapeListServant(); 1

Naming.rebind("Shape List", aShapeList); 2

System.out.println("ShapeList server ready");

}catch(Exception e) {

System.out.println("ShapeList server main " + e.getMessage());}

}

}

Create a security manager to protect an RMI server

A default RMISecurityManager protects local resources

Why protection? Because Java allows classes to be downloaded from one

virtual machine to another. If the recipient does not already possess the

class of an object passed by value, its code is download automatically.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Java RMI (4): client of ShapeList

import java.rmi.*;

import java.rmi.server.*;

import java.util.Vector;

public class ShapeListClient{

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager());

ShapeList aShapeList = null;

try{

aShapeList = (ShapeList) Naming.lookup("//bruno.ShapeList") ; 1

Vector sList = aShapeList.allShapes(); 2

} catch(RemoteException e) {System.out.println(e.getMessage());

}catch(Exception e) {System.out.println("Client: " + e.getMessage());}

}

}

The client looks up a remote object reference using the lookup operation of

the RMIregistry (line 1). After having a remote object reference, the client

invokes allShape method (line 2) and receives a vector of remote object

references

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Java RMI (5): Java RMIregistry

void rebind (String name, Remote obj)

This method is used by a server to register the identifier of a remote object by

name, as shown in Figure 15.13, line 3.

void bind (String name, Remote obj)

This method can alternatively be used by a server to register a remote object

by name, but if the name is already bound to a remote object reference an

exception is thrown.

void unbind (String name, Remote obj)

This method removes a binding.

Remote lookup(String name)

This method is used by clients to look up a remote object by name, as shown

in Figure 15.15 line 1. A remote object reference is returned.

String [] list()

This method returns an array of Strings containing the names bound in the

registry.A table mapping textual names to references to remote objects hosted on

that computer

RMIregistry must run on every server computer that hosts remote objects

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Java RMI (6):

Callbacks

server notifying the clients of events

why?
polling from clients increases overhead on server

client cannot notify users of updates in a timely manner

how
remote object (callback object) on client for server to call

client tells the server about the callback object, server put the client on a list

server call methods on the callback object when events occur

client might forget to remove itself from the list
lease--client expire

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Events and notifications (1):

 events of changes/updates...

 notifications of events to parties interested in the events

 publish events to send

 subscribe events to receive

main characteristics in distributed event-based systems:
a way to standardize communication in heterogeneous systems (not

designed to communicate directly)

asynchronous communication (no need for a publisher to wait for each
subscriber--subscribers come and go)

 event types
each type has attributes (name of the object that generated the event,

the operation, and the time)

subscription filtering: focus on certain values in the attributes (e.g.
"buy" events, but only "buy car" type)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Events and Notifications (2):

Dealer’s computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer

Dealer

Notification

Notification

Notification

Notification

Notification
Notification

Notification

Notification

Dealer’s computer

Dealer’s computerDealer’s computer

Notification
Notification

Information provider continuously receives new trading information

A dealer process creates an object to represent each named stock that the

user asks to have displayed

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Events and notifications (3):

 Distributed event notification

 decouple publishers from subscribers via an event service (manager)

 Architecture:

 object of interest (the object that experiences changes of state, which might be of
interest to other objects)

 event (occurs at an object of interest as the result of the completion of method
execution)

Notification (an object that contains information about an event)

Subscriber (an object that has subscribed to some type of events in another object)

 observer object (proxy) [reduce work on the object of interest]
 forwarding

 filtering of events types and content/attributes

 patterns of events (occurrence of multiple events, not just one)

mailboxes (notifications in batches, subscriber might not be ready)

 publisher (object of interest or observer object)
 generates event notifications

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Events and Notifications (4):

subscriberobserverobject of interest

Event service

object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Events and Notifications (5)

Jini

event generators (publishers)

remote event listeners (subscribers)

remote events (events)

third-party agents (observers)

Slides for Chapter 12:

Distributed File Systems

From Coulouris, Dollimore and Kindberg

Distributed Systems:

Concepts and Design

Edition 5, © Pearson Education 2011

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Learning Objectives

Understand the architecture for file systems

Understand two basic distributed file service

implementations (Sun NFS and Andrew File System)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Basic topics in this chapter

file service architecture

network file system (focus)

enhancements and further developments

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Refresh your memory

A file system is a method for storing and organizing

computer files and the data they contain to make it easy

to find and access them.

File systems may use a data storage device such as a

hard disk or CD-ROM and involve maintaining the

physical location of the files.

They might provide access to data on a file server by

acting as clients for a network protocol (e.g., NFS).

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Common Terms

Meta Data is data about data; meta data is used to
facilitate the understanding, use and management of
data

Disk file system: a file system designed for the storage
of files on a disk drive. Examples of disk file systems
include FAT, FAT32, NTFS, etc.

Flash file system: a file system designed for storing files
on flash memory devices

Network file system: a network file system is a file
system that acts as a client for a remote file access
protocol, providing access to files on a server.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Basic concepts

A basic distributed file system emulates the same

functionality as a (non-distributed) file system for client

programs running on multiple remote computers.

Advanced distributed file systems go much further by e.g.

maintaining replica files and provide bandwidth and timing

guarantees for multimedia data streaming.

A file service allows programs to store and access remote

files exactly as they do local ones, allowing users to

access their files from any computer in an intranet.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Distributed storage systems

Earlier storage systems are file systems (e.g. NFS);

units are files.

More recently, distributed object systems (e.g.

CORBA, Java); units are objects.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Storage systems and their properties

Sharing Persis-
tence

Distributed
cache/replicas

Consistency
maintenance

Example

Main memory RAM

File system UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (DSM, Ch. 18)

Remote objects (RMI/ORB) CORBA

Persistent object store 1 CORBA Persistent
Object Service

Peer-to-peer storage system OceanStore (Ch. 10)

1

1

1

2

Types of consistency:

1: strict one-copy. : slightly weaker guarantees. 2: considerably weaker guarantees.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Characteristics of (non-distributed) file systems

data and attributes (Fig 12.3)

directory: mapping from text names to internal file

identifiers

 layers of modules in file systems (Fig 12.2)

file operation system calls in UNIX (Fig. 12.4)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File attributes

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

The shaded attributes are managed by the file system

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File system modules

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

What else are needed for a distributed file service?

Client-server communication and with the distributed naming and

location of files.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

UNIX file system operations

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).

status = stat(name, buffer) Gets the file attributes for file name into buffer.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Distributed file system requirements(1)

Transparency
Access transparency - Client programs should be unaware of the distribution of

files. Same API is used for accessing local and remote files and so programs

written to operate on local files can, unchanged, operate on remote files.

Location transparency - Client programs should see a uniform file name space;

the names of files should be consistent regardless of where the files are actually

stored and where the clients are accessing them from.

Mobility transparency - Client programs and client administration services do not

need to change when the files are moved from one place to another.

Performance transparency - Client programs should continue to perform

satisfactorily while the load on the service varies within a specified range.

Scaling transparency - The service can be expanded by incremental growth to

deal with a wide range of loads and network sizes.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Distributed file system requirements(2)

 Concurrent file updates
 Multiple clients' updates to files should not interfere with each other. Policies should be manageable.

 File replication
 Each file can have multiple copies distributed over several servers, that provides better capacity for

accessing the file and better fault tolerance.

 Hardware and operating system heterogeneity
 The service should not require the client or server to have specific hardware or operating system

dependencies.

 Fault tolerance
 Transient communication problems should not lead to file corruption. Servers can use at-most-once

invocation semantics or the simpler at-least-once semantics with idempotent operations. Servers can also
be stateless.

 Consistency
 Multiple, possibly concurrent, access to a file should see a consistent representation of that file, i.e.

differences in the files location or update latencies should not lead to the file looking different at different
times. File meta data should be consistently represented on all clients.

 Security
 Client requests should be authenticated and data transfer should be encrypted.

 Efficiency
 Should be of a comparable level of performance to conventional file systems.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File service architecture

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File service architecture

 Flat file service
The flat file service is concerned with implementing operations on the contents
of files. A unique file identifier (UFID) is given to the flat file service to refer to
the file to be operated on. The UFID is unique over all the files in the
distributed system. The flat file service creates a new UFID for each new file
that it creates.

 Directory service
The directory service provides a mapping between text names and their
UFIDs. The directory service creates directories and can add and delete files
from the directories. The directory service is itself a client of the flat file service
since the directory files are stored there.

 Client module
 integrate/extend flat file and directory services

 provide a common application programming interface (can emulate different
file interfaces)

 stores location of flat file and directory services

 Though the client module is shown as directly supporting application
programs, in practice it integrates into a virtual file system.

