
Distributed Objects and Remote

Invocation

From Coulouris, Dollimore and Kindberg

Distributed Systems:

Concepts and Design

Edition 5, © Addison-Wesley 2011

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Objectives

To study communication between distributed objects

and the integration of remote method invocation into a

programming language

To be able to use Java RMI to program applications

with distributed objects

To study the extension of the event-based programming

model to apply to distributed event-based programs

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Three Widely Used Programming Models

Remote Procedure Call model - This is an extension of

the conventional procedure call model.

Remote Method Invocation model - This is an

extension of the object-oriented programming model.

Event Based model - This is based on the event based

model which allows objects to receive notification

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Middleware layers

Applications

Middleware
layersRequest reply protocol

External data representation

Operating System

RMI, RPC and events

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Specific Abstractions Supported By Middleware Are:

 Location transparency - Clients do not have to know if the
procedures and methods being called remote or local. Similarly
in event notification, the object generating and receiving
messages do not have to be aware of each others location.

 Communication protocols - Underlying protocols used for
communication are hidden from the developer.

 Computer Hardware - Heterogeneity of hardware (e.g. different
data representation formats) are hidden from the programmer
(e.g. marshalling and unmarshalling to take care of differences
in data representation formats)

 Operating System – Independent of the underlying OS.

 Programming Language - Certain middleware provides
programming language independence while others do not (e.g.
CORBA provides language independence while Java RMI does
not).

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Interfaces

An interface between two modules defines the types

of interaction that can take place

Parameter passing across external interfaces have

the following restrictions:

Call by value and call by reference are not valid

Parameters passed across processes are defined as

input, output or both

Pointers cannot be passed

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Types of Interfaces

 Service interface: Defines the procedures available from a

server for RPC (e.g., a file server)

 Remote interface: Defines the methods of an object that can

be invoked by objects of another processes using RMI

 Interface Definition Languages (IDLs): These provide a

generic way of defining interfaces. Both client and server code

stubs can be generated by compiling the interface specifications

in IDL. IDL compilers allow code stubs to be generated in

different languages, allowing objects implemented in one

language to interact with objects implemented in a different

language.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Communication Between Distributed Objects

Object-oriented concepts

Distributed object concepts

Design Issues

Implementation

Distributed Garbage Collection

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Object Communication (1):

Distributed objects

 state: values of its instances variables

 actions: accessed only by its own methods

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Object communication (2):

 Local: within the same process

 Remote: difference processes (could be on different machines)

 Remote object: A remote object is one that can be invoked from

another process

invocation invocation

remote

invocation
remote

local

local

local

invocation

invocation

A
B

C

D

E

F

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Two Questions About Remote Objects

A remote object can receive remote invocations as

well as local invocations. True or False?

Remote objects can invoke methods in local objects

as well as other remote objects. True or False?

1. Remote object reference: Other objects can invoke the methods of a

remote object if they have access to its remote object reference.

2. Remote interface: Every remote object has a remote interface that

specifies which of its methods can be invoked remotely.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Object communication (3):

Remote object reference

accessing the remote object

identifier throughout a distributed system

can be passed as arguments

Definition: A remote object reference is an identifier for a

remote object which is used to refer to it as the target of a

remote invocation and can be passed as an argument or result

of a remote invocation.

Internet address port number time object number
interface of
remote object

32 bits 32 bits 32 bits 32 bits

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Object communication (4):

 Remote interface
 specifying which methods can be invoked remotely

 name, arguments, return type

 IDL

 Who defines the remote interface ?

 Who implements the methods of a object’s remote interface?

interface

remote

m1

m2

m3

m4
m5

m6

Data

implementation

remote object

{ of methods

IDL is used for defining remote interfaces.

The class of a remote object implements the methods of its remote interface.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Object communication (5):

Actions

Action is initiated by an object invoking a method in another object

Needs remote object reference

Calling of methods of objects in another process/host

Remote objects might have methods for instantiation (hence

remote instantiation). Actions are invoked using Remote Method

Invocation (RMI)

C

NM

K

invocation
remote

invocation
remote

L

instantiateinstantiate

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Three Effects of An Invocation

The state of the receiver may be changed.

A new object may be instantiated.

Further invocation on methods in other objects may

take place.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Object communication (6):

Garbage collection

achieved through reference counting

local garbage collector

additional module to coordinate

Exceptions

unexpected events or errors

similar to local invocations, but special exceptions related

to remote invocations are available

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Design Issues (1): Invocation Semantics

RMI invocation semantics: Three main design
decisions related to implementation of the
request/reply protocols are
Strategy to retry request message

Mechanism to filter duplicates

Strategy for results retransmission: history

Semantics
Maybe

At least once

At most once

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Design Issues (2): Invocation semantics

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Choices Of RMI Semantics

Maybe: the remote method may be executed once
or not at all. It’s useful only for applications in which
occasional failed invocations are acceptable.

At-least-once invocation semantics: the invoker
receives either a result (the method was executed at
least once) or an exception informing if no result was
received. It’s useful in idempotent situations.

At-most-once: the method at most executed once.
Java RMI uses at-most-once.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Failures Associated With The 3 Invocation Semantics

Maybe: omission failure, crash failures, no fault-

tolerance at all

At-least-once invocation semantics: crash failures,

arbitrary failures

At-most-once: complete fault tolerance

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Design Issues (3): Transparency

Although location and access transparency are

goals for middleware, in some cases complete

transparency is not desirable due to:

remote invocations being more prone to failure due

to network and remote machines

 latency of remotes invocations is significantly higher

than that of local invocations

Therefore, many implementations of RMI provide

access transparency but not complete location

transparency.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Design Issues (4): Transparency

syntax might need to be different to handle different

local vs remote errors/exceptions (e.g. Argus)

affects IDL design

current consensus

syntax is transparent

different interfaces (e.g., Java: implement Remote

interface, RemoteExceptions)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Implementation (1):

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication

modulemodulereference module module

for B’s class
& dispatcher

remote
client server

servant

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Implementation (3):

Communication Module is Responsible for

communicating messages (requests and replies)

between the client and the server. It uses three fields

from the message:

message type

request ID

remote object reference

It is responsible for implementing a specified invocation

semantics, for example, at-most-once.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Implementation (3):

Remote reference module Is responsible for:

Creating remote object references

Maintaining the remote object table which is used for

translating between local and remote object references

remote object table
remote objects held by the process (B on server)

local proxy (B on client)

Entries are added to the remote object table when:
A remote object reference is passed for the first time

When a remote object reference is received and an entry is not present in the table

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

The Actions Of The Remote Reference Module

When a remote object is to be passed as argument or

result for the first time, the module is asked to create a

remote object reference, which it adds to its table.

When a remote object reference arrives in a request,

the module is asked for the corresponding local object

reference, which may refer to a remote object.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Implementation (4):

 RMI software

Proxy: behaves like a local object, but represents the remote object

Dispatcher: look at the methodID and call the corresponding method in

the skeleton

Skeleton: implements the method

 Generation of proxies, dispatchers and skeletons

IDL (RMI) compiler

 Dynamic invocation

Proxies are static—interface complied into client code

Dynamic—interface available during run time

Generic invocation; more info in “Interface Repository” (COBRA)

Dynamic loading of classes (Java RMI)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Software

This is a software layer that lies between the application and the
communication and object reference modules. Following are the
three main components.

 Proxy: Plays the role of a local object to the invoking object.
There is a proxy for each remote object which is responsible for:
Marshalling the reference of the target object, its own method id and the

arguments and forwarding them to the communication module.

Unmarshalling the results and forwarding them to the invoking object

 Dispatcher: There is one dispatcher for each remote object class.
Is responsible for choosing appropriate method in the skeleton
based on the method ID.

 Skeleton: Is responsible for: (server side)
Unmarshalling the arguments in the request and forwarding them to the

servant.

Marshalling the results from the servant to be returned to the client.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Implementation (5):

 Server initialization: create the first object for remote

access

Usually clients are not allowed to create servers

 Binder: is separate service that maintains a table

containing mappings from textual names to remote

object references.

Table mapping for names and remote object references

 Server threads: concurrency to avoid delaying the

execution of another remote method invocation

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client programs require a way to obtain the remote

object reference of the remote objects in the server

A binder is a service in a distributed system that

supports this functionality

A binder maintains a table containing mappings from

textual names to object references.

Servers register their remote objects (by name) with

the binder. Clients look them up by name.

The binder

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Server and Client programs

A server program contains:

classes for dispatchers and skeletons

an initialization section for creating and initializing at

least one of the servants

code for registering some of the servants with the

binder

A client program will contain the classes for all the

proxies of remote objects

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Implementation (6):

Activation of remote objects

A remote object is active if it is available for invocation

in the process.

A remote object is passive if it is not currently active but

can be made active. A passive object contains:

 the implementation of the methods

 its state in marshalled form

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

RMI Implementation (7):

persistent object stores

stored in marshaled form on disk for retrieval

saved those that were modified

persistent or not:
persistent root: any descendent objects are persistent (persistent Java,

PerDiS)

some classes are declared persistent (Arjuna system)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Assignment#1 (Chapter 5)

5.22

Please note that Homework1 is available online and

it will be due on Feb. 12 in class.

