
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Attention Please

Start your research project ASAP!

For each homework assignment, you have to print your
submission.

Midterm-exam will be scheduled on April 4 in class.

There’re about 10 research areas in project.

Sample papers have been given.

Each group has to select one area and each area will be
assigned to no more than 2 groups.

So, please build your team and select your topic ASAP!

Each group has no more than 2 students.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Paper Reading Assignment Is Available Online!

All papers in blue color are important ones and must
be read if you choose that area.

Every student needs to read this paper before Jan.
29 (only the first 4 pages and Section 4 and Section
5)

L.W. Lee, P. Scheuermann and R. Vingralek, “File
assignment in parallel I/O systems with Minimal
Variance of Service Time,” IEEE Transactions on
Computers, 2000.

Slides for Chapter 4:

Interprocess Communication

From Coulouris, Dollimore and Kindberg

Distributed Systems:

Concepts and Design

Edition 5, © Addison-Wesley 2011

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Objectives of This Chapter:

 To study the general characteristics of interprocess communication

and the particular characteristics of both datagram and stream

communication in the Internet.

 To be able to write Java applications that use the Internet

protocols and Java serialization.

 To be aware of the design issues for Request-Reply protocols and

how collections of data objects may be represented in messages

(RMI and language integration are left until Chapter 5).

 To be able to use the Java API to IP multicast and to consider the

main options for reliability and ordering in group communication.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Middleware layers

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

This
chapter

RMI and RPC

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Important Concepts

 Port ─ A message destination within a computer, specified as an integer.

 UDP (User Datagram Protocol)─ Using UDP, programs on networked computers
can send short messages sometimes known as datagrams (using Datagram
Sockets) to one another. No guarantee reliability or ordering.

 TCP (Transmission Control Protocol)─ Provides reliable, in-order delivery of a
stream of bytes, making it suitable for applications like file transfer and e-mail.

 Multicast ─ The delivery of information to a group of destinations simultaneously
using the most efficient strategy to deliver the messages over each link of the
network only once.

 Broadcast ─ Transmitting a packet that will be received (conceptually) by every
device on the network. In practice, the scope of the broadcast is limited to a
broadcast domain.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

API for Internet Protocols (1): IPC characteristics

 synchronous and asynchronous communication
 blocking send: waits until the corresponding receive is issued

 non-blocking send: sends and moves on

 blocking receive: waits until the msg is received

 non-blocking receive: if the msg is not here, moves on

 synchronous: blocking send and blocking receive

 asynchronous: non-blocking send and blocking or non-blocking receive

 Message Destination
 IP address + port: one receiver, many senders

 Location transparency
 name server or binder: translate service to location

OS (e.g. Mach): provides location-independent identifier mapping to lower-level addresses

 send directly to processes (e.g. V System)

multicast to a group of processes (e.g. Chorous)

 Reliability: in terms of validity and integrity

 Ordering: messages are delivered in sender order

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

API for the Internet Protocols (2): Sockets and ports

programming abstraction for UDP/TCP

originated from BSD UNIX

message

agreed port
any port

socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Socket Properties

 For a process to receive messages, its socket must be bound to a local
port on one of the Internet addresses of the computer on which it runs.

 Messages sent to a particular port of an Internet address can be only
received by a process that has a socket associated with the particular port
number on that Internet address.

 Same socket can be used both for sending and receiving messages.

 Processes can use multiple ports to receive messages.

 Ports cannot be shared between processes for receiving messages.

 Any number of processes can send messages to the same port.

 Each socket is associated with a single protocol (UDP or TCP).

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

API for Internet Protocols (3): UDP Datagram

message size: up to 216 bytes, usually restrict to 8Kbytes

 blocking: non-blocking send, blocking receive

 timeouts: timeout on blocking receive

 receive from any: doesn't specify sender origin (possible to specify
a particular host for send and receive)

 failure model:

Data Corruption: checksum can be used to detect data
corruption

Omission failures: buffers full, corruption, dropping

Order: messages might be delivered out of order

 use of UDP
DNS

less overhead: no state information, extra messages, latency due to start up

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

API for Internet Protocols (6): TCP stream

 Message sizes: There is no limit on data size applications can use.

 Lost messages: TCP uses an acknowledgment scheme unlike UDP. If
acknowledgments are not received the messages are retransmitted.

 Flow control: TCP protocol attempts to match the speed of the process
that reads the message and writes to the stream.

 Message duplication or ordering: Message identifiers are associated
with IP packets to enable recipient to detect and reject duplicates and
reorder messages in case messages arrive out of order.

 Message destinations: The communicating processes establish a
connection before communicating. The connection involves a connect
request from the client to the server followed by an accept request from
the server to the client.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

TCP Stream

Steps involved in establishing a TCP stream socket:

 Client:

Create a socket specifying the server address and port

Read and write data using the stream associated with the socket

 Server:

Create a listening socket bound to a server port

Wait for clients to request a connection (Listening socket maintains a

queue of incoming connection requests)

Server accepts a connection and creates a new stream socket for the

server to communication with the client retaining the original listening

socket at the server port for listening to incoming connections. A pair

of sockets in client and server are connected by a pair of streams, one

in each direction. A socket has an input stream and an output stream.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

TCP Communication Issues

When an application closes a socket, the data in the output buffer is sent to the other end with
an indication that the stream is broken. No further communication is possible.

TCP communication issues:

 There should a pre-agreed format for the data sent over the socket

 Blocking is possible at both ends

 If the process supports threads, it is recommended that a thread is assigned to each
connection so that other clients will not be blocked.

Failure Model:

 TCP streams use checksum to detect and reject corrupt packets and sequence numbers to
detect and reject duplicates

 Timeouts and retransmission is used to deal with lost packets

 Under severe congestion TCP streams declare the connections to be broken hence does
not provide reliable communication

 When communication is broken the processes cannot distinguish between network failure
and process crash

 Communicating process cannot definitely say whether the messages sent recently were
received

Use of TCP: HTTP, FTP, Telnet, SMTP

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Important concepts

External data representation: Agreed standard for

representing data structures and primitive data

Marshalling: Process of converting the data to the

form suitable for transmission

Unmarshalling: Process of disassembling the data at

the receiver

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

External Data Representation (1):

 different ways to represent int, float, char... (internally)

 byte ordering for integers
big-endian: most significant byte first

small-endian: least significant byte first

 standard external data representation
marshal before sending, unmarshal before receiving

 send in sender's format and indicates what format, receivers
translate if necessary

 External data representation
SUN's External data representation (XDR)

CORBA's Common Data Representation (CDR)

Java's object serialization

ASCII (XML, HTTP)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

External Data Representation (2): CDR

Primitive types (15): short, long ...

support both big-endian and little-endian

transmitted in sender's ordering and the ordering is

specified

receiver translates if needed

Constructed types

Type Representation

sequence length (unsigned long) fol

l

owed by elements in order

string length (unsigned long) followed by characters in order (can also

can have wide characters)

array array elements in order (no length specified because it is fixed)

struct in the order of declaration of the components

enumerated unsigned long (the values are specified by the order declared)

union type tag followed by the selected member

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

External Data Representation (3):

CORBA IDL (interface definition language) compiler

generates marshalling and unmarshalling routines

Struct with string, string, unsigned long

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3

4–7

8–11

12–15

16–19

20-23

24–27

5

"Smit"

"h___"

6

"Lond"

"on__"

1934

index in
sequence of bytes 4 bytes

notes
on representation

length of string

‘Smith’

length of string

‘London’

unsigned long

Struct Person {

string name;

string place;

Unsigned long year;

};

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

External Data Representation (4): Java serialization

serialization and deserialization are automatic in

arguments and return values of Remote Method

Interface (RMI)

flattened to be transmitted or stored on the disk

write class information, types and names of instance

variables

new classes, recursively write class information, types,

names...

each class has a handle, for subsequent references

values are in Universal Transfer Format (UTF)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

External Data Representation (5): Java serialization

The true serialized form contains additional type markers; h0 and h1 are handles to other objects

Serialized values

Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:

h1

Explanation

class name, version number

number, type and name of
instance variables

values of instance variables

public class Person implements Serializable {

private String name;

private String place;

private int year;

public Person(String aName, String aPlace, int aYear){

name = aName;

place = aPlace;

year = aYear;

}

}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

External Data Representation (6)

references to other objects

other objects are serialized

references are serialized as handles

each object is written only once

second or subsequent occurrence of the object is written

as a handle

 reflection

ask the properties (name, types, methods) of a class

help serialization and deserialization

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

External Data Representation (7): Remote object reference

call methods on a remote object

unique reference in the distributed system

Reference = IP address + port + process creation time +

local object # in a process + interface

Port + process creation time -> unique process

Address can be derived from the reference

Objects usually don't move; is there a problem if the

remote object moves?

Internet address port number time object number
interface of
remote object

32 bits 32 bits 32 bits 32 bits

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client-server communication (1)

Synchronous: client waits for a reply

Asynchronous: client doesn’t wait for a reply

Request

ServerClient

doOperation

(wait)

(continuation)

Reply

message

getRequest

execute

method

message

select object

sendReply

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client-server communication (2)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client-server communication (3)

Client-server communication normally uses the

synchronous request-reply communication paradigm

Involves send and receive operations

TCP or UPD can be used - TCP involves additional

overheads

redundant acknowledgements

needs two additional messages for establishing

connection

flow control is not needed since the number of arguments

and results are limited

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client-server communication (4): Request-reply

message structure

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

Why requestID?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client-server communication (5)

 Failure model

UDP: could be out of order, lost...

 process can fail...

 not getting a reply

 timeout and retry

 duplicate request messages on the server

How does the server find out?

 idempotent operation: can be performed repeatedly with the same effect
as performing once.

 idempotent examples?

 non-idempotent examples?

 history of replies (for servers)

 retransmission without re-execution

 how far back if we assume the client only makes one request at a time?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Drawbacks of UDP-based request-reply protocol

It’s difficult to decide on an appropriate size for

buffer.

Limited length of datagrams.

It needs to implement multi-packet protocols

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client-server communication (6)

using TCP increase reliability and also cost

HTTP uses TCP

one connection per request-reply

HTTP 1.1 uses "persistent connection"
multiple request-reply

closed by the server or client at any time

closed by the server after timeout on idle time

Marshal messages into ASCII text strings

resources are tagged with MIME (Multipurpose Internet

Mail Extensions) types: test/plain, image/gif...

content-encoding specifies compression algorithm

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client-server communication (7): HTTP methods

GET: return the file, results of a cgi program, …

HEAD: same as GET, but no data returned

POST: transmit data from client to the program at url

PUT: store data at url

DELETE: delete resource at url

OPTIONS: server provides a list of valid methods

TRACE: server sends back the request

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client-server communication (8): HTTP request/reply

format

Headers: latest modification time, acceptable content
type, authorization credentials

Headers: authentication challenge for the client

GET //www.dcs.qmw.ac.uk/index.html HTTP/ 1.1

URL or pathnamemethod HTTP version headers message body

HTTP/1.1 200 OK resource data

HTTP version status code reason headers message body

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Group communication (1)

multicast

useful for:

fault tolerance based on replicated services
requests multicast to servers, some may fail, the client will be served

discovering services
multicast to find out who has the services

better performance through replicated data
multicast updates

event notification
new items arrived, advertising services

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Group communication (2): IP multicast

 class D addresses, first four bits are 1110 in IPv4

 UDP

 Join a group via socket binding to the multicast address

messages arriving on a host deliver them to all local sockets
in the group

multicast routers: route messages to out-going links that have
members

multicast address allocation
permanent

temporary:
no central registry, use (time to live) TTL to limit the # of hops, hence distance

tools like sd (session directory) can help manage multicast addresses and find new
ones

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Group communication (3): Reliability and ordering

UDP-level reliability: missing, out-of-order...

Effects on

fault tolerance based on replicated services
ordering of the requests might be important, servers can be inconsistent

with one another

discovering services
not too problematic

 better performance through replicated data
loss and out-of-order updates could yield inconsistent data, sometimes

this may be tolerable

event notification
not too problematic

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Assignment1 (Chapter 4)

4.5

