
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Attention Please

The Research Project web page is available now.

Please check our class web page.

Grader: Prashant Joshi [prashantjoshi93@gmail.com]

Office Hours: MW 11am~12pm at GMCS 557

Please send the grader your OS proof by email.

Chapter 2:

System Models

This chapter provides an explanation of

important ways in which the design of

distributed systems can be described and

discussed

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Objectives Today

Architectural models

Architectural models determine the distribution of

data and computational tasks amongst the

physical nodes of the system.

Fundamental models

Each fundamental model represents a set of

issues that must be addressed in the design of

distributed systems.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Definitions of Model

A hypothetical description of a complex entity or

process.

A description of observed behavior, simplified by

ignoring certain details.

Models allow complex systems to be understood and

their behavior predicted within the scope of the

model, but may give incorrect descriptions and

predictions for situations outside the realm of their

intended use.

A model may be used as the basis for simulation.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A model has to address:

What are the main entities in the system?

How do they interact

What are the characteristics that affect their

individual and collective behaviour?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

The purpose of a model:

To make explicit all the relevant assumptions

about the system we are modelling.

To make generalizations concerning what is

possible or impossible, given those assumptions.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

An Example of Model

PRESS Model

Disk-Array

Energy

Saving

Techniques

(Multi-speed,

DRPM, PDC,

MAID, etc.)

Operating

Temperature

Disk Utilization

Speed

Transition

Frequency

ESRRA Factors

Temperature-

Reliability Function

Utilization-Reliability

Function

Frequency-

Reliability Function

Disk-

Array

Reliability

Fig. 1. Overall architecture of the PRESS model.

Reliability

Integrator

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Making An Architectural Model (3 steps)

An architectural model of a distributed system

simplifies and abstracts the functions of the individual

components of a distributed system

The placement of the components across a network of

computers (distribution of data and workload)

the interrelationships between the components (roles

and communication patterns)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Software Layers

 Platform: hardware, OS

Middleware
masking heterogeneity of

underlying platform, hence
providing a common
"platform“

Examples:
Sun RPC, Java RMI

CORBA, Microsoft .NET, Java
J2EE

reliable services in the middle
layer, still need application-
specific reliability

 Applications, services.
What is a server? What is a
distributed service?

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

A server is a process that accepts requests from other processes.

A distributed service can be provided by one or more server processes,

interacting with each other and with client processes in order to

maintain a consistent system-wide view of the service’s resource.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client-Server

Servers provide services

Clients access services

Server

Client

Client

invocation

result

Server
invocation

result

Process:
Key:

Computer:

Pros and Cons?

Pros: Simple and widely used; Cons: Poor scalability because of

the centralization of service provision and management

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Peer to Peer

 Peers play similar roles

 No distinction of responsibilities

 Example?

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

PPStream is a P2P software for Streaming Internet TV.

It can broadcast TV programs stably and smoothly to broadband

users. Compared to traditional stream media, PPStream adopts P2P -

streaming technology and supports full-scale visit with tens of

thousands of users online.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Peer to Peer

 Peers play similar roles

 No distinction of responsibilities

 Example?

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

PPStream is a P2P software for Streaming Internet TV.

It can broadcast TV programs stably and smoothly to broadband

users. Compared to traditional stream media, PPStream adopts P2P -

streaming technology and supports full-scale visit with tens of

thousands of users online.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Features of Peer to Peer

1. This architecture responses to the need to

distribute shared resources much more widely in

order to share loads.

2. The aim of the P2P architecture is to exploit the

resources (both data and hardware) in a large

number of participating computers for the

fulfillment of a given task.

3. The downside is that this architecture is

substantially more complex than the client server

architecture because of the need to place individual

objects and retrieve them and to maintain replicas

amongst many computers.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Variations of Architectural Models

Several variations of the above two models can

be derived from the considerations of the

following factors:

1. The use of multiple servers and caches to

increase performance

2. The use of mobile code and mobile agents

3. User’s need for low-cost computers with

limited hardware resources

4. The requirement to add and remove mobile

device in a convenient manner.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A service provided by multiple servers

Objects are

partitioned/replicated

Web: each server

manages its objects

NIS: replicated

login/password info

Cluster: closely

coupled, scalable

(search engines)

Server

Server

Server

Service

Client

Client

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Web proxy servers and caches

 Cache: local copies of remote objects for faster access

 Browser cache

 Proxy server

Additional roles: filtering, firewall

Client

Proxy

Web

server

Web

server

server
Client

A cache is a store of recently used data objects that is closer than the

objects themselves.

Caches may be located with each client or they may be located in a proxy

server that can be shared by several clients

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Mobile code and web applets

 Running code locally vs. remotely
Network bandwidth

What examples have you seen?

Security issues? a) client request results in the downloading of applet code

Web

server

Client
Web

serverApplet

Applet code

Client

b) client interacts with the applet

A stockbroker might provide a customized service to notify customers of changes in the

prices of shares; to use the service, each customer would have to download a special

applet that receives updates from the broker’s server, displays them to the user and

perhaps performs automatic buy and sell operations triggered by conditions set up by

the customer and stored locally in the customer’s computer.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Mobile agents

Running program that travels from one computer

to another

Perform tasks on users’ behalf

Security issues

How does it compare to one client interacting with

multiple servers?

What if the program needs to access a lot of remote

data?

How does it compare with applets?

1. There is a reduction in communication cost and time through the replacement of

remote invocations with local ones.

2. Applets can be used to initiate a conversation between server and clients, e.g., to

perform an update so that clients have the up-to-date information of server.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Thin clients and compute servers (network

computers)

Thin client
Basically a display with keyboard (“dumb terminal”)

Remote computation, storage

How does it compare with the PC model or
distributed workstation model? Pros and Cons?

Thin
Client

Application
Process

Network computer or PC

Compute server

network

Pros: low management and hardware costs.

Cons: highly interactive graphical activities such as CAD and image

processing incur both network and operating system latencies.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Mobile devices and spontaneous interoperation

 Laptops, PDA’s, cell phones, wearable computers…

Metropolitan (GSM, CDPD): hundreds of meters, 100s

Kb/s

 Local Area (BlueTooth, infra-red): meters, 10 Mb/s

 Infrastructure vs ad-hoc networking

 Accessing services, variable bandwidth/connectivity,

power supply, security,

 Spontaneous interoperation--easy connection and

location of services

Service discovery

Context-aware

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Interfaces and objects

At the programming level

Need standard interfaces
Access/provide services/objects

RPC (Remote Procedure Call)/RMI (Remote Method Invocation)

The set of functions available for invocation in a process (whether it is a

server or a peer process) is specified by one or more interface

definitions.

Example? In a basic form of client-server architecture, each server

process is seen as a single entity with a fixed interface defining the

functions that can be invoked in it.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Design requirements for distributed architectures

 Performance

Responsiveness, throughput, load balancing

 Quality of service (QoS)

time-critical applications (real-time apps)

guarantee certain level of quality delivered by the deadline

allocation of computation and communication resources

 Caching and replication

 web caching: server provides expiration time

 Dependability

fault tolerance: redundancy, recovery

security

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Fundamental Models

 Fundamental properties in processes and

communication, shared among different

architectures discussed previously

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Interaction model (1)

sequential vs. distributed algorithms timing,

distributed state

 performance of communication channels

latency: transmission, access, os

 bandwidth

 jitter: variation among messages

 clocks and timing events

 clock drift

synchronization

distributed algorithm – a definition of the steps to be taken by each of

the processes of which the system is composed., including the

transmission of messages between them.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Interaction Model (2)

synchronous distributed systems
lower and upper bounds for execution of a step

message transmission in bounded time

clock drift rate is bounded

failures can be detected when bounds are exceeded

accomplished by allocating sufficient resources

asynchronous distributed systems
no bounds on process speed, message delay, clock

drift rate

failures are harder to detect

performance can't be guaranteed

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Exercise

Consider a simple server that carries out client

requests without accessing other servers.

Explain why it is generally not possible to set a

limit on the time taken by such a server to

respond to a client request. What would need to

be done to make the server able to execute

requests within a bounded time? Is this a

practical option?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Answer

 The rate of arrival of client requests is unpredictable. If the
server uses threads to execute the requests concurrently, it may not
be able to allocate sufficient time to a particular request within any
given time limit. If the server queues the request and carries them
out one at a time, they may wait in the queue for an unlimited
amount of time.

 To execute requests within bounded time, limit the number of
clients to suit its capacity. To deal with more clients, use a server
with more processors. After that, (or instead) replicate the service....

 The solution may be costly and in some cases keeping the
replicas consistent may take up useful processing cycles, reducing
those available for executing requests.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Interaction Model (3)

 event ordering

Relative ordering might be more important than exact time

logical clocks--ordering events without physical clocks

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical

time

A

m3

receive receive

send

receive receive receive

t1 t2 t3

receive

receive

m2

m1

User A:

1. From Z: Re: Meeting

2. From X: Meeting

3. From Y: Re: Meeting

Users X, Y, Z, and A are on a mailing list;

User X sends a message with the subject Meeting;

Users Y and Z reply by sending a message with the subject Re: Meeting;

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Failure Model (1)

Failure of processes or communication channels

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Failure Model (2):

Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put
in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Difference between Omission Failure and Byzantine Failure?The faults classified as omission failures refer to cases when a process or communication channel fails to perform

actions that it is supposed to do.

A Byzantine failure, in which a component of some system not only behaves erroneously, but also fails to behave

consistently when interacting with multiple other components.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Failure Model (3): Timing failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Failure Model (4)

masking failures

hiding--use another server to respond

 converting it into more acceptable--drop the packet if

it is corrupted

 reliable one-to-one communication

validity: eventually delivered

integrity: content not corrupted or duplicated

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Security Model (1)

Protecting objects:

authorization (access rights to principals)

authentication (identity of parties/principals)

Network

invocation

result

Client
Server

Principal (user) Principal (server)

ObjectAccess rights

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Security Model (2)

Threat to processes & communication channels

Communication channel

Copy of m

Process p Process qm

The enemy
m’

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Security Model (3)

 Threat to processes & communication channels

 Denial of service

Mobile code

 Cryptography: science of keeping messages secret

encryption: process of scrambling a message to hid its content

secret keys--large numbers that are difficult to guess

authentication--encrypt the identity, check the decrypted identity

secured channels--authentication, privacy/integrity, time stamp

to prevent replaying and reordering

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Assignment1 (chapter2)

Exercise (Page 78)

2.11

2.14

Assignment1 will be due one week after we

finish Chapter 5.

