
DORA: Exploring a Dynamic File Assignment Strategy with Replication

Jonathan Tjioe, Renata Widjaja, and Abraham Lee
Computer Science Department

San Diego State University
San Diego, CA 92182

1. Introduction

The problem of managing and distributing files

to maximize disk performance has been a popular
topic of many discussions [1][2][3][4][5]. There are
several effective static algorithms that have addressed
this issue such as the static round robin (SOR)
algorithm. SOR has been proven to produce better
response time than other static algorithms such as
Greedy, Sort Partition (SP), and Hybrid Partition
(HP) [1]. SOR is unique compared to the other static
algorithms because it provides considerable
performance improvements even if the workload
assumption, which says that there is an inverse
correlation between file size and its popularity (small
files are more popular than large files), does not hold
[1]. However, as its name states, it is a static
algorithm, and its functionality is limited by the
assumption that the file and their access patterns do
not change over time. In reality, however, this
workload assumption is not accurate for all cases.
We, therefore, propose a new dynamic algorithm
called dynamic round robin with replication (DORA).
The main characteristic of DORA is that it takes into
account the dynamic nature of file or data access
patterns to uniquely adapt to changing users’
demand. In addition, DORA utilizes file replication
to further maximize response time and file
throughput; these will be further explained in the
project details section.

This proposal is organized as follows. Section 1
provides a brief introduction. In Section 2, the
motivating factors prompting this research are
detailed. Section 3 summarizes the project at a high
level perspective. Section 4.1 begins by describing
the overall architecture and implementation details of
DORA. Section 4.2 discusses several challenges that
must be addressed when implementing DORA with
replication. Sections 4.3 and 4.4 outline specific
deliverables and the schedule of the project. Finally,
Section 5 reiterates the functionality of DORA and

how it compares to other dynamic algorithms such as
cool vanilla (C-V) [11] and simple cost minimization
(CM) [11].

2. Motivation

Fast response time is a technology factor that
end-users are accustomed to. In a world of
distributed applications and web pages that grow
increasingly more bandwidth intensive, considerable
research has been done to improve methods which
can lead to providing instantaneous response to the
impatient end-user. Oftentimes, the physical disk is
the bottleneck to providing timely response to users’
requests. As a result, much of today’s research
centers on efficiently managing the assignment of file
and disk scheduling. Some examples of these
research areas are RAID architecture that focuses on
data striping, data replication, and data mirroring to
achieve high data throughput and high data reliability
[6][7]. Substantial research has also been done to
reduce disk head latencies associated with moving
the head to the physical location of the data on disk
[2][3]. For example, SOR has contributed a
successful static file management algorithm which
operates by first sorting the files according to their
size and then allocating them to homogeneous disks
in a round robin manner such that the popularity
(heat) of files are distributed equally across the disks
[1]. Moreover, several published dynamic
algorithms such as C-V, and CM have also made
significant contributions to this research field. C-V
and CM both work by constantly monitoring the heat
imbalance between disks in order to distribute them
evenly across the disks. In addition the CM
algorithm implements methods to find an optimized
location for each newly created file; therefore, the
cost from the need to reorganize files can be
minimized [11].

The DORA algorithm furthers the research in the
data management algorithms by dynamically

assigning files, while still providing fast access to
those files. Let us take the example of a web-server
application, Amazon.com, where prospective buyers
can search for a book title and the server will respond
in a matter of seconds. Sellers can add new product
which will be stored in the database, or modify an
existing post, thereby changing the contents and
ultimately the size of the file. In those kinds of
scenarios, the assumption is that there are algorithms
in place to manage the thousands of files in such a
way such that users can receive fast response time to
requests they have issued to the server.

In such a dynamic scenario mentioned in the
above example, static algorithms have a common
drawback: they do not take into account the changing
popularity (heat) of files. Therefore, the advantage
of DORA over static algorithms is it has the ability to
dynamically adapt to the heat of files by constantly
monitoring and periodically rearranging the files in
such as way that file throughput can be maximized
without compromising the response time.
Additionally, DORA will be designed to handle file
reorganization while the system remains online and
continues to serve users’ request.

3. Project Summary

The following techniques will be implemented in
DORA to improve the response time performance in
a dynamic environment: file replication [10], file-size
variance minimization [5], and garbage collection for
files. In addition, simulations will corroborate that
performance can be improved by considering the heat
variance of files and replication method for hot files.
Also, a performance comparison with other dynamic
algorithms such as C-V and CM will be shown over
varying workloads to simulate the robustness of the
DORA algorithm. The simulation results will show
that DORA will be able to improve the response time
regardless of files’ sizes or the changing heat of files.

4. Project Details

4.1 Architecture and Environment

Matlab software will be used for all simulations
in this project. For benchmark comparison purposes,
several other dynamic algorithms will be simulated
against DORA: C-V, and CM.

There will be ten homogeneous physical hard
disks used in the simulation; however, this will not
be a RAID configuration.

Non-partitioned files of varying sizes and loads
corresponding to variable heat distributions will be

used to convincingly show that DORA significantly
performs better than other dynamic algorithms by
adding replication for extremely hot files as well as
adding the ability to dynamically recalibrate file
assignment according to changing users’ demand.

The DORA algorithm will function as follows:
1. Sort files according to size in ascending

order in an array I.
2. Compute the average disk utilization of all

the files’ heat.
3. If the heat of a file is greater than or equal to

a designated threshold heat then replicate
the hot file across multiple disks.

4. If the heat of a file is not greater to a
designated threshold heat write the file to
each disk, one at a time, as in SOR.

5. Listen for, accept, and serve users’ requests.
6. Record all file accesses while serving

requests.
7. At the end of each epoch (1 hour), examine

the heat of each file and repeat steps 1-6.

Figure 1. DORA algorithm flowchart.

Figure 1 above shows the flowchart of the
DORA algorithm which should assist in explaining
how it behaves in real world scenarios.

Let the following variable representations hold:
• I represents an array with the set of all files

that will be used to service requests coming
from users.

• A file i is the ith file in the Array I.

• hi is the “heat” of file i, where “heat” is the
access frequency of a file.

• HEAT_HOT is the threshold heat value of a
file, at which the decision will be made to
replicate the file across multiple physical
disks.

• DISK_NUM is the total amount of simulated
hard disks.

• FILE_NUM is the total amount of files that
users can request service to.

• EPOCH_NUM is the total amount of epochs
to evaluate over.

Also, a snippet of DORA pseudo-code is shown
in Figure 2 below to give a better explanation of its
functionality.

Figure 2. DORA pseudo-code.

Measurements that will be observed in this

research include:
Access time: Measurement of how long it takes

to access each file.
Access rate: Measurement of request frequency

for each file. This will be used to determine which
files are extremely hot and should be replicated.

Heat of each disk: Measurement of the disk’s
workload. This is proportionally related to how
many hot files are on the disk.

Response time: Measurement of how long a
request takes to complete.

Throughput: Measurement of how many
requests can be served over a period of time.

4.2 Implementation Issues and Challenges

Several challenges arise from the dynamic nature

of DORA and from the use of file replication.
Creating replicas. While load balancing can be

performed effectively by making copies of hot files
to multiple disks, creating the replicated files on

multiple disks will introduce additional overheads.
Cost versus Benefit trade offs must be examined
before replicating a file.

Updating replicas. Synchronization issues must
be handled. For example, if a user request updates a
replicated file, all replicas and the original file must
be updated to ensure the latest copy of the file is
being used to serve user requests.

Deleting replicas. File access patterns will
change overtime, which eventually will result in both
hot and cold files taking up space on each disk. Cold
files that were once hot were replicated across
multiple disks at some point in time in the past. The
cold replicas must be removed, while leaving the
original file intact. This requires a garbage collection
mechanism to conserve space and efficiently manage
files.

Managing replicas. Records of all replicated
files must be kept which include information about
the file such as the file identifier, how many replicas
are in circulation, and what disks the replicas reside
on. Selecting the destination drive and the number of
copies remains one of the main focuses of many file
management algorithms that use replication. The
choice of heuristics significantly affects performance
[9].

Response time vs Throughput. Quick response
time is the top priority of end-users On the other
hand, maximizing throughput is the major concern
for web server administrators. While replication of
files could improve throughput, the overhead of
creating, updating, deleting, and managing replicas
could undesirably increase response time. As a result,
replication must be carefully implemented so that the
overall overhead is tolerable and performance does
not suffer significantly.

DORA will address all these issues and
dynamically manage file assignment as the access
patterns change over time. Therefore, DORA is better
suited for real world applications as it can evolve
with changing users’ demands and can be
reconfigured online.

4.3 Deliverables

As mentioned before, DORA will be simulated
using Matlab software. For benchmark purposes,
several other dynamic algorithms such as C-V and
CM will be simulated. They will run over ten non-
RAIDed homogeneous physical hard disks, which
will also be simulated in Matlab. In addition, the
workload will be synthetically generated.

Moreover, this research will accomplish the
following: 1.) Simulate a dynamic algorithm that
takes into account the changing heat of files, 2.)

Develop a replication model that will address the
issues mentioned in Section 4.2 and further improve
performance and throughput of users’ requests, and
3.) The simulation of DORA in various workload
conditions will show that its performance will hold
regardless whether or not the workload assumption
holds true.

4.4 Timeline

• Paper reading: (11 Feb 2008 – 11 March 2008)

In this period, extensive reading of the relevant
topics and references will be conducted.

• Simulator construction: (12 March 2008 – 1
April 2008) During this time a simulator will be
developed for DORA. Several other algorithms
will be implemented for comparison.

• Experimental: (2 April 2008 – 29 April 2008)
Using a synthetically generated workload,
intensive experiments will be performed on
DORA and other related algorithms.

• Paper writing: (30 April 2008 – 9 May 2008)
Write an IEEE format technical paper to present
our research and its result.

5. Conclusions

Fast response time is a technology factor that
end-users demand. Considerable research has been
performed to find better ways to arrange data such
that fast response time can be achieved [1][4][5].
SOR effectively increased file search efficiencies
over other published static algorithms. However,
DORA is better suited for a more realistic
environment where files’ popularity is constantly
changing.

References

[1] Tao Xie, “SOR: A Static File Assignment Strategy
Immune to Workload Characteristic Assumptions in
Parallel I/O Systems”, IEEE, ICPP, 2007.

[2] H. Huang, W. Hung, and K.G. Shin, “FS2: dynamic
data replication in free disk space for improving disk
performance and energy consumption,” Proc. 12th ACM
SOSP, pp. 263-276, 2005.

[3] W.W. Hsu, A.J. Smith, and H.C. Young, “The
automatic improvement of locality in storage systems,”
ACM Transactions on Computer Systems, Vol. 23, Issue 4,
pp. 424- 473, 2005.

[4] P. Triantafillou, S. Christodoulakis, and C. Georgiadis,
“Optimal data placement on disks: a comprehensive
solution for different technologies,” IEEE Trans.
Knowledge Data Eng.., Vol. 12, Issue. 2, pp. 324 - 330,
2000

[5] Lin-Wen Lee, Peter Scheuermann, and Radek
Vingralek, “File Assignment in Parallel I/O Systems with
Minimal Variance of Service Time,” IEEE
TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 2,, pp.
127 -140, 2000

[6] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and
D.A. Patterson, “RAID: High-Performance, Reliable
Secondary Storage,” ACM Computing Surveys, Vol. 26,
No.2, pp. 145 -185, 1994.

[7] S.H. Lim, Y.W. Jeong, and K.H. Park, “Interactive
Media Server with Media Synchronized RAID Storage
System,” ACM, NOSSDAV '05, June 2005.

[8] R.L. Graham, “Bounds on Multiprocessing Timing
Anomalies,” SIAM Journal Applied Math, Vol. 7, No. 2,
pp. 416 – 429, 1969

[9] M. Karlsson and C. Karamanolis, “Choosing replica
placement heuristics for wide-area systems,” Proc. 24th
Int'l Conf. Distributed Computing Systems, pp. 350 - 359,
2004.

[10] T. Loukopoulos and I. Ahmad, “Static and adaptive
data replication algorithms for fast information access in
large distributed systems,” Proc. ICDCS, pp. 385 - 392,
April 2000.

[11] P.Scheuermann, G. Weikum, and P. Zabback,
“Dynamic File Allocation in Disk Arrays” ACM SIGMOD
Record, Vol 20, Issue 2, pp.406-415, 1991

