
1

Instruction-level parallelism:
Introduction

Dr. Tao Xie

Fall, 2017

These slides are adapted from notes by Dr. David Patterson (UCB)

2

Ideas To Reduce Stalls

Technique Reduces
Dynamic scheduling Data hazard stalls
Dynamic branch
prediction

Control stalls

Issuing multiple
instructions per cycle

Ideal CPI

Speculation Data and control stalls
Dynamic memory
disambiguation

Data hazard stalls involving
memory

Loop unrolling Control hazard stalls
Basic compiler pipeline
scheduling

Data hazard stalls

Compiler dependence
analysis

Ideal CPI and data hazard stalls

Software pipelining and
trace scheduling

Ideal CPI and data hazard stalls

Compiler speculation Ideal CPI, data and control stalls

Pipeline CPI = Ideal pipeline CPI + Structure stalls + Data hazard stalls + Control stalls

3

Forms of Parallelism
• Process-level

• Thread-level

• Loop-level

• Instruction-level

– Focus of Chapter 2 & 3

Coarse grain

Fine Grain

4

Instruction Level Parallelism (ILP)
Principle: There are many instructions in code that don’t

depend on each other. That means it’s possible to
execute those instructions in parallel.

• Instruction-Level Parallelism (ILP): overlap the execution
of instructions to improve performance

This is easier said than done. Issues include:
• Building compilers to analyze the code,
• Building hardware to be even smarter than that code.

This section looks at some of the problems to be solved.

5

Exploiting Parallelism in Pipeline
• Two methods of exploiting the parallelism ?

Today’s high-end
microprocessor issues 3 to 8
instructions every clock cycle.

–Increase pipeline depth

–Multiple issue
•Replicate internal components

•launch multiple instructions in every pipeline stage

6

Pipeline supports multiple outstanding FP operations

M1 M2 M3 M4 M5 M6 M7 Mem WB ID IF

A1 A2 A3 A4 Mem WB ID IF

EX Mem WB ID IF

EX Mem WB ID IF

MULTD
ADDD

LD
SD

7

Microarchitecture of Intel Pentium 4

8

The Big Picture

Parallelism

 Increase pipeline depth

Multiple issue
Dynamic multiple issue

Static multiple issue

Many decisions are made
by compiler before execution

Many decisions are made by
hardware during execution

9

ILP Challenges
• How many instructions can we execute in parallel?
• Definition of Basic instruction block: What is

between two branch instructions:
– Example: Body of a loop.
– Typical MIPS programs have 15-25 % branch instruction

:
• One every 4-7 instructions is a branch.
• How many of those are likely to be data dependent on each other?

– We need the means to exploit parallelism across basic
blocks. What stops us from doing so?

Dependencies

10

Dependencies
Data dependence

Name dependencies

Control

Output dependence

Anti-dependence
Dependence

11

• InstrJ is data dependent on InstrI
InstrJ tries to read operand before InstrI writes it

• or InstrJ is data dependent on InstrK which is
dependent on InstrI

• Caused by a “True Dependence” (compiler term)
• If true dependence caused a hazard in the pipeline,

called a Read After Write (RAW) hazard

I: add r1,r2,r3
J: sub r4,r1,r3

Data Dependence and Hazards

How to detect a True Dependence?

12

Data Dependences through
registers/memory

• Dependences through registers are easy:
lw r10,10(r11)
add r12,r10,r8
just compare register names.

• Dependences through memory are harder:

sw r10,4 (r2)
lw r6,0(r4)
is r2+4 = r4+0? If so they are dependent, if not,

they are not.

13

• Name dependence: when 2 instructions use same register or
memory location, called a name, but no flow of data between
the instructions associated with that name; 2 versions of name
dependence

• InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

• If anti-dependence caused a hazard in the pipeline, called a
Write After Read (WAR) hazard

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Name Dependence #1:
Anti-dependence

14

Name Dependence #2:
 Output dependence

• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers

This also results from the reuse of name “r1”
• If anti-dependence caused a hazard in the pipeline, called a

Write After Write (WAW) hazard

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

15

Dependences and hazards
• Dependences are a property of programs.
• If two instructions are data dependent they cannot

execute simultaneously.
• Whether a dependence results in a hazard and

whether that hazard actually causes a stall are
properties of the pipeline organization.

• Data dependences may occur through registers or
memory.

16

Dependences and hazards
• The presence of the dependence indicates the

potential for a hazard, but the actual hazard and
the length of any stall is a property of the pipeline.
A data dependence:
– Indicates that there is a possibility of a

hazard.
– Determines the order in which results

must be calculated, and
– Sets an upper bound on the amount of

parallelism that can be exploited.

17

Instruction Dependence Example
• For the following code identify all data and name dependence between

instructions and give the dependency graph

L.D F0, 0 (R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F0, -8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)

1
2
3
4
5
6

Please find dependencies!

18

Instruction Dependence Example
• For the following code identify all data and name dependence between

instructions and give the dependency graph

L.D F0, 0 (R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F0, -8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)

1
2
3
4
5
6

True Data Dependence:

Instruction 2 depends on instruction 1 (instruction 1 result in F0 used by instruction 2), Similarly, instructions (4,5)
Instruction 3 depends on instruction 2 (instruction 2 result in F4 used by instruction 3), Similarly, instructions (5,6)

Name Dependence:

Output Name Dependence (WAW):

Instruction 1 has an output name dependence over result register (name) F0 with instructions 4
Instruction 2 has an output name dependence over result register (name) F4 with instructions 5

Anti-dependence (WAR):

Instruction 2 has an anti-dependence with instruction 4 over register (name) F0 which is an operand of instruction 1
and the result of instruction 4
Instruction 3 has an anti-dependence with instruction 5 over register (name) F4 which is an operand of instruction 3
and the result of instruction 5

19

Instruction Dependence Example
Dependency Graph

L.D F0, 0 (R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F0, -8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)

1
2
3
4
5
6

L.D F0, 0 (R1)
1

ADD.D F4, F0, F2

2

S.D F4, 0(R1)

3

ADD.D F4, F0, F2

5
L.D F0, -8 (R1)

4

S.D F4, -8 (R1)

6

Date Dependence:
(1, 2) (2, 3) (4, 5) (5, 6)

Output Dependence:
(1, 4) (2, 5)

Anti-dependence:
(2, 4) (3, 5)

Example Code

20

Three Questions for Last Slide

 1. Can instruction 4 (second L.D) be moved just after
instruction 1 (first L.D)? If not, what dependencies are
violated?

 2. Can instruction 3 (first S.D) be moved just after
instruction 4 (second L.D)?

 3. How about moving 3 after 5 (the second ADD.D)? If not
what dependencies are violated?

No, instruction 4 cannot be moved just after instruction 1 because this
changes the original value of F0. Output dependence is violated.
Yes, instruction 3 can be moved just after instruction 4 because 3 and
4 reference to different memory locations.

No, instruction 3 cannot be moved after 5 because 5 changes the
content of F4. Anti-dependence is violated.

21

ILP and Data Hazards
• HW/SW must preserve program order:

order instructions would execute as if executed sequentially
1 at a time as determined by original source program

• HW/SW goal: exploit parallelism by preserving program
order only where it affects the outcome of the program

• Instructions involved in a name dependence can execute
simultaneously (how to implement?)

•if name used in instructions is changed
so instructions do not conflict

–Register renaming resolves name dependence for
registers
–Either by compiler or by HW

22

Control Dependencies
• Every instruction is control dependent on some set of

branches, and, in general, these control dependencies
must be preserved to preserve program order
if p1 {
 S1;
};
if p2 {
 S2;
}

• S1 is control dependent on p1, and
• S2 is control dependent on p2 but not on p1.

23

Control Dependence Ignored
• Control dependence need not be preserved

– willing to execute instructions that should not have been executed,
thereby violating the control dependences, if can do so without
affecting correctness of the program

 DADDU r2,r3,r4
 beqz r2,l1
 lw r1,0(r2)
l1:

 Can we move lw before the branch?

Instead, 2 properties critical to program correctness are

exception behavior and data flow

Don’t worry, it is OK to violate control dependences as
long as we can preserve the program semantics

24

Preserving the exception behavior
• Corollary:

 Any changes in the ordering of instructions
should not change how exceptions are raised in
a program.

→ Reordering of instruction execution should

not cause any new exceptions.

 DADDU r2,r3,r4
 beqz r2,l1
 lw r1,0(r2)
l1:

25

Preserving the data flow

• Consider the following example:
 daddu r1,r2,r3
 beqz r4,L
 dsubu r1,r5,r6
L: …
 or r7,r1,r8

• What can you say about the value of r1 used by
the or instruction?

26

Preserving the data flow
• Corollary:
 Preserving data dependences alone is not

 sufficient when changing program order.
 We must preserve the data flow.

• Data flow: actual flow of data values among
instructions that produce results and those that
consume them.

• These two principles together allow us to execute
instructions in a different order and still maintain
the program semantics.

• This is the foundation upon which ILP processors
are built.

27

Speculation
 DADDU R1, R2, R3
 BEQZ R12, skipnext
 DSUBU R4, R5, R6
 DADDU R5, R4, R9
skipnext OR R7, R8, R9

• Assume R4 is dead (rather than live) after skipnext.
• We can execute DSUBU before BEQZ since

– R4 could not generate an exception.
– The data flow cannot be affected.

• This type of code scheduling is called speculation.
– The compiler is betting on the branch outcome. In this case,

the bet is that the branch is usually not take.

28

Summary

• Two critical properties to maintain
program correctness:
 1. Any changes in the ordering of

instructions should not change how
exceptions are raised in a program.

 2. The data flow is preserved.

29

Exercise

Identify each dependence by type; list the two instructions
involved; identify which instruction is dependent; and, if
there is one, name the storage location involved.

 LD R1, 45(R2)

DADD R7, R1, R5
DSUB R8, R1, R6
OR R9, R5, R1
BNEZ R7, target
DADD R10, R8, R5
XOR R2, R3, R4

30

There are totally 8 dependences!

	Instruction-level parallelism: Introduction
	Ideas To Reduce Stalls
	Forms of Parallelism
	Instruction Level Parallelism (ILP)
	Exploiting Parallelism in Pipeline
	Slide Number 6
	Slide Number 7
	The Big Picture
	ILP Challenges
	Dependencies
	Slide Number 11
	Data Dependences through registers/memory
	Name Dependence #1: �Anti-dependence
	Name Dependence #2: � Output dependence
	Dependences and hazards
	Dependences and hazards
	Instruction Dependence Example
	Instruction Dependence Example
	Instruction Dependence Example�Dependency Graph
	Three Questions for Last Slide
	ILP and Data Hazards
	Control Dependencies
	Control Dependence Ignored
	Preserving the exception behavior
	Preserving the data flow
	Preserving the data flow
	Speculation
	Summary
	Exercise
	Slide Number 30

