Pipeline: EXceptions

Dr. Tao Xie

Fall, 2017

These slides are adapted from notes by Dr. David Patterson (UCB) and Dr. Xiao Qin (Auburn)

1

Exceptions - “Stuff Happens”

« EXxceptions definition: “unexpected
change in control flow”

 Another form of control hazard.

For example:
add $1, $2, $1; causing an arithmetic overflow
sw $3, 400($1);
add $5, $1, $2;

Invalid $1 contaminates other registers or memory locations!

Two Types of Exceptions: Interrupts and Traps

e [nterrupts
— Caused by external events:
» Network, Keyboard, Disk I/O, Timer
» Page fault - virtual memory
» System call - user request for OS action
— Asynchronous to program execution
— May be handled between instructions
— Simply suspend and resume user program
e Traps
— Caused by internal events
» Exceptional conditions (overflow)
» Undefined Instruction
» Hardware malfunction
— Usually Synchronous to program execution
— Condition must be remedied by the handler

— Instruction may be retried or simulated and program continued or program
may be aborted

Interrupts

- "
» |nterrupts are external events that require the processor’s attention.
— Peripherals and other /0 devices may need attention.
— Timer interrupts to mark the passage of time.
» These situations are not errors.
— They happen normally.
— All interrupts are recoverable;

o The interrupted program will need to be resumed after the
interrupt 1s handled.

|t 15 the operating system’s responsibility to do the right thing, such as:
— Save the current state.
— Find and load the correct data from the hard disk
— Transfer data to/from the |/0 device.

Exception handling

R RN AR T T T A uuAuAuAuAuApuARARARDRDRDRADADDD
» Exceptions are typically errors that are detected within the processor.
— The CPU tries to execute an illegal instruction opcode.
— An arithmetic instruction overflows, or attempts to divide by 0.

— The a load or store cannot complete because it is accessing a virtual
address currently on disk

» There are two possible ways of resolving these errors.
— |If the error is un-recoverable, the operating system kills the program.

— Less serious problems can often be fixed by the Q/S or the program
itself.

How interrupts/exceptions are handled

For simplicity exceptions and interrupts are handled the same way.

When an exception/interrupt occurs, we stop execution and transfer
control to the operating system, which executes an “exception handler”
to decide how it should be processed.

The exception handler needs to know two things.
— The cause of the exception (e.g., overflow or illegal opcode).

— What instruction was executing when the exception occurred. This
helps the operating system report the error or resume the program.

This is another example of interaction between software and hardware,
as the cause and current instruction must be supplied to the operating
system by the processor.

Synchronous vs Asynchronous

« Definition: If the event occurs at the same place

every time the program is executed with the same
data and memory allocation, the event Is
synchronous. Otherwise asynchronous.

e EXxcept for hardware malfunctions, asynchronous

events

are caused by devices external to the CPU

and memory.

*Asynchronous events usually are easier to

handlec

because asynchronous events can be

handled
Instruct

after the completion of the current
lon.

Exceptions in Simple five-stage pipeline
 |nstruction Fetch, & Memory stages
— Page fault on instruction/data fetch
— Misaligned memory access
— Memory-protection violation
 |nstruction Decode stage
— Undefined/illegal opcode
e EXxecution stage
— Arithmetic exception
* \Write-Back stage
— No exceptions!

What happens during an exception?

The Hardware Part

e The pipeline has to
1) stop executing the offending instruction in midstream,
2) letall prior instructions complete,
3) flush all following instructions,
4) set a register to show the cause of the exception,
5) save the address of the offending instruction, and

6) then jump to a prearranged address (the address of the exception
handler code)

The Software Part

» The software (OS) looks at the cause of the exception and “deals” with it
 Normally OS kills the program

Exceptions
System

user programl Exception

normal control flow:
sequential, jumps, branches, calls, returns

Exception = unprogrammed control transfer

— system takes action to handle the exception

* must record the address of the offending instruction

» record any other information necessary to return afterwards
— returns control to user
— must save & restore user state

H\HH
!

return from
exception

MIPS Interrupt Programming

= |n order to receive interrupts, the software has to enable them.
— On a MIPS processor, this is done by writing to the Status register.

o Interrupts are enabled by setting bit zero.
15 8 5 4 3 2 1 0

I] |

Interrupt
mask

= MIPS has multiple interrupt levels
— Interrupts for different levels can be selectively enabled.

— To receive an interrupt, it’s bit in the interrupt mask (bits 8-15 of the
Status register) must be set.

* |n the Figure, interrupt level 15 is enabled.

MIPS Interrupt Programming

* When an interrupt occurs, the Cause register indicates which one.
— For an exception, the exception code field holds the exception type.

— For an interrupt, the exception code field is 0000 and bits will be set
for pending interrupts.

o The register below shows a pending interrupt at level 15

15 10 5 .
Pending Exception
Interrupts code

» The exception handler is generally part of the operating system.

Additions to MIPS ISA to support Exceptions

» EPC (Exceptional Program Counter)
— A 32-bit register
—Hold the address of the offending instruction
e Cause
— A 32-bit register in MIPS (some bits are unused currently.)
—Record the cause of the exception

e Status - interrupt mask and enable bits and determines what
exceptions can occur.

 Control signals to write EPC , Cause, and Status

 Be able to write exception address into PC, increase mux set PC
to exception address (MIPS uses 8000 00180,).

e May have to undo PC = PC + 4, since want EPC to point to
offending instruction (not its successor); PC=PC -4

* What else? flush all following instructions
13

Flush instructions in Branch Hazard

36 sub $10, $4, $8

40 beq $1, $3, 7 #taget=40+4+7*4=72
44 and $12, $2, %5

A8 or $13, $2, $6

52

72 lw $4, 50(%7)

14

Flush instructions at IF stage in Branch Hazard

Clock 3

and $12, $2, $5 I beg $1, 53, 7
|
|
|
gunmm ", I
s IFFlush % :
Ll man I
| y
} { Hazard
detecti
™. unit
-

I
|
- | Control I'

: sub $10, 54, $8 i before<1= i before<2=
[[[
: :	
IDJEX	I
- EX/M |
M I
u WB MEM/WB
x S R
B =
51
Regi

M

$3 u

X

Dat |
me:lgry S
I ™
| Forwal:dlng tam—
—-=._\ unit /‘

Turn the instructions at IF stage into nop.

Flush instructions at IF stage in Branch Hazard

Iw 34, 50(%7)
F Fluzh

bubble (nop) beq $1, 53,72 sub $10, ... before<1=

|
|
Zero control sugnalls
|
|
|
|
|
|
|
|

detection I' i
\ unit | |
\, /DJE){

|
|
|
|
|
|
|
|
|
|
|
:
f g EX/MEM i
i—|u n W MEM/WB
| ‘.'..".0

Shift
left 2 i

1
¥

Data

memory

—
Registers 6;) 4
L
I“ Instru
me
] 72 -

Sign |
rend |

2

I Furwarldmg | |
e unit - . 4
S __',r_ .

Clock 4

16
Turn the instructions at IF stage into nop.

Additions to MIPS ISA to support Exceptions

------- .'. EX.F |_1.:h.:

FFush 5 e e b®

{i0.F1ush 2
/ \ ®ecesc’

Hazard
detection -

unit | Yy
g f
ID/EX

/ \7\.7 " |- e : EX/MEM
I: Control g M I:'il WE
UL :

pr— |
\

}
=

. - . M E MJ"WB
I' / ° -Cause ‘e I
/ ° .
/ s . y W
EI_D _/ EX _I_': EPC__.. M L B
* g Shitt
4 left 2

Registers é
L Y *
B00D01 80 =i pec Instruction N
™ memory [

Data Bl
memory [| ‘

¥

xc = ’—b(x:g)|-»<x:g>

_._j Forwarcling\lq._ —‘

s

Exceptions Example

40w sub $11, $2, $4

A, and $12, $2, 35

48w or $13, $2, 36

ACrx add $1, $2, $1;//arithmetic overflow
50w slt $15, $6, $7

Shwc w316, DO(H)ngmm

Exceptidn han

40000040hex sw $25, 1000($0)
40000044hex sw $12, 1000($0)

18

Exceptions Example

Iw $16, 50(37) slt $15, $6, §7 add $1, $2, $1 or $13, ... and $12, . .

EX_Flush

IF.Flush

| ID.Flush

| { Hazard 1

ﬂ' deteqtlon ‘
unit

Y

v
"

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- EX/IMEM

=)

wB MEM!\NB

12

BOODO180 ==

Data
memory

Clock 6

19

sw $25, 1000($0)

IF.Flush

Exceptions Example

BOODD1E0 -

Clock 7

e
00040

T

12

bubble (nop) bubble | bubble | or $13, ...
EX Flush | |
[[
ID.Flush I I
’/ Hazard \ : :
detection ! ¥ | |
unit] ¥ v | |
J = ﬁ\ﬂ | |
u 00 | |
00 I 0 ‘ XJ Y : :
@ -~ EXIMEM |
Control u oo Il\jl we 5 MEI\"lNVB
LTJ Cause X
- — (] o~ —vo
e
left —
1 -
@ ALU -
}

tifij!

_p\ unit

Data
memory

/.

20

Exceptiontype Sychronous vs, asyuchoonous— Userrequestvs,coemeed — Usermaskable vs. nommaskable ~—~— Withmvs, botween mstructions—~~ Resume vs, termmat
10 dence seques Asyochroniug Cotroed Normaskable Between Resune
Tivoke opertng syt Synchronots Dser teuest Wonmaskahl etween Resune
Tt strction sgcaen Synchronons ser teques ver maskable Between Resune
Bredpont Syucronots Dser tequest ser maskell Between it
Dteger et oo Syuhonons Cotrued ser maskable Ll Resune
Floatng-port attmetc oveow or nderow Syuchronons Cotroed (ser maskable Ll Resune
Page Syuchronons Cotroed Wmaskable Ll Resune
Misalgned memory aceses Syuchronons Cotued ver maskable Ll it
ey protecon wolaton Sycronots Cotroed Wonmaskahl L Resne
(sng wndefned trucon Syuclronons Cotrned Wonmaskatle Ll Teminte
Bardware mahncton Asyochronig Coeroed Wormaskable L Temte
Power e Aeynchronins Cotroed Wonmaskable L Teminte

Sycronons, coerce exceptonsoccummg it structions hat ca b et e e most il et

21

Summary

Exceptions

— Interrupts

— Traps

Exceptions in five-stage pipeline

Exception detection (not covered)

Exception handling

— Stop the offending instruction

— Flush instructions following the offending instructions
— Save the address of the offending instruction, and

— Jump to a prearranged exception handler code

22

Pipelining in MIPS

 MIPS architecture was designed to be pipelined

— Simple instruction format (makes IF, ID easy)
 Single-word instructions
» Small number of instruction formats
« Common fields in same place (e.g., rs, rt) in different formats

— Memory operations only in Iw, sw instructions
(simplifies EX)

— Memory operands aligned in memory (simplifies
MEM)

— Single value for writeback (limits forwarding)
 Pipelining is harder in CISC architectures

23

Pipelined Datapath with Control Signals

PC

PCSrc I PCSrc
ﬂ IFID B EX/MEM MEM/WB
4
Branch
RegWrile > @
rs Me mirite
== ADDR RD 3? 3 RN1 RDM
Instruction LI ALUSrc
Memory Register »| ADDR
—5*"|WN File Rp2}- i Data
E » WD
immed 16 X |32 (Aw
T (] Control
N
D MemRead
rt emRea
- < ALUOR
r
RegDst

Next Step: Adding Control

 Basic approach: build on single-cycle
control

— Place control unit in ID stage
— Pass control signals to following stages
o Later: extra features to deal with:

— Data forwarding
— Stalls
— Exceptions

25

Control for Pipelined Datapath

Control > wB
—p
—p M —l — ”|wB
_| - — 5 —
e | e |
RegDst MemRead RegWrite
ALUOp[1:0] MemWrite MemtoReg
ALUSrc Branch

IF/ID ID/EX EX/MEM MEM /WB

26

Control for Pipelined Datapath

Execution/Address Calculation
stage control lines

Memory access stage
control lines

Write-back stage
control lines

ALU ALU Mem Mem Reg |Mem to
Instruction |Reg Dst| Opl OpO0 |ALU Src|Branch| Read | Write write Reg
R-format 1 1 0 0 0 0 0 1 0
Iw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X
N\ : WiB
- A
—p{ Control : L Wis
>— | —
> EX _L
L. _l Wie |
IF/1ID ID/EX EX/MEM MEM/WB

27

Datapath and Control Unit

PC

PCSrc
ﬂ RegWrite
W
Control >_ L.W
»| M
] » EF l I—DE_ I DE
4 i
RegWrite ->@:' B'a“_ih)_ é
. &
—-»! ADDR RD = <» RN1 rD1 I =
Instruction —",%p RN2 ALUSrc 3
Memory Register - »| ADDR %
"5 File Rp2{- Data E
—p| WD Memory RD =
E — » wp -
immed 16 X |32 { Awu 1
; ReGDst Control
D g
rt 3 ALUOp lMemRead
rd
_ s | — | __‘
IFAID ID/EX EX/MEM MEM/WB

Tracking Control Signals - Cycle 1

Re gWirite
W
Control ’_ —
p{M W,
»| E M I W

RMM

Register
WN File Rp2}- :D

32 { Aau

Control

2 ALUOp MemRead
1 1

LW IFID ID/EX EX/MEM MEMIWB.—‘

®
ﬁwrﬂ—
T

i
s
(U Z =X I'I1’
, 4
| |
| |
\% MemtoReg

29

Tracking Control Signals - Cycle 2

=

Re gWirite

HE]

- IFAID

:" <ol RN1 RD1
——5%] RN2) ALUSre g
Register ADDR <
s"|WN File, grp2 Data =
—p| WD Memory RD =
E — WD -
i)15 32 { Auv 1
[Control
g RegDst
rt MemRead
= D ALUOp
rd Y —‘
LW ID/EX EX/MEM MEM/WB

Tracking Control Signals - Cycle 3

PCSrc
Re gWirite
w

L ofw

=

HIE]

B ADDR RD =

Instruction
Memory

L,
=

|
g
Y
5
\% MemtoReg

[
RegDst

rt D ALUOp MemRead
rd >
1
ADD IFID - ID/EX W EX/MEM MEMIWB.—‘

PCSrc

PC

Tracking Control Signals - Cycle 4

H RegWirite
w
Control
M i/
E 1l — I W
ADD
RegWrite -P@ Brar%_ g
’ 5
ADDR RD =23l RN1 RD1 =
Instruction | SN ALUSrc B Y
Memory 3 Register » ADDR &
5" WN File Rp2 Data E
—p| WD Memory RD =
E > WD ™
immed 16 X |32 ALU 1
T (] Control
g RegDst
rt 3 ALUOp MemRead
rd
SUB IFAD AI5D ID/EX EX/IMEM LW MEMIWB—‘

32

Tracking Control Signals - Cycle 5

Re gWirite

3
LY
g
2| =

™ W

=

= ADDR RD A

Instruction
Memory

1)

:
1]
5t
\% MemtoReg

IFAID
33

Class Exercise

Consider the following code segment

1
2
3
4.
S.
6
7
8

LW R1, O(R4)
LW R2, O(R5)
ADD R3, R1, R2
BNZ R3, L
LW R4, 100(R1)
LW R5, 100(R2)
SUB R3, R4, R5
L: SW R3, 50(R1)

Assuming that

o there is no forwarding,

» zero testing is being resolved during ID, and

* registers can be written in the first of the WB cycle and
also be read in the send half of the same WB cycle,

Question: identify the resources of various hazards in the
above code sequence.

34

Class Exercise

Consider the following code segment

LW R O(R4)
LW R2.B(R5)
ADD R3, R{, R2

1
2
3.
4. CBNZR3, LD
5.
6
7
8

LW R¢, 100(R1)
LW R;&\%Fizg)
SUB R3, R%,

L: SW R3, 50(R1)

Assuming that

e there is no forwarding,

» zero testing is being resolved during ID, and

* registers can be written in the first of the WB cycle and
also be read in the send half of the same WB cycle,

Question: identify the resources of various hazards in the
above code sequence.

35

Class Exercise

Consider the following code segment
1 LW R1, 0(R4)

2 LW R2, 0(R5)

3 ADD R3, R1, R2

4, BNZ R3, L

5. LW R4, 100(R1)

6 LW R5, 200(R2)

7 SUB R3, R4, R5

8. L:SWR3,50(R1)

Use compiler techniques to reshuffle/rewrite the code
(without changing the meaning of the program) as to
minimize data hazards as far as possible. Assume that no
other general purpose registers other than those used in the
code, are available.

36

Class Exercise

Consider the following code segment

1
2
3.
4.
5
6
7
8

LW R1, 0(R4) 1. LWRL, 0(R4)
LW R2, O(R5) 2. LWR2,0(R5)
ADD R3, R1, R2 3, LW R4, 100(R6)
BNZ R3, L — LW R5, 200(R6)
LW R4, 100(R6) 5 ADD R3, R1, R2
LW R5, 200(R6) 6. BNZR3,L
SUB R3, R4, R5 7. SUBRS3, R4 R5

L: SW R3, 50(R1) 8. L:SW R3,50(R1)

Use compiler techniques to reshuffle/rewrite the code
(without changing the meaning of the program) as to
minimize data hazards as far as possible. Assume that no
other general purpose registers other than those used in the
code, are available.

37

Sample Question

Use the following code fragment:

loop: LD R1,0(R2) . load R1 from address 0+R?2
DADDI R1,R1,1 'R1=R1+1

SD 0(R2),R1 ,store R1 at address 0+R2
DADDI R2,R2,4 '‘R2=R2+4

DSUB R4,R3,R2 ;R4=R3-R2

BNEZ R4,loop ;branch to loop i1s R4!=0

Assume that the initial value of R3 is R2+396. Let us use the
classic RISC five-stage integer pipeline (see Figure A.1)
and assume all memory accesses take 1 clock cycle.

38

Show the timing of this instruction sequence for the
RISC pipeline without any forwarding or bypassing
hardware but assuming a register read and a write
In the same clock cycle “forwards” through the
register file. Please fill up the following pipeline
timing chart like Figure A.5. Assume that the
branch is handled by flushing the pipeline. If all
memory references take 1 cycle, how many cycles
does this loop take to execute? (hints: branch
outcomes and targets are not known until the end of
the execute stage. All instructions introduced to the
pipeline prior to this point are flushed.)

39

1 2 3 45678 9 10 1 12 13 14 15 16 17 18
LD R1, O(RZ)
DADDI BRI, RI, #1
SO 0(RZ), Rl
DADDI B2, R2, #
DSUR R4, R3, R2
BNEZ R4, Loop
LD R1, O(RZ)

40

A1 a Forwarding is performed only via the register file. Branch outcomes and tar-
gets are not known until the end of the execute stage. All instructions intro-
duced to the pipeline prior to this point are flushed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LD R1, O(R2) F D XMW

DADDI R1, R1, #1 F 5 s DX MW

SO 0(R2), Rl F s s DX M W

DADDI RZ, RZ, #4 F D X M W

OSUB R4, R3, RZ F s s D X M W

BNEZ Rd, Loop F s s D X M W
LD R1, O(RZ) F D

Since the initial value of B3 is R2 + 396 and equal instance of the loop adds 4
to B2, the total number of iterations is 99, Notice that there are 8 cycles lost
to RAW hazards including the branch instruction. Two cycles are lost after
the branch because of the instruction flushing. It takes 16 cycles between loop
instances; the total number of cycles is 98%16 + 18 = 1584, The last loop
takes two addition cycles since this latency cannot be overlapped with addi-
tional loop instances.

	Pipeline: Exceptions
	Exceptions - “Stuff Happens”
	Two Types of Exceptions: Interrupts and Traps
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Synchronous vs Asynchronous
	Exceptions in Simple five-stage pipeline
	What happens during an exception?
	Exceptions
	Slide Number 11
	Slide Number 12
	Additions to MIPS ISA to support Exceptions
	Flush instructions in Branch Hazard
	Flush instructions at IF stage in Branch Hazard
	Flush instructions at IF stage in Branch Hazard
	Additions to MIPS ISA to support Exceptions
	Exceptions Example
	Exceptions Example
	Exceptions Example
	Slide Number 21
	Summary
	Pipelining in MIPS
	Pipelined Datapath with Control Signals
	Next Step: Adding Control
	Control for Pipelined Datapath
	Control for Pipelined Datapath
	Datapath and Control Unit
	Tracking Control Signals - Cycle 1
	Tracking Control Signals - Cycle 2
	Tracking Control Signals - Cycle 3
	Tracking Control Signals - Cycle 4
	Tracking Control Signals - Cycle 5
	Class Exercise
	Class Exercise
	Class Exercise
	Class Exercise
	Sample Question
	Slide Number 39
	Slide Number 40
	Slide Number 41

