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Exceptions - “Stuff Happens”

« EXxceptions definition: “unexpected
change in control flow”

 Another form of control hazard.

For example:
add $1, $2, $1; causing an arithmetic overflow
sw  $3, 400($1);
add $5, $1, $2;

Invalid $1 contaminates other registers or memory locations!



Two Types of Exceptions: Interrupts and Traps

e [nterrupts
— Caused by external events:
» Network, Keyboard, Disk I/O, Timer
» Page fault - virtual memory
» System call - user request for OS action
— Asynchronous to program execution
— May be handled between instructions
— Simply suspend and resume user program
e Traps
— Caused by internal events
» Exceptional conditions (overflow)
» Undefined Instruction
» Hardware malfunction
— Usually Synchronous to program execution
— Condition must be remedied by the handler

— Instruction may be retried or simulated and program continued or program
may be aborted



Interrupts

- "
» |nterrupts are external events that require the processor’s attention.
— Peripherals and other /0 devices may need attention.
— Timer interrupts to mark the passage of time.
» These situations are not errors.
— They happen normally.
— All interrupts are recoverable;

o The interrupted program will need to be resumed after the
interrupt 1s handled.

|t 15 the operating system’s responsibility to do the right thing, such as:
— Save the current state.
— Find and load the correct data from the hard disk
— Transfer data to/from the |/0 device.



Exception handling

R RN AR T T T A uuAuAuAuAuApuARARARDRDRDRADADDD
» Exceptions are typically errors that are detected within the processor.
— The CPU tries to execute an illegal instruction opcode.
— An arithmetic instruction overflows, or attempts to divide by 0.

— The a load or store cannot complete because it is accessing a virtual
address currently on disk

» There are two possible ways of resolving these errors.
— |If the error is un-recoverable, the operating system kills the program.

— Less serious problems can often be fixed by the Q/S or the program
itself.



How interrupts/exceptions are handled

For simplicity exceptions and interrupts are handled the same way.

When an exception/interrupt occurs, we stop execution and transfer
control to the operating system, which executes an “exception handler”
to decide how it should be processed.

The exception handler needs to know two things.
— The cause of the exception (e.g., overflow or illegal opcode).

— What instruction was executing when the exception occurred. This
helps the operating system report the error or resume the program.

This is another example of interaction between software and hardware,
as the cause and current instruction must be supplied to the operating
system by the processor.




Synchronous vs Asynchronous

« Definition: If the event occurs at the same place

every time the program is executed with the same
data and memory allocation, the event Is
synchronous. Otherwise asynchronous.

e EXxcept for hardware malfunctions, asynchronous

events

are caused by devices external to the CPU

and memory.

*Asynchronous events usually are easier to

handlec

because asynchronous events can be

handled
Instruct

after the completion of the current
lon.



Exceptions in Simple five-stage pipeline
 |nstruction Fetch, & Memory stages
— Page fault on instruction/data fetch
— Misaligned memory access
— Memory-protection violation
 |nstruction Decode stage
— Undefined/illegal opcode
e EXxecution stage
— Arithmetic exception
* \Write-Back stage
— No exceptions!



What happens during an exception?

The Hardware Part

e The pipeline has to
1) stop executing the offending instruction in midstream,
2) letall prior instructions complete,
3) flush all following instructions,
4) set a register to show the cause of the exception,
5) save the address of the offending instruction, and

6) then jump to a prearranged address (the address of the exception
handler code)

The Software Part

» The software (OS) looks at the cause of the exception and “deals” with it
 Normally OS kills the program



Exceptions
System

user programl Exception

normal control flow:
sequential, jumps, branches, calls, returns

Exception = unprogrammed control transfer

— system takes action to handle the exception

* must record the address of the offending instruction

» record any other information necessary to return afterwards
— returns control to user
— must save & restore user state

H\HH
!

return from
exception




MIPS Interrupt Programming

= |n order to receive interrupts, the software has to enable them.
— On a MIPS processor, this is done by writing to the Status register.

o Interrupts are enabled by setting bit zero.
15 8 5 4 3 2 1 0

I ] |

Interrupt
mask

= MIPS has multiple interrupt levels
— Interrupts for different levels can be selectively enabled.

— To receive an interrupt, it’s bit in the interrupt mask (bits 8-15 of the
Status register) must be set.

* |n the Figure, interrupt level 15 is enabled.



MIPS Interrupt Programming

* When an interrupt occurs, the Cause register indicates which one.
— For an exception, the exception code field holds the exception type.

— For an interrupt, the exception code field is 0000 and bits will be set
for pending interrupts.

o The register below shows a pending interrupt at level 15

15 10 5 .
Pending Exception
Interrupts code

» The exception handler is generally part of the operating system.



Additions to MIPS ISA to support Exceptions

» EPC (Exceptional Program Counter)
— A 32-bit register
—Hold the address of the offending instruction
e Cause
— A 32-bit register in MIPS (some bits are unused currently.)
—Record the cause of the exception

e Status - interrupt mask and enable bits and determines what
exceptions can occur.

 Control signals to write EPC , Cause, and Status

 Be able to write exception address into PC, increase mux set PC
to exception address (MIPS uses 8000 00180, ).

e May have to undo PC = PC + 4, since want EPC to point to
offending instruction (not its successor); PC=PC -4

* What else? flush all following instructions
13



Flush instructions in Branch Hazard

36 sub $10, $4, $8

40 beq $1, $3, 7 #taget=40+4+7*4=72
44 and $12, $2, %5

A8 or $13, $2, $6

52 ....

72 lw $4, 50(%7)
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Flush instructions at IF stage in Branch Hazard
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Flush instructions at IF stage in Branch Hazard
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Additions to MIPS ISA to support Exceptions
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Exceptions Example

40w sub $11, $2, $4

A, and $12, $2, 35

48w or  $13, $2, 36

ACrx add $1, $2, $1;//arithmetic overflow
50w slt  $15, $6, $7

Shwc w316, DO(H )ngmm

Exceptidn han

40000040hex  sw  $25,  1000($0)
40000044hex  sw  $12,  1000($0)
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Exceptions Example
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sw $25, 1000($0)

IF.Flush

Exceptions Example
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Summary

Exceptions

— Interrupts

— Traps

Exceptions in five-stage pipeline

Exception detection (not covered)

Exception handling

— Stop the offending instruction

— Flush instructions following the offending instructions
— Save the address of the offending instruction, and

— Jump to a prearranged exception handler code
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Pipelining in MIPS

 MIPS architecture was designed to be pipelined

— Simple instruction format (makes IF, ID easy)
 Single-word instructions
» Small number of instruction formats
« Common fields in same place (e.g., rs, rt) in different formats

— Memory operations only in Iw, sw instructions
(simplifies EX)

— Memory operands aligned in memory (simplifies
MEM)

— Single value for writeback (limits forwarding)
 Pipelining is harder in CISC architectures
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Pipelined Datapath with Control Signals
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Next Step: Adding Control

 Basic approach: build on single-cycle
control

— Place control unit in ID stage
— Pass control signals to following stages
o Later: extra features to deal with:

— Data forwarding
— Stalls
— Exceptions
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Control for Pipelined Datapath
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Control for Pipelined Datapath

Execution/Address Calculation
stage control lines

Memory access stage
control lines

Write-back stage
control lines
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Datapath and Control Unit
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Tracking Control Signals - Cycle 1
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Tracking Control Signals - Cycle 2
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Tracking Control Signals - Cycle 3
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PCSrc

PC

Tracking Control Signals - Cycle 4
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Tracking Control Signals - Cycle 5
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Class Exercise

Consider the following code segment

1
2
3
4.
S.
6
7
8

LW R1, O(R4)
LW R2, O(R5)
ADD R3, R1, R2
BNZ R3, L
LW R4, 100(R1)
LW R5, 100(R2)
SUB R3, R4, R5
L: SW R3, 50(R1)

Assuming that

o there is no forwarding,

» zero testing is being resolved during ID, and

* registers can be written in the first of the WB cycle and
also be read in the send half of the same WB cycle,

Question: identify the resources of various hazards in the
above code sequence.
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Class Exercise

Consider the following code segment

LW R O(R4)
LW R2.B(R5)
ADD R3, R{, R2

1
2
3.
4. CBNZR3, LD
5.
6
7
8

LW R¢, 100(R1)
LW R;&\%Fizg)
SUB R3, R%,

L: SW R3, 50(R1)

Assuming that

e there is no forwarding,

» zero testing is being resolved during ID, and

* registers can be written in the first of the WB cycle and
also be read in the send half of the same WB cycle,

Question: identify the resources of various hazards in the
above code sequence.
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Class Exercise

Consider the following code segment
1 LW R1, 0(R4)

2 LW R2, 0(R5)

3 ADD R3, R1, R2

4, BNZ R3, L

5. LW R4, 100(R1)

6 LW R5, 200(R2)

7 SUB R3, R4, R5

8. L:SWR3,50(R1)

Use compiler techniques to reshuffle/rewrite the code
(without changing the meaning of the program) as to
minimize data hazards as far as possible. Assume that no
other general purpose registers other than those used in the
code, are available.
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Class Exercise

Consider the following code segment

1
2
3.
4.
5
6
7
8

LW R1, 0(R4) 1. LWRL, 0(R4)
LW R2, O(R5) 2. LWR2,0(R5)
ADD R3, R1, R2 3, LW R4, 100(R6)
BNZ R3, L — LW R5, 200(R6)
LW R4, 100(R6) 5 ADD R3, R1, R2
LW R5, 200(R6) 6. BNZR3,L
SUB R3, R4, R5 7. SUBRS3, R4 R5

L: SW R3, 50(R1) 8. L:SW R3,50(R1)

Use compiler techniques to reshuffle/rewrite the code
(without changing the meaning of the program) as to
minimize data hazards as far as possible. Assume that no
other general purpose registers other than those used in the
code, are available.
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Sample Question

Use the following code fragment:

loop: LD R1,0(R2) . load R1 from address 0+R?2
DADDI R1,R1,1 'R1=R1+1

SD 0(R2),R1 ,store R1 at address 0+R2
DADDI R2,R2,4 '‘R2=R2+4

DSUB R4,R3,R2 ;R4=R3-R2

BNEZ R4,loop ;branch to loop i1s R4!=0

Assume that the initial value of R3 is R2+396. Let us use the
classic RISC five-stage integer pipeline (see Figure A.1)
and assume all memory accesses take 1 clock cycle.
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Show the timing of this instruction sequence for the
RISC pipeline without any forwarding or bypassing
hardware but assuming a register read and a write
In the same clock cycle “forwards” through the
register file. Please fill up the following pipeline
timing chart like Figure A.5. Assume that the
branch is handled by flushing the pipeline. If all
memory references take 1 cycle, how many cycles
does this loop take to execute? (hints: branch
outcomes and targets are not known until the end of
the execute stage. All instructions introduced to the
pipeline prior to this point are flushed.)
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1 2 3 45678 9 10 1 12 13 14 15 16 17 18
LD R1, O(RZ)
DADDI BRI, RI, #1
SO 0(RZ), Rl
DADDI B2, R2, #
DSUR R4, R3, R2
BNEZ R4, Loop
LD R1, O(RZ)
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A1 a Forwarding is performed only via the register file. Branch outcomes and tar-
gets are not known until the end of the execute stage. All instructions intro-
duced to the pipeline prior to this point are flushed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LD R1, O(R2) F D XMW

DADDI R1, R1, #1 F 5 s DX MW

SO 0(R2), Rl F s s DX M W

DADDI RZ, RZ, #4 F D X M W

OSUB R4, R3, RZ F s s D X M W

BNEZ Rd, Loop F s s D X M W
LD R1, O(RZ) F D

Since the initial value of B3 is R2 + 396 and equal instance of the loop adds 4
to B2, the total number of iterations is 99, Notice that there are 8 cycles lost
to RAW hazards including the branch instruction. Two cycles are lost after
the branch because of the instruction flushing. It takes 16 cycles between loop
instances; the total number of cycles is 98%16 + 18 = 1584, The last loop
takes two addition cycles since this latency cannot be overlapped with addi-
tional loop instances.
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