Exercise Class

Fall, 2017

Attention, please!

o Midterm Exam is scheduled on Monday Oct.
23, 2017 In class.

e \We will have a Midterm Preview class on Oct.
18, 2017.

Different instructions utilize different hardware blocks in the basic single-cycle
i1 implementation. The next three problems in this question refer to the following instruction:

Instruction Interpretation
a. | add Ry, R;, R, Reg[R4[=Reg[R]+Reg[R;]
b. | lw R, , Offs(R,)) Reg[R;|[=Mem|[Reg|R]+Offs]
Branch
M |
u
J”
4 — »—»
de _|Add M
RegMux | u 1
X
L ALU G|Je|Q1ion
Data |
o~| Register # MemWrite
- PC @ Address Instruction r— Registers >ALU Address
> Register # M Zero
Instruction T—O u mE:’lt:r B
= Data
ALUMux MemRead
J'" o -‘1\\\

Question 1- (1)

What are the values of control signals generated by
the control in the figure on last slide for this instruction?
(hint: just write “Add” for “addition operation” for “ALUOp”)

ettt Al Vit | o | b
d.

b.

ALUMux is the control signal that controls the Mux at the ALU input, 0 (Reg)
selects the output of the register file and 1 (Imm) selects the immediate from the
instruction word as the second input to the ALU.

RegMux is the control signal that controls the Mux at the Data input to the regis-
ter file, 0 (ALU) selects the output of the ALU and 1 (Mem) selects the output of
memory.

A value of X is a “don’t care” (does not matter if signal is 0 or 1)

Question 1- (2)

Which resources (blocks) perform a useful function for this instruction?

Question 1- (3)

1. Which resources (blocks) produce outputs, but their outputs are not
used for this instruction?
2. Which resources produce no outputs for this instruction?

. Outputs that are not used No outputs

b,

Solution

1 The values of the signals are as follows:

B 7T e T P T A

O (Reg) O (ALU)

b. 1 1 1 {Imm) o Add 1 (Mem) o

ALUMux is the control signal that controls the Mux at the ALU input, O (Reg)
selects the output of the register file and 1 (Imm) selects the immediate from the

instruction word as the second input to the ALU.

RegMux is the control signal that controls the Mux at the Data input to the regis-
ter file, O (ALU) selects the output of the ALU and 1 (Mem) selects the output of

memory.

A value of X is a “don’t care” (does not matter if signal is O or 1)

2 Resources performing a useful function for this instruction are:

Aa. All except Data Memory and branch Add unit
b. All except branch Add unit and second read port of the Registers
3
- Outputs that are not used No outputs
a. Branch Add Data Memory

b. Branch Add, second read port of Registers Mone (all units produce outputs)

Question 2

In this exercise, we examine how data dependences
affect execution in the basic five-stage pipeline

please indicate data dependences and their type for each of the following
two sequences of instructions. Note that one example of dependency In
code segment a “RAW on $1 from I1 to I3” was already given. Please
follow the format of this example dependency and write all other existing
data dependencies in code segment “a” and code segment “b”.

a | [1: Tw §1,40(%6) RAW on $1 from 11 to I3
[2: add §6,92,%2
[3: sw $6,50(81)

b, | [1: Tw §5,-16(45)
[2: sw §5,-16(§5)
[3: add $5,95,95

Question 2 —(2)

Assume there Is no forwarding In this
pipelined processor. Indicate hazards and
add nop instructions to eliminate them

a. | 1w $1,40(36)

b. | 1w $5,-16(35)

Question 2 — (3)

Assume there is full forwarding. Indicate hazards
and add nop instructions to eliminate them

Instruction
sequence

10

Solution

1

a. | I1: Tw $1,40(%6) RAW on $1 from 11 to 13
[2: add $6,%2,%¢2 RAW on $6 from 12 to 13
I3: sw $6,50(%1) WAR on $6 from 11 to 12

b. | I1: Tw §5,-16(%5) RAW on $5 from 11 to 12 and I3
I2: sw $5,-16(%5) WAR on $5 from I1 and 12 to 13
[3: add $5,%5,%5 WAW on $5 from 11 to I3

2 In the basic five-stage pipeline WAR and WAW dependences do not cause
any hazards. Without forwarding, any RAW dependence between an instruction
and the next two instructions (if register read happens in the second half of the
clock cycle and the register write happens in the first half). The code that eliminates
these hazards by inserting nop instructions is:

11

Solution
I—

Tw $1,40(%6)
add $6,%2,%2

nop
nop
sw F6,500(%1)
b. Tw $5,-160%5)

Delay I3 to avoid RAW hazard on $1 from 11

nop Delay 12 to avoid RAW hazard on $5 from 11
nop

sw $5,-16(%5)

add $5.3%5,%5 Mote: no RAW hazard from on $5 from |1 now

3 With full forwarding, an ALU instruction can forward a value to EX stage
of the next instruction without a hazard. However, a load cannot forward to the
EX stage of the next instruction (by can to the instruction after that). The code that
eliminates these hazards by inserting nop instructions is:

instruction
sequence

a. Tw $1,400%6)
add $6,%52,%2

sw $6,500%1) Mo RAW hazard on $1 from |1 (forwarded)
b. Tw $5,-16(%5)

nop Delay 12 to avoid RAW hazard on $5 from I1

sw $5,-16(%5) Value for $5 is forwarded from 12 now

add $5,%5.,%5% MNote: no RAW hazard from on $5 from |1 now

Question 3

In this exercise, we examine how resource hazards, control hazards, and ISA design can affect
pipelined execution. Problems in this exercise refer to the following fragment of MIPS code:

Instruction sequence
a. Iw $1, 40 ($6)
beq $2. $0, Label ; Assume $2 =— $0
sw $6, 50 ($2)
Label: add $2, $3. $4
sw $3, 50 (%4)
b. Iw 85, -16 (%$5)
sw $4,-16 ($4)
Iw $3,-20(%4)
beq $2. $0, Label ; Assume $2 != $0
add $5, $1, $4

For this problem, assume that all branches are perfectly predicted (this eliminates all control
hazards) and that no delay slots are used. If we only have one memory (for both instructions and
data), there is a structural hazard every time we need to fetch an instruction in the same cycle in
which another instruction accesses data. To guarantee forward progress, this hazard must always
be resolved in favor of the instruction that accesses data. What is the total execution time of this
instruction sequence in the five-stage pipeline that only has one memory? We have seen that data
hazards can be eliminated by adding nops to the code. Can you do the same with this strLi%turaI
hazard? Why?

Question 3 — (1)

Note that in the pipelined execution that you will show below, use
*** to represent a stall when an instruction cannot be fetched because
a load or store instruction iIs using the memory In that cycle. Cycles
are represented from left to right, and for each instruction we show
the pipeline stage it is in during that cycle:

I Y S

Tw $1,40(%6) MEM WB
beq $2,%0,Lbl
add $2,%$3,%4
sw $3,50(%4)

b. | 1w $5,-16(%5) | IF ID EX MEM WB
SW $4,-16{$4}
Tw $3,-20(%4)
beq $2, $D,Lb1
add $5,%1,%4

14

Solution

1 In the pipelined execution shown below, *** represents a stall when an
instruction cannot be fetched because a load or store instruction is using the mem-
ory in that cycle. Cycles are represented from left to right, and for each instruction
we show the pipeline stage it is in during that cycle:

B T S 7

Tw $1,40(%6) MEM
beq $2,%0,Lbl IF ED EX MEM WE
add $2,%3,%4 IF ID EX MEM WB
sw $3,50(%4) %+ IF ID EX MEM WB
b. | Tw $5,-16(%5) | IF ID EX MEM WB 12
sw $4,-16(%4) IF ED EX MEM WB
Tw $3,-200%4) IF ID EX MEM WB
beq $2,%0,Lbl Fh& xx& owxx R ID EX MEM WE
add $5,%1,%4 IF ID EX MEM WB

We can notadd nops to the code to eliminate this hazard—nops need to be fetched

just like any other instructions, so this hazard must be addressed with a hardware
hazard detection unit in the processor.

Question 4

Problem in this exercise assumes that
Instructions executed by a pipelined processor
are broken down as follows:

ADD

BEQ

LW

SW

50%

25%

15%

10%

30%

15%

35%

20%

16

Question 4 — (1)

e Assuming there are no stalls and that 60%
of all conditional branches are taken, In
what percentage of clock cycles does the
branch adder in the EX stage generate a
value that Is actually used?

1 Of all these instructions, the value produced by this adder is actually used
only by a beq instruction when the branch is taken. We have:

a. | 15% (60% of 25%)

b. | 9% (60% of 15%)

Question 4 — (2)

« Assuming there are no stalls, how often
(percentage of all cycles) do we use the data
memory?

Of these instructions, only 1w and sw use the data memory. We have:

25% (15% + 10%)

55% (35% + 20%)

18

Question 4 — (3)

« Each pipeline stage has some latency. Additionally,
pipelining introduces registers between stages, and each of
these adds an additional latency. The remaining problems in
this exercise assume the following latencies for logic within
each pipeline stage and for each register between two stages

IF ID EX MEM WB Pipeline
register
100ps | 120ps | 90ps | 130ps | 60 ps 10 ps
180ps | 100ps | 170ps | 220 ps | 60 ps 10 ps

« Assuming there are no stalls, what Is the
speed-up achieved by pipelining a single-
cycle datapath?

The clock cycle time of a single-cycle is the sum of all latencies for the
logic of all five stages. The clock cycle time of a pipelined datapath is the maximum
latency of the five stage logic latencies, plus the latency of a pipeline register that
keeps the results of each stage for the next stage. We have:

Lo rpoimed | spontup

500ps 140ps 3.57

b. 730ps 230ps 3.17

20

Question 5

* The importance of having a good branch predictor depends on how often
conditional branches are executed. Together with branch predictor
accuracy, this will determine how much is spent stalling due to
mispredicted branches. In this exercise, assume that the breakdown of
dynamic instructions into various instruction categories is as follows:

R-Type beq jmp low SW
50% 15% 10% 15% 10%
30% 10% 5% 35% 20%

Also, assume the following branch predictor accuracies:

Always-taken | Always not-taken | 2-bit
40% 60% 80%
60% 40% 95% 21

Question 5

Stall cycles due to mispredicted branes increase the CPI. What is the
extra CPI due to mispredicted branches with the always-taken
predictor? Assume that branch outcomes are determined in the EX
stage, that there are no data hazards, and that no delay slots are used.

Each branch that is not correctly predicted by the always-taken predictor

will cause 3 stall cycles, so we have:

- Extra CPI

3x(1-0.40)x0.15=0.27

3x(1-0.60)x0.10 =0.12

22

	Exercise Class
	Attention, please!
	Slide Number 3
	Question 1- (1)
	Question 1- (2)
	Question 1- (3)
	Solution
	Question 2
	Question 2 –(2)
	Question 2 – (3)
	Solution
	Solution
	Question 3
	Question 3 – (1)
	Solution
	Question 4
	Question 4 – (1)
	Question 4 – (2)
	Question 4 – (3)
	Slide Number 20
	Question 5
	Question 5

