
1

Pipeline: Branch Prediction

Fall, 2017

These slides are adapted from notes by Dr. David Patterson (UCB)

2

Static Branch Prediction
For every branch encountered during execution predict whether the branch will

be taken or not taken.
Predicting branch not taken:

1. Speculatively fetch and execute instructions following the branch
2. If prediction incorrect flush pipeline of speculated instructions

• Convert these instructions to NOPs by clearing pipeline registers
• These have not updated memory or registers at time of flush

Predicting branch taken:
1. Speculatively fetch and execute instructions at the branch target address
2. Useful only if target address known earlier than branch outcome

• May require stall cycles till target address known
• Flush pipeline if prediction is incorrect
• Must ensure that flushed instructions do not update

memory/registers

3

Control Hazard - Stall

beq
writes PC

here
new PC
used here

0 2 4 6 8 10 12

IF ID EX MEM WB

16

add $r4,$r5,$r6

beq $r0,$r1,tgt IF ID EX MEM WB

IF ID EX MEM WBsw $s4,200($t5)

18

BUBBLE BUBBLE BUBBLE BUBBLE BUBBLE
STALL

Why the penalty is only 1 cycle?

4

Control Hazard - Correct Prediction

Fetch assuming
branch taken

0 2 4 6 8 10 12

IF ID EX MEM WB

16

add $r4,$r5,$r6

beq $r0,$r1,tgt IF ID EX MEM WB

IF ID EX MEM WBtgt:
sw $s4,200($t5)

18

5

Control Hazard - Incorrect Prediction

“Squashed”
instruction

0 2 4 6 8 10 12

IF ID EX MEM WB

16

add $r4,$r5,$r6

beq $r0,$r1,tgt IF ID EX MEM WB

IF ID EX MEM WB

18

BUBBLE BUBBLE BUBBLE BUBBLE

tgt:
sw $s4,200($t5)
(incorrect - STALL)

IF

or $r8,$r8,$r9

6

1-Bit Branch Prediction
• Branch History Table (BHT): Lower bits of PC address index

table of 1-bit values
– Says whether or not branch taken last time
– No address check (saves HW, but may not be right branch)
– If prediction is wrong, invert prediction bit

a31a30…a11…a2a1a0 branch instruction

1K-entry BHT

10-bit index

0

1

1

prediction bit

Instruction memory Hypothesis: branch will do the same again.

1 = branch was last taken
0 = branch was last not taken

7

1-Bit Branch Prediction
• Example:
 Consider a loop branch that is taken 9 times

in a row and then not taken once. What is the
prediction accuracy of 1-bit predictor for this
branch assuming only this branch ever
changes its corresponding prediction bit?
(assume the first is a misprediction)

 –Answer: 80%. Because there are two
mispredictions – one on the first iteration and
one on the last iteration.

8

• Solution: 2-bit scheme where change prediction only if get
misprediction twice
Red: stop, not taken
Blue: go, taken

2-Bit Branch Prediction
(Jim Smith, 1981)

T

T

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
Taken

11 10

01 00
T

NT

T

NT

NT

9

n-bit Saturating Counter
• Values: 0 ~ 2n-1
• When the counter is greater than or equal to

one-half of its maximum value, the branch is
predicted as taken. Otherwise, not taken.

• Studies have shown that the 2-bit predictors do
almost very well, and thus most systems rely on
2-bit branch predictors.

10

2-bit Predictor Statistics

Prediction accuracy of 4K-entry 2-bit prediction buffer on SPEC89 benchmarks:
accuracy is lower for integer programs (gcc, espresso, eqntott, li) than for FP

11

2-bit Predictor Statistics

Prediction accuracy of 4K-entry 2-bit prediction buffer vs. “infinite” 2-bit buffer:
increasing buffer size from 4K does not significantly improve performance

12

Control Hazards - Solutions

• Delayed branches – code rearranged by
compiler to place independent instruction after
every branch (in delay slot).

add $R4,$R5,$R6
beq $R1,$R2,20
lw $R3,400($R0)

beq $R1,$R2,20
add $R4,$R5,$R6
lw $R3,400($R0)

13

Basic Idea of Delayed Branch
• Find an instruction that can be safely executed whether the

branch is taken or not, and execute that instruction.
• When a branch instruction is encountered, the hardware puts

the instruction following the branch into the pipe and begins
executing it.

• We do not need to worry about whether the branch is taken
or not

• we do not need to clear the pipe because no matter whether
the branch is taken or not, we know the instruction is safe to
execute.

• The compiler promised it would be safe.

14

Scheduling the Delay Slot

15

Understanding Delayed Branch
• Instruction from before the branch
Branch must not depend on moved instruction
Always improves performance

• From branch target
Must be OK to execute moved instruction when the branch is not taken
Improves performance when branch is taken

• From fall through
Must be OK to execute moved instruction when branch is taken
Improves performance when branch is not taken

By OK we mean that the work is wasted, but the program will still
execute correctly.

16

Example Questions (1)

• Limitations on Delayed branch scheduling
come from two things. What are they?

- restrictions on the instructions that are scheduled into
delay slots.

- ability to predict at compile time whether branch is likely
to be taken or not.

17

Example Question (2)

Does it matter to the instruction in the branch
delay slot whether or not the branch is taken?

No. Whether the branch is taken or not, if the instruction is chosen to
go along with the requirements set forth, it will execute independent
of the branch. It should be chosen to be valid and useful.

18

Example Question (3)

Whose job is it to make successor instructions valid
and useful?

It is the compiler's job.

19

Example Question (4)

List the three types of instructions that would
best fill the branch delay slot and explain
how they improve pipeline performance.

-Instruction from before the branch always improves performance.

-Instruction from branch target improves performance when branch
taken.

- Instruction from fall through improves performance when branch
not taken.

20

Example Code

1. We could safely execute the SW R4, 0(R6) each time through the
loop, but that would provide marginal improvement. Why?

2. What is a better solution?

21

Example Code (Cont.)
• A better solution is to move SW R3, 0(R5) right after

BNEZ.

• We will still execute it each time through the loop,
because it is in the branch-delay slot, the final result will
not be altered.

• We get much better overall performance, whether we take
the loop or not. Why?

• See next slide for an example run of this code fragment
(twice running).

22

Example Code (Cont.)

23

Example Question (5)
 Consider two different 5stage pipeline machines (IF ID

EXMEMWB). The first machine resolves branches in the
ID stage, uses one branch delay slot, and can fill 40% of
the delay slots with useful instructions. The second
machine resolves branches in the EX stage and uses a
predictnottaken scheme. Assume that the cycle times of the
machines are identical. Assume that 25%of the instructions
are branches, 30% of branches are taken, and that stalls are
due to branches alone.

Which machine is faster? Justify your answer.

24

Answer to Question 5

1. For the first machine, for 60% of the branches, a cycle
is wasted due to the inability to fill the delay slot. The
CPI of this machine is 1 + 25% *60%* 1= 1.15.

2. For the second machine, for 30% of the branches, two
cycles are wasted due to the unknown target address.
The CPI of the second machine is 1 + 25% * 30%* 2
= 1.15.

3. Therefore, the two machines have equal performance.

25

Summary of Delayed Branch
• This strategy offers improvements regardless of whether we

take or do not take the branch.
• The problem is trying to find an instruction that can both be

safely executed whether the branch is taken or not, and will
still improve performance.

• This is the compiler's job, and so using a branch delay slot
makes compilers more complex to program.

• Using this option does cause one shortcoming, if the
hardware is changed so that a delay-branch slot is no longer
used, all the old programs will no longer work.

26

Summary - Control Hazard Solutions
• Stall - stop fetching instr. until result is available

– Significant performance penalty
– Hardware required to stall

• Predict - assume an outcome and continue fetching
(undo if prediction is wrong)
– Performance penalty only when guess wrong
– Hardware required to "squash" instructions

• Delayed branch - specify in architecture that
following instruction is always executed
– Compiler re-orders instructions into delay slot
– Insert "NOP" (no-op) operations when can't use (~50%)
– This is how original MIPS worked

27

Summary - Pipelining Overview

• Pipelining increase throughput (but not
latency)

• Hazards limit performance
– Structural hazards
– Control hazards
– Data hazards

	Pipeline: Branch Prediction
	Static Branch Prediction
	Control Hazard - Stall
	Control Hazard - Correct Prediction
	Control Hazard - Incorrect Prediction
	1-Bit Branch Prediction
	1-Bit Branch Prediction
	2-Bit Branch Prediction�(Jim Smith, 1981)
	n-bit Saturating Counter
	2-bit Predictor Statistics
	2-bit Predictor Statistics
	Control Hazards - Solutions
	Basic Idea of Delayed Branch
	Slide Number 14
	Understanding Delayed Branch
	Example Questions (1)
	Example Question (2)
	Example Question (3)
	Example Question (4)
	Example Code
	Example Code (Cont.)
	Example Code (Cont.)
	Example Question (5)
	Answer to Question 5
	Summary of Delayed Branch
	Summary - Control Hazard Solutions
	Summary - Pipelining Overview

