
1

Pipeline: Hazards

Fall, 2017

These slides are adapted from notes by Dr. David Patterson (UCB)

2

Single-Cycle vs. Pipelined Execution

Non-Pipelined
0 200 400 600 800 1000 1200 1400 1600 1800

lw $1, 100($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $2, 200($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $3, 300($0) Instruction
Fetch

Time
Instruction
Order

800ps

800ps

800ps

Pipelined
0 200 400 600 800 1000 1200 1400 1600

lw $1, 100($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $2, 200($0)

lw $3, 300($0)

Time
Instruction
Order

200ps
Instruction

Fetch
REG
RD

ALU REG
WR

MEM

Instruction
Fetch

REG
RD

ALU REG
WR

MEM
200ps

200ps 200ps 200ps 200ps 200ps

3

Speedup
• Consider the unpipelined processor introduced previously. Assume that it has

a 1 ns clock cycle and it uses 4 cycles for ALU operations and branches, and
5 cycles for memory operations, assume that the relative frequencies of these
operations are 40%, 20%, and 40%, respectively. Suppose that due to clock
skew and setup, pipelining the processor adds 0.2ns of overhead to the clock.
Ignoring any latency impact, how much speedup in the instruction execution
rate will we gain from a pipeline?

Average instruction execution time
 = 1 ns * ((40% + 20%)*4 + 40%*5)
 = 4.4ns

Speedup from pipeline
 = Average instruction time unpiplined/Average instruction time pipelined
 = 4.4ns/1.2ns = 3.7

4

Comments about Pipelining

• The good news
– Multiple instructions are being processed at same time
– This works because stages are isolated by registers
– Best case speedup of N

• The bad news
– Instructions interfere with each other - hazards

• Example: different instructions may need the same piece of
hardware (e.g., memory) in same clock cycle

• Example: instruction may require a result produced by an
earlier instruction that is not yet complete

5

Pipeline Hazards
• Limits to pipelining: Hazards prevent next

instruction from executing during its
designated clock cycle
– Structural hazards: two different instructions use

same h/w in same cycle
– Data hazards: Instruction depends on result of

prior instruction still in the pipeline
– Control hazards: Pipelining of branches & other

instructions that change the PC

6

Structural Hazards
• Attempt to use same resource twice at same time
• Example: Single Memory for instructions, data

– Accessed by IF stage
– Accessed at same time by MEM stage

• Solutions ?
– Delay second access by one clock cycle

– Provide separate memories for instructions, data
•This is what the book does

•This is called a “Harvard Architecture”

•Real pipelined processors have separate caches

7

Pipelined Example -
Executing Multiple Instructions

• Consider the following instruction
sequence:

lw $r0, 10($r1)

sw $sr3, 20($r4)

add $r5, $r6, $r7

sub $r8, $r9, $r10

8

Executing Multiple Instructions
Clock Cycle 1

LW

9

Executing Multiple Instructions
Clock Cycle 2
LW SW

10

Executing Multiple Instructions
Clock Cycle 3

LW SW ADD

11

Executing Multiple Instructions
Clock Cycle 4

LW SW ADD SUB

12

Executing Multiple Instructions
Clock Cycle 5

LW SW ADD SUB

13

Executing Multiple Instructions
Clock Cycle 6

SW ADD SUB

14

Executing Multiple Instructions
Clock Cycle 7

ADD SUB

15

Executing Multiple Instructions
Clock Cycle 8

SUB

16

Alternative View - Multicycle Diagram

IM REG ALU DM REGlw $r0, 10($r1)

sw $r3, 20($r4)

add $r5, $r6, $r7

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

IM REG ALU DM REG

IM REG ALU DM REG

sub $r8, $r9, $r10 IM REG ALU DM REG

CC 8

17

Alternative View - Multicycle Diagram

IM REG ALU DM REGlw $r0, 10($r1)

sw $r3, 20($r4)

add $r5, $r6, $r7

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

IM REG ALU DM REG

IM REG ALU DM REG

sub $r8, $r9, $r10 IM REG ALU DM REG

CC 8

Memory Conflict

18

One Memory Port Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
LU

DMem Ifetch Reg

Bubble Bubble Bubble Bubble Bubble

19

Structural Hazards
Some Common Structural Hazards:
• Memory:

– we’ve already mentioned this one.
• Floating point:

– Since many floating point instructions require many
cycles, it’s easy for them to interfere with each other.

• Starting up more of one type of instruction than
there are resources.
– For instance, the PA-8600 can support two ALU + two

load/store instructions per cycle - that’s how much
hardware it has available.

20

Dealing with Structural Hazards
Stall

– low cost, simple
– Increases CPI
– use for rare case since stalling has performance effect

Pipeline hardware resource
– useful for multi-cycle resources
– good performance
– sometimes complex e.g., RAM

Replicate resource
– good performance
– increases cost (+ maybe interconnect delay)
– useful for cheap or divisible resources

21

Structural Hazards
• Structural hazards are reduced with these rules:

– Each instruction uses a resource at most once
– Always use the resource in the same pipeline stage
– Use the resource for one cycle only

• Many RISC ISA’s designed with this in mind
• Sometimes very complex to do this.

– For example, memory of necessity is used in the IF and
MEM stages.

22

Structural Hazards
We want to compare the performance of two machines.

Which machine is faster?
– Machine A: Dual ported memory - so there are no memory

stalls
– Machine B: Single ported memory, but its pipelined

implementation has a 1.05 times faster clock rate
Assume:

– Ideal CPI = 1 for both
– Loads are 40% of instructions executed

23

Speedup from Pipelining
Speedup from pipelining =
Average instruction time unpipelined
Average instruction time pipelined
 CPI unpipelined ×Clock cycle unpipelined

 CPI pipelined ×Clock cycle pipelined

CPI pipelined = Ideal CPI + Pipeline stall clock
cycles per instruction

CPI unpipelined = Ideal CPI ×Pipeline depth

24

Speed Up Equations for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

Instper cycles Stall Average CPI Ideal CPIpipelined +=

For simple RISC pipeline, the Ideal CPI on a pipelined
processor = 1:

25

Structural Hazards
We want to compare the performance of two machines. Which machine is faster?
• Machine A: Dual ported memory - so there are no memory stalls
• Machine B: Single ported memory, but its pipelined implementation has a 1.05 times

faster clock rate
Assume:
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

26

Summary - Structural Hazards

• Speed Up <= Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:

– Structural: need more HW resources
– Data (RAW,WAR,WAW):
– Control

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

27

Data Hazards
• Data hazards occur when data is used

before it is stored

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution
order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of
register $2:

DM Reg

Reg

Reg

Reg

DM

The use of the result of the SUB instruction in the next three instructions causes a
data hazard, since the register is not written until after those instructions read it.

28

Data Hazards
Read After Write (RAW)

InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler nomenclature). This
hazard results from an actual need for communication.

Execution Order is:
InstrI
InstrJ

I: add r1,r2,r3
J: sub r4,r1,r3

29

Data Hazards
Write After Read (WAR)

InstrJ tries to write operand before InstrI reads i

– Gets wrong operand

– Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

Execution Order is:
InstrI
InstrJ

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

–All instructions take 5 stages, and

– Reads are always in stage 2, and

– Writes are always in stage 5

30

Data Hazards
Write After Write (WAW)

InstrJ tries to write operand before InstrI writes it
– Leaves wrong result (InstrI not InstrJ)

• Called an “output dependence” by compiler writers

This also results from the reuse of name “r1”.
• Can’t happen in MIPS 5 stage pipeline because:

Execution Order is:
InstrI
InstrJ

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

–All instructions take 5 stages, and
– Writes are always in stage 5

•Will see WAR and WAW in later more
complicated pipes

	Pipeline: Hazards
	Single-Cycle vs. Pipelined Execution
	Speedup
	Comments about Pipelining
	Pipeline Hazards
	Structural Hazards
	Pipelined Example - �Executing Multiple Instructions
	Executing Multiple Instructions�Clock Cycle 1
	Executing Multiple Instructions�Clock Cycle 2
	Executing Multiple Instructions�Clock Cycle 3
	Executing Multiple Instructions�Clock Cycle 4
	Executing Multiple Instructions�Clock Cycle 5
	Executing Multiple Instructions�Clock Cycle 6
	Executing Multiple Instructions�Clock Cycle 7
	Executing Multiple Instructions�Clock Cycle 8
	Alternative View - Multicycle Diagram
	Alternative View - Multicycle Diagram
	One Memory Port Structural Hazards
	Structural Hazards
	Dealing with Structural Hazards
	Structural Hazards
	Structural Hazards
	Speedup from Pipelining
	Speed Up Equations for Pipelining
	Structural Hazards
	Summary - Structural Hazards
	Data Hazards
	Data Hazards
	Data Hazards
	Data Hazards

