
1

Full Multicycle Datapath

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero
RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB
<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1
2
3

M
U
X

1

0

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

2

Our new datapath
• We eliminate both extra adders in a multicycle datapath, and

instead use just one ALU, with multiplexers to select the proper
inputs.

• A 2-to-1 mux ALUSrcA sets the first ALU input to be the PC or a
register.

• A 4-to-1 mux ALUSrcB selects the second ALU input from among:
— the register file (for arithmetic operations),
— a constant 4 (to increment the PC),
— a sign-extended constant (for effective addresses), and
— a sign-extended and shifted constant (for branch targets).

• This permits a single ALU to perform all of the necessary
functions.
— Arithmetic operations on two register operands.
— Incrementing the PC.
— Computing effective addresses for lw and sw.
— Adding a sign-extended, shifted offset to (PC + 4) for branches.

3

Full Multicycle Implementation

4

Historical Perspective
• In the ‘60s and ‘70s microprogramming was very important for

implementing machines
• This led to more sophisticated ISAs and the VAX
• In the ‘80s RISC processors based on pipelining became popular
• Pipelining the microinstructions is also possible!
• Implementations of IA-32 architecture processors since 486 use:

– “hardwired control” for simpler instructions
 (few cycles, FSM control implemented using PLA)

– “microcoded control” for more complex instructions
 (large numbers of cycles, central control store)

• The IA-64 architecture uses a RISC-style ISA and can be implemented
without a large central control store

5

Pentium 4
• Pipelining is important (last IA-32 without it was 80386 in 1985)

• Pipelining is used for the simple instructions favored by compilers

“Simply put, a high performance implementation needs to ensure that the simple
instructions execute quickly, and that the burden of the complexities of the
instruction set penalize the complex, less frequently used, instructions”

Control

Control

Control

Enhanced
floating point
and multimedia

Control

I/O
interface

Instruction cache

Integer
datapath

Data
cache

Secondary
cache
and
memory
interface

Advanced pipelining
hyperthreading support

Chapters 3 and 4

Chapter 5

6

Pentium 4
• Somewhere in all that “control” we must handle complex instructions

• Processor executes simple microinstructions, 70 bits wide (hardwired)
• 120 control lines for integer datapath (400 for floating point)
• If an instruction requires more than 4 microinstructions to implement,

control from microcode ROM (8000 microinstructions)
• Its complicated!

Control

Control

Control

Enhanced
floating point
and multimedia

Control

I/O
interface

Instruction cache

Integer
datapath

Data
cache

Secondary
cache
and
memory
interface

Advanced pipelining
hyperthreading support

7

Summary (1)
• A single-cycle CPU has two main disadvantages.

– The cycle time is limited by the worst case latency.
– It requires more hardware than necessary.

• A multicycle processor splits instruction execution
into several stages.
– Instructions only execute as many stages as required.
– Each stage is relatively simple, so the clock cycle time is

reduced.
– Functional units can be reused on different cycles.

• We made several modifications to the single-cycle
datapath.
– The two extra adders and one memory were removed.
– Multiplexers were inserted so the ALU and memory can be

used for different purposes in different execution stages.
– New registers are needed to store intermediate results.

8

Summary (2)
• If we understand the instructions…

 We can build a simple processor!

• If instructions take different amounts of time, multi-cycle
is better

• Datapath implemented using:

– Combinational logic for arithmetic

– State holding elements to remember bits

• Control implemented using:

– Combinational logic for single-cycle implementation

– Finite state machine for multi-cycle implementation

9

Pipeline: Introduction

These slides are adapted from notes by Dr. David Patterson (UCB)

10

What is Pipelining?

• A way of speeding up execution of
instructions

• Key idea:

overlap execution of multiple instructions

11

The Laundry Analogy
• Anna, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 30 minutes

• “Folder” takes 30 minutes

• “Stasher” takes 30 minutes
to put clothes into drawers

A B C D

12

If we do laundry sequentially...

30
T
a
s
k

O
r
d
e
r

Time A
30 30 30 30

B

30 30 30

C

30 30 30 30

D

30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

• Time Required: 8 hours for 4 loads

13

12 2 AM 6 PM 7 8 9 10 11 1

Time 30
A

C

D

B

30 30 30 30 30 30 T
a
s
k

O
r
d
e
r

To Pipeline, We Overlap Tasks

• Time Required: 3.5 Hours for 4 Loads

14

12 2 AM 6 PM 7 8 9 10 11 1

Time 30
A

C

D

B

30 30 30 30 30 30 T
a
s
k

O
r
d
e
r

To Pipeline, We Overlap Tasks

• Does Pipelining help latency of single
task?

• Does Pipelining help throughput of entire
workload?

• Pipeline rate limited by ___?

• Multiple tasks operating simultaneously
• Potential speedup = ?
• Unbalanced lengths of pipe stages will

• Time to “fill” pipeline and time to

“drain” it reduces speedup

No

Yes

the slowest pipeline stage

Number of pipe stage

reduces speedup

15

Pipelining a Digital System
• Key idea: break big computation up into pieces

Separate each piece with a pipeline register

1ns

200ps 200ps 200ps 200ps 200ps

Pipeline
Register

1 nanosecond = 10^-9 second
1 picosecond = 10^-12 second

16

Pipelining a Digital System
• Why do this? Because it's faster for repeated

computations

1ns

Non-pipelined:
1 operation finishes
every 1ns

200ps 200ps 200ps 200ps 200ps

Pipelined:
1 operation finishes
every 200ps

17

Comments about pipelining

• Pipelining increases throughput, but not
latency
– Answer available every 200ps, BUT
– A single computation still takes 1ns

• Limitations:
– Computations must be divisible into stage size
– ? Pipeline registers add overhead

18

Pipelining a Processor
• Recall the 5 steps in instruction execution:

1. Instruction Fetch (IF)
2. Instruction Decode and Register Read (ID)
3. Execution operation or calculate address (EX)
4. Memory access (MEM)
5. Write result into register (WB)

• Review: Single-Cycle Processor

– All 5 steps done in a single clock cycle
– Dedicated hardware required for each step

19

Review - Single-Cycle Processor

What do we need to add to actually split the datapath into stages?

20

The Basic Pipeline For MIPS

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

I
n
s
t
r.

O
r
d
e
r

21

Basic Pipelined Processor

22

Pipeline example: lw
IF

23

Pipeline example: lw
ID

24

Pipeline example: lw
EX

25

Pipeline example: lw
MEM

26

Pipeline example: lw
WB

Can you find a problem?

27

Basic Pipelined Processor (Corrected)

28

Single-Cycle vs. Pipelined Execution

Non-Pipelined
0 200 400 600 800 1000 1200 1400 1600 1800

lw $1, 100($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $2, 200($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $3, 300($0) Instruction
Fetch

Time
Instruction
Order

800ps

800ps

800ps

Pipelined
0 200 400 600 800 1000 1200 1400 1600

lw $1, 100($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $2, 200($0)

lw $3, 300($0)

Time
Instruction
Order

200ps
Instruction

Fetch
REG
RD

ALU REG
WR

MEM

Instruction
Fetch

REG
RD

ALU REG
WR

MEM
200ps

200ps 200ps 200ps 200ps 200ps

29

Single-Cycle vs. Pipelined Execution

Non-Pipelined
0 200 400 600 800 1000 1200 1400 1600 1800

lw $1, 100($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $2, 200($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $3, 300($0) Instruction
Fetch

Time
Instruction
Order

800ps

800ps

800ps

Pipelined
0 200 400 600 800 1000 1200 1400 1600

lw $1, 100($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $2, 200($0)

lw $3, 300($0)

Time
Instruction
Order

200ps
Instruction

Fetch
REG
RD

ALU REG
WR

MEM

Instruction
Fetch

REG
RD

ALU REG
WR

MEM
200ps

200ps 200ps 200ps 200ps 200ps

30

	Full Multicycle Datapath
	Our new datapath
	Full Multicycle Implementation
	Historical Perspective
	Pentium 4
	Pentium 4
	Summary (1)
	Summary (2)
	Pipeline: Introduction
	What is Pipelining?
	The Laundry Analogy
	If we do laundry sequentially...
	To Pipeline, We Overlap Tasks
	To Pipeline, We Overlap Tasks
	Pipelining a Digital System
	Pipelining a Digital System
	Comments about pipelining
	Pipelining a Processor
	Review - Single-Cycle Processor
	The Basic Pipeline For MIPS
	Basic Pipelined Processor
	Pipeline example: lw�IF
	Pipeline example: lw�ID
	Pipeline example: lw�EX
	Pipeline example: lw�MEM
	Pipeline example: lw�WB
	Basic Pipelined Processor (Corrected)
	Single-Cycle vs. Pipelined Execution
	Single-Cycle vs. Pipelined Execution
	Slide Number 30

