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Full Multicycle Datapath 
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Our new datapath 
• We eliminate both extra adders in a multicycle datapath, and 

instead use just one ALU, with multiplexers to select the proper 
inputs. 

• A 2-to-1 mux ALUSrcA sets the first ALU input to be the PC or a 
register. 

• A 4-to-1 mux ALUSrcB selects the second ALU input from among:  
— the register file (for arithmetic operations), 
— a constant 4 (to increment the PC), 
— a sign-extended constant (for effective addresses), and 
— a sign-extended and shifted constant (for branch targets). 

• This permits a single ALU to perform all of the necessary 
functions. 
— Arithmetic operations on two register operands. 
— Incrementing the PC. 
— Computing effective addresses for lw and sw. 
— Adding a sign-extended, shifted offset to (PC + 4) for branches. 
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Full Multicycle Implementation 
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Historical Perspective 
• In the ‘60s and ‘70s microprogramming was very important for 

implementing machines 
• This led to more sophisticated ISAs and the VAX 
• In the ‘80s RISC processors based on pipelining became popular 
• Pipelining the microinstructions is also possible! 
• Implementations of IA-32 architecture processors since 486 use: 

– “hardwired control” for simpler instructions  
 (few cycles, FSM control implemented using PLA) 

– “microcoded control” for more complex instructions 
 (large numbers of cycles, central control store) 
 

• The IA-64 architecture uses a RISC-style ISA and can be implemented 
without a large central control store 
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Pentium 4 
• Pipelining is important (last IA-32 without it was 80386 in 1985) 

 
 
 
 
 
 
 
 
 
 

• Pipelining is used for the simple instructions favored by compilers 
 
“Simply put, a high performance implementation needs to ensure that the simple 
instructions execute quickly, and that the burden of the complexities of the 
instruction set penalize the complex, less frequently used, instructions” 
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Pentium 4 
• Somewhere in all that “control” we must handle complex instructions 

 
 
 
 
 
 
 
 
 
 
 
 
 

• Processor executes simple microinstructions, 70 bits wide (hardwired) 
• 120 control lines for integer datapath (400 for floating point) 
• If an instruction requires more than 4 microinstructions to implement,  

control from microcode ROM (8000 microinstructions) 
• Its complicated!  
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Summary (1) 
• A single-cycle CPU has two main disadvantages. 

– The cycle time is limited by the worst case latency. 
– It requires more hardware than necessary. 

• A multicycle processor splits instruction execution 
into several stages. 
– Instructions only execute as many stages as required. 
– Each stage is relatively simple, so the clock cycle time is 

reduced. 
– Functional units can be reused on different cycles. 

• We made several modifications to the single-cycle 
datapath. 
– The two extra adders and one memory were removed. 
– Multiplexers were inserted so the ALU and memory can be 

used for different purposes in different execution stages. 
– New registers are needed to store intermediate results. 
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Summary (2) 
• If we understand the instructions… 

 We can build a simple processor! 

• If instructions take different amounts of time, multi-cycle 
is better 

• Datapath implemented using: 

– Combinational logic for arithmetic 

– State holding elements to remember bits 

• Control implemented using: 

– Combinational logic for single-cycle implementation 

– Finite state machine for multi-cycle implementation 
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Pipeline: Introduction 

These slides are adapted from notes by Dr. David Patterson (UCB) 
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What is Pipelining? 

• A way of speeding up execution of 
instructions 
 

• Key idea:  

overlap execution of multiple instructions 
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The Laundry Analogy 
• Anna, Brian, Cathy, Dave  

each have one load of clothes  
to wash, dry, and fold 

• Washer takes 30 minutes 

• Dryer takes 30 minutes 

• “Folder” takes 30 minutes 

• “Stasher” takes 30 minutes 
to put clothes into drawers 

A B C D 
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If we do laundry sequentially... 
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To Pipeline, We Overlap Tasks 

• Time Required: 3.5 Hours for 4 Loads 
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To Pipeline, We Overlap Tasks 

• Does Pipelining help latency of single 
task?  

• Does Pipelining help throughput of entire 
workload? 

• Pipeline rate limited by ___? 
  
• Multiple tasks operating simultaneously 
• Potential speedup = ?  
• Unbalanced lengths of pipe stages will 

___ 
• Time to “fill” pipeline and time to 

“drain” it reduces speedup 

No 

Yes 

the slowest pipeline stage 

Number of pipe stage 

reduces speedup 
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Pipelining a Digital System 
• Key idea: break big computation up into pieces 

 
 
 
 
Separate each piece with a pipeline register 

1ns 
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Pipeline 
Register 

1 nanosecond = 10^-9 second 
1 picosecond = 10^-12 second 
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Pipelining a Digital System 
• Why do this?  Because it's faster for repeated 

computations 

1ns 

Non-pipelined: 
1 operation finishes 
every 1ns  

200ps 200ps 200ps 200ps 200ps 

Pipelined: 
1 operation finishes 
every 200ps  
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Comments about pipelining 

• Pipelining increases throughput, but not 
latency 
– Answer available every 200ps, BUT 
– A single computation still takes 1ns 

• Limitations: 
– Computations must be divisible into stage size 
– ? Pipeline registers add overhead 
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Pipelining a Processor 
• Recall the 5 steps in instruction execution: 

1. Instruction Fetch (IF) 
2. Instruction Decode and Register Read (ID) 
3. Execution operation or calculate address (EX) 
4. Memory access (MEM) 
5. Write result into register (WB) 

 
• Review: Single-Cycle Processor 

– All 5 steps done in a single clock cycle 
– Dedicated hardware required for each step 
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Review - Single-Cycle Processor 

What do we need to add to actually split the datapath into stages? 
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The Basic Pipeline For MIPS 
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Basic Pipelined Processor 
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Pipeline example: lw 
IF 
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Pipeline example: lw 
ID 
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Pipeline example: lw 
EX 
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Pipeline example: lw 
MEM 
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Pipeline example: lw 
WB 

Can you find a problem? 
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Basic Pipelined Processor (Corrected) 
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Single-Cycle vs. Pipelined Execution 
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Single-Cycle vs. Pipelined Execution 
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