
1

The Problem with Single-Cycle Processor
Implementation: Performance

• Performance is limited by the slowest instruction
• Example: suppose we have the following delays

– Memory read/write 200ps
– ALU and adders 100ps
– Register File read/write 50ps

• What is the critical path for each instruction?

2

What is the critical path for lw?

lw: 200 + 50 + 100 + 200 + 50 600ps

P
C

address Inst.

R1 (rt)

R2 (rs)

-100

lw

ReadRegister#1

ReadRegister#2

WriteRegister

Data
Port#1

Port#2

ALU

REGISTERS
ROM

Instruction
Memory

Data Memory
RAM

DataIn

Address

DataOut

16 (Imm)

SIGN-EXTEND
16 32 –Memory read/write 200ps

–ALU and adders 100ps

–Register File read/write 50ps

3

sw R1, -100(R2)

P
C

address Inst.

R1

R2

-100

sw

ReadRegister#1

ReadRegister#2

WriteRegister

Data
Port#1

Port#2

ALU

REGISTERS
ROM

Instruction
Memory

Data Memory
RAM

DataIn

Address

DataOut

16

SIGN-EXTEND
16 32

What is the critical path for sw?

–Memory read/write 200ps

–ALU and adders 100ps

–Register File read/write 50ps

–Sign-Extended 10ps

4

sw R1, -100(R2)

P
C

address Inst.

R1

R2

-100

sw

ReadRegister#1

ReadRegister#2

WriteRegister

Data
Port#1

Port#2

ALU

REGISTERS
ROM

Instruction
Memory

Data Memory
RAM

DataIn

Address

DataOut

16

SIGN-EXTEND
16 32 –Memory read/write 200ps

–ALU and adders 100ps

–Register File read/write 50ps

sw: 200 + 50 + 100 + 200 550ps

What is the critical path for sw?

5

What is the critical path for each instruction?

– R-format 200 + 50 + 100 + 0 + 50 400ps
– Load word 200 + 50 + 100 + 200 + 50 600ps
– Store word 200 + 50 + 100 + 200 550ps
– Branch 200 + 50 + 100 350ps
– Jump 200 200ps

What is the implication?

6

Alternatives to Single-Cycle

• Multicycle Processor Implementation
– Shorter clock cycle
– Multiple clock cycles per instruction
– Some instructions take more cycles then others
– Less hardware required

• Pipelined Implementation
– Overlap execution of instructions
– Try to get short cycle times and low CPI
– More hardware required … but also more

performance!

7

Summary
• Single-cycle control is purely combinational logic

(1-state FSM)
• Complex logic requirements, like ALUs are often

broken down in simpler components for a
hierarchical design (2-level in this case)

• Once the dataflow for each instruction is
understood, how to enable it through control
points is straightforward.

• Logic synthesis tools can be very helpful in
obtaining error-free logic (once the specs are
right).

8

Processor: Multicycle Implementation

9

• All of the logic is combinational

• We wait for everything to settle down, and the right
thing to be done
– ALU might not produce “right answer” right away

– We use write signals along with clock to determine when to
write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times

State
element

1

State
element

2
Combinational logic

Clock cycle

10

Single Cycle Implementation
•Calculate cycle time assuming negligible delays except:

–memory (200ps),

–ALU and adders (100ps),

–register file access (50ps)

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Sign
extend

16 32

Instruction ALU
result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

11

Where we are headed
• Single Cycle Problems:

– what if we had a more complicated instruction like floating
point?

– wasteful of area

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:

Data

Register #

Register #

Register #

PC Address

Instruction
or dataMemory Registers ALU

Instruction
register

Memory
data

register

ALUOut

A

B
Data

12

• We will be reusing functional units
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• Our control signals will not be determined
directly by instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

Multicycle Approach

13

• Break up the instructions into steps, each step takes a
cycle
– balance the amount of work to be done
– restrict each cycle to use only one major functional unit

• At the end of a cycle
– store values for use in later cycles (easiest thing to do)
– introduce additional “internal” registers

Multicycle Approach

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

14

Instructions from ISA perspective
• Consider each instruction from perspective of ISA.
• Example:

– The add instruction changes a register.
– Register specified by bits 15:11 of instruction.
– Instruction specified by the PC.
– New value is the sum (“op”) of two registers.
– Registers specified by bits 25:21 and 20:16 of the instruction
Reg[Memory[PC][15:11]] <=
Reg[Memory[PC][25:21]] op
 Reg[Memory[PC][20:16]]

– In order to accomplish this we must break up the instruction.

rd funct shamt
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format op rs rt

15

Breaking Down an Instruction
• ISA definition of arithmetic:

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
 Reg[Memory[PC][20:16]]

• Could break down to:
– IR <= Memory[PC]
– A <= Reg[IR[25:21]]
– B <= Reg[IR[20:16]]
– ALUOut <= A op B
– Reg[IR[15:11]] <= ALUOut

• We forgot an important part of the definition of arithmetic!
– PC <= PC + 4

rd funct shamt
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format op rs rt

16

Idea behind multicycle approach
• We define each instruction from the ISA perspective (do this!)

• Break it down into steps following our rule that data flows

through at most one major functional unit (e.g., balance work
across steps)

• Introduce new registers as needed (e.g, A, B, ALUOut, MDR,
etc.)

• Finally try and pack as much work into each step
 (avoid unnecessary cycles)
while also trying to share steps where possible
 (minimizes control, helps to simplify solution)

17

18

19

20

Five Execution Steps
• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch

Completion

• Memory Access or R-type instruction completion

• Write-back step
INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

21

Step 1: Instruction Fetch
• Use PC to get instruction and put it in the Instruction

Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer

Language"

 IR <= Memory[PC];
 PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

22

Step 2: Instruction Decode and Register
Fetch

• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a

branch
• RTL:

 A <= Reg[IR[25:21]];
 B <= Reg[IR[20:16]];
 ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

• We aren't setting any control lines based on the instruction
type
 (we are busy "decoding" it in our control logic)

rd funct shamt
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format op rs rt

23

Step 3 (instruction dependent)
• ALU is performing one of three functions, based

on instruction type

• Memory Reference:
 ALUOut <= A + sign-extend(IR[15:0]);

• R-type:
 ALUOut <= A op B;

• Branch:
 if (A==B) PC <= ALUOut;

24

Step 4 (R-type or memory-access)

• Loads and stores access memory

 MDR <= Memory[ALUOut];
 or
 Memory[ALUOut] <= B;

• R-type instructions finish

 Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the
edge

 rd funct shamt

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format op rs rt

25

Step 5 (Write-back step)

• Reg[IR[20:16]] <= MDR;

Which instruction needs this?

offset

6 bits 5 bits 5 bits 16 bits

I-Format op rs rt

26

Summary:

27

	The Problem with Single-Cycle Processor Implementation: Performance
	What is the critical path for lw?
	Slide Number 3
	Slide Number 4
	What is the critical path for each instruction?
	Alternatives to Single-Cycle
	Summary
	Processor: Multicycle Implementation
	Our Simple Control Structure
	Slide Number 10
	Where we are headed
	Multicycle Approach
	Multicycle Approach
	Instructions from ISA perspective
	Breaking Down an Instruction
	Idea behind multicycle approach
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Five Execution Steps
	Step 1: Instruction Fetch
	Step 2: Instruction Decode and Register Fetch
	Step 3 (instruction dependent)
	Step 4 (R-type or memory-access)
	Step 5 (Write-back step)
	Summary:
	Slide Number 27

