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The Problem with Single-Cycle Processor 
Implementation: Performance 

• Performance is limited by the slowest instruction 
• Example: suppose we have the following delays 

– Memory read/write  200ps 
– ALU and adders  100ps 
– Register File read/write  50ps 

• What is the critical path for each instruction? 
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What is the critical path for lw? 

lw:  200 + 50 + 100 + 200 + 50   600ps 

P 
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SIGN-EXTEND 
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–ALU and adders      100ps 

–Register File read/write  50ps 
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sw R1, -100(R2) 
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What is the critical path for sw? 

–Memory read/write     200ps 

–ALU and adders      100ps 

–Register File read/write  50ps 

–Sign-Extended                10ps 
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sw R1, -100(R2) 
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sw: 200 + 50 + 100 + 200  550ps 

What is the critical path for sw? 
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What is the critical path for each instruction? 

– R-format 200 + 50 + 100 + 0 + 50 400ps 
– Load word 200 + 50 + 100 + 200 + 50 600ps 
– Store word 200 + 50 + 100 + 200  550ps 
– Branch  200 + 50 + 100  350ps 
– Jump  200    200ps 

 
What is the implication? 
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Alternatives to Single-Cycle 

• Multicycle Processor Implementation 
– Shorter clock cycle 
– Multiple clock cycles per instruction 
– Some instructions take more cycles then others 
– Less hardware required 

• Pipelined Implementation 
– Overlap execution of instructions 
– Try to get short cycle times and low CPI 
– More hardware required … but also more 

performance! 
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Summary 
• Single-cycle control is purely combinational logic 

(1-state FSM) 
• Complex logic requirements, like ALUs are often 

broken down in simpler components for a 
hierarchical design (2-level in this case) 

• Once the dataflow for each instruction is 
understood, how to enable it through control 
points is straightforward. 

• Logic synthesis tools can be very helpful in 
obtaining error-free logic (once the specs are 
right). 
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Processor: Multicycle Implementation 
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• All of the logic is combinational 

• We wait for everything to settle down, and the right 
thing to be done 
– ALU might not produce “right answer” right away 

– We use write signals along with clock to determine when to 
write 

• Cycle time determined by length of the longest path 

Our Simple Control Structure 

We are ignoring some details like setup and hold times 

State
element

1

State
element

2
Combinational logic

Clock cycle
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Single Cycle Implementation 
•Calculate cycle time assuming negligible delays except: 

–memory (200ps),  

–ALU and adders (100ps), 

–register file access (50ps) 
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Where we are headed 
• Single Cycle Problems: 

– what if we had a more complicated instruction like floating 
point? 

– wasteful of area 

• One Solution: 
– use a “smaller” cycle time 
– have different instructions take different numbers of cycles 
– a “multicycle” datapath: 
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• We will be reusing functional units 
– ALU used to compute address and to increment PC 
– Memory used for instruction and data 

 

• Our control signals will not be determined 
directly by instruction 
– e.g., what should the ALU do for a “subtract” instruction? 

 

• We’ll use a finite state machine for control 

Multicycle Approach 



13 

• Break up the instructions into steps, each step takes a 
cycle 
– balance the amount of work to be done 
– restrict each cycle to use only one major functional unit 

• At the end of a cycle 
– store values for use in later cycles (easiest thing to do) 
– introduce additional “internal” registers 

 

Multicycle Approach 
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Instructions from ISA perspective 
• Consider each instruction from perspective of ISA. 
• Example:   

– The add instruction changes a register.   
– Register specified by bits 15:11 of instruction.   
– Instruction specified by the PC.   
– New value is the sum (“op”) of two registers.   
– Registers specified by bits 25:21 and 20:16 of the instruction  
Reg[Memory[PC][15:11]] <=  
Reg[Memory[PC][25:21]] op            
        Reg[Memory[PC][20:16]] 
 
 

– In order to accomplish this we must break up the instruction. 
  

rd funct shamt 
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

R-Format op rs rt 
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Breaking Down an Instruction 
• ISA definition of arithmetic: 

 
Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]]  op 
      Reg[Memory[PC][20:16]] 
 

• Could break down to: 
– IR <= Memory[PC] 
– A <= Reg[IR[25:21]] 
– B <= Reg[IR[20:16]] 
– ALUOut <= A op B 
– Reg[IR[15:11]] <= ALUOut 
 

• We forgot an important part of the definition of arithmetic! 
– PC <= PC + 4    

 

rd funct shamt 
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

R-Format op rs rt 
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Idea behind multicycle approach 
• We define each instruction from the ISA perspective  (do this!) 

 
• Break it down into steps following our rule that data flows 

through at most one major functional unit  (e.g., balance work 
across steps) 
 

• Introduce new registers as needed  (e.g, A, B, ALUOut, MDR, 
etc.) 
 

• Finally try and pack as much work into each step  
 (avoid unnecessary cycles) 
while also trying to share steps where possible 
 (minimizes control, helps to simplify solution) 
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Five Execution Steps 
• Instruction Fetch 

 
• Instruction Decode and Register Fetch 

 
• Execution, Memory Address Computation, or Branch 

Completion 
 

• Memory Access or R-type instruction completion 
 

• Write-back step 
INSTRUCTIONS TAKE FROM 3 - 5 CYCLES! 
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Step 1:  Instruction Fetch 
• Use PC to get instruction and put it in the Instruction 

Register. 
• Increment the PC by 4 and put the result back in the PC. 
• Can be described succinctly using RTL "Register-Transfer 

Language" 
 
 IR <= Memory[PC]; 
 PC <= PC + 4; 
 
Can we figure out the values of the control signals? 
 
What is the advantage of updating the PC now? 
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Step 2:  Instruction Decode and Register 
Fetch 

• Read registers rs and rt in case we need them 
• Compute the branch address in case the instruction is a 

branch 
• RTL: 

 
 A <= Reg[IR[25:21]]; 
 B <= Reg[IR[20:16]]; 
 ALUOut <= PC + (sign-extend(IR[15:0]) << 2); 
 

• We aren't setting any control lines based on the instruction 
type  
 (we are busy "decoding" it in our control logic) 
 
 

rd funct shamt 
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

R-Format op rs rt 
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Step 3 (instruction dependent) 
• ALU is performing one of three functions, based 

on instruction type 
 

• Memory Reference: 
 ALUOut <= A + sign-extend(IR[15:0]); 
 

• R-type: 
 ALUOut <= A op B; 
 

• Branch: 
 if (A==B) PC <= ALUOut; 
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Step 4 (R-type or memory-access) 

• Loads and stores access memory 
 
 MDR <= Memory[ALUOut]; 
  or 
 Memory[ALUOut] <= B; 
 

• R-type instructions finish 
 
 Reg[IR[15:11]] <= ALUOut; 
 
 
The write actually takes place at the end of the cycle on the 
edge 
 
 rd funct shamt 

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

R-Format op rs rt 
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Step 5 (Write-back step) 

• Reg[IR[20:16]] <= MDR; 
 

 

Which instruction needs this? 
 

offset 

6 bits 5 bits 5 bits 16 bits 

I-Format op rs rt 
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Summary: 
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