
1

I/O system Processor

Compiler
Operating System

(Unix;
Windows 9x)

Application (Netscape)

Digital Design
Circuit Design

Instruction Set
 Architecture

• Key Idea: levels of abstraction
– hide unnecessary implementation details
– helps us cope with enormous complexity of real

systems

Datapath & Control

transistors, IC layout

Memory Hardware

Software Assembler

CS 572

What is Computer Architecture ?

2

Computer Architecture’s
Changing Definition

• 1950s to 1960s Computer Architecture Course:
 Computer Arithmetic
• 1970s to mid 1980s Computer Architecture Course:
 Instruction Set Design, especially ISA appropriate for

compilers
• 1990s Computer Architecture Course:

Design of CPU, memory system, I/O system,
Multiprocessors, Networks

• 2010s: Computer Architecture Course:
 Self adapting systems? Self organizing structures?

DNA Systems/Quantum Computing?

3

CS 572 Course Focus
 Understanding the design techniques, machine

structures, technology factors, evaluation methods that
will determine the form of computers in 21st Century

Technology Programming
Languages

Operating
Systems

History

Applications
Interface Design

(ISA)

Measurement & Evaluation

Parallelism

Computer Architecture:
• Instruction Set Design
• Organization
• Hardware/Software Boundary Compilers

4

Computer Engineering Methodology

Technology
Trends

Evaluate Existing
Systems for
Bottlenecks

Benchmarks

Simulate New
Designs and

Organizations

Workloads

Implement Next
Generation System

Implementation
Complexity

Architecture design is an iterative process: Searching the
space of possible designs at all levels of computer systems

5

Machine Organization
5 classic components of any computer

Personal Computer

 Processor
(CPU)

 (active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)

(where
programs,
& data
live when
running)

Devices

Input

Output

Keyboard,
Mouse

Display,
Printer

Disk
(where
programs,
& data
live when
not running)

The components of every computer, past and present, belong to one of
these five categories

6

Execution Cycle
Instruction

Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

7

 The Instruction Set: a Critical
Interface

instruction set

software

hardware

The actual programmer visible instruction set

8

Outline
• Performance Metrics: How do we conclude

that System-A is better than System-B?
• Measuring CPU time
• Amdahl’s Law: Relates total speedup of a

system to the speedup of some portion of that
system.

• Topics: (Sections 1.1, 1.2, 1.3, 1.8, 1.9)

9

Importance of Measurement

Architecture design is an
iterative process:
• Search the possible design space
• Make selections
• Evaluate the selections made

Good Ideas
Mediocre Ideas

Bad Ideas

Cost /
Performance
Analysis

Good measurement tools
are required to accurately
evaluate the selection.

10

Two notions of performance
Plane

Boeing 747

BAD/Sud
Concodre

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

• Which has higher performance?
1. Time to deliver 1 passenger?
2. Time to deliver 400 passengers?

11

Example of Response Time v. Throughput

• Flying Time: Concorde vs. Boeing 747?
• Concord is 6.5 hours / 3 hours

= 2.2 times as fast (response time,)
• Throughput: Boeing vs. Concorde?

• Boeing 747: 286,700 p-mph / 178,200
p-mph = 1.6 times as fast (throughput,)
 •Time to do the task (Interest to users)

 – execution time, response time, latency, etc.

•Tasks per day, hour, week, sec, (Interest to system
administrators)
 – throughput, bandwidth, etc.

Who do we care as computer architect?

12

Performance Definitions

• We are primarily concerned with response time

• To maximize performance, we must minimize response
time for some task:

–Performancex > Performancey

 ⇒ response_timex < response_timey

• "X is n times as fast as Y" means

• Performancex = n X Performancey

What is Execution Time?

• Definition 1:
– Total time to complete a task, including disk accesses, memory

accesses, I/O activities, operating system overhead, ...
– “wall-clock time”, “response time”, or “elapsed time”

• Definition 2: measure time processor is working on your program
only (since multiple processes running at same time)
– “CPU execution time” or “CPU time ”
– Often divided into system CPU time (in OS) and user CPU time

(in user program)

How to Measure Time?
• User ⇒ actual elapsed time to complete particular task

is only true basis for comparison

– sum of I/O time, User + System CPU, time spent on
other tasks, boot time, etc.

– alternatives may mislead!

• CPU designer ⇒ want measure relating to how fast
processor hardware can perform basic functions (CPU
execution time)

Measuring CPU time
• Most computers are constructed using a clock that runs

at a constant rate and determines when events take place
in the hardware
– These discrete time intervals called

clock cycles
– Length of clock period: clock cycle time

(e.g., 2 nanoseconds or 2 ns) and clock rate (e.g., 500
megahertz, or 500 MHz), which is the inverse of the
clock period;

– Execution time = # Clock cycles X clock cycle time

MHz500
.Sec102

1 9- =
×

16

Example of Measuring CPU time

• If a computer has a clock rate of 50 MHz,
how long does it take to execute a program
with 1,000 instructions, if the CPI for the
program is 3.5?

• Using the equation
CPU time = Instruction count x CPI / clock rate

 gives
CPU time = 1000 x 3.5 / (50 x 10)

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

6

17

• If a computer’s clock rate increases from 200 MHz to
250 MHz and the other factors remain the same, how
many times faster will the computer be?
CPU time old clock rate new 250 MHz
------------------- = ---------------------- = ---------------- = 1.25
CPU time new clock rate old 200 MHZ

• What simplifying assumptions did we make?

Example of Measuring CPU time

18

Performance Example
• Two computers M1 and M2 with the same instruction set.
• For a given program, we have

• How many times faster is M2 than M1 for this program?

ExTimeM1 ICM1 x CPIM1 / Clock RateM1
=

ExTimeM2 ICM2 x CPIM2 / Clock RateM2

=
2.8/50

3.2/75
= 1.31

Clock rate
(MHz)

CPI

M1 50 2.8
M2 75 3.2

19

Example
Question:
 A program runs on a 400 MHz computer in 10 secs. We

like the program to run in 6 secs by designing a faster
CPU. Assume that increasing clock rate would mean the
program needs 20% more clock cycles. What clock rate
should the designer target?

Answer:
 The number of clock cycles for the program on the present computer =

10 X 400 X 10^6 = 4000 X 10^6
With 20% increase, the new computer should take 1.2 X 4000 X 10^6 =
4800 X 10^6 cycles
Required execution time = 6 seconds
Then the required clock rate = 4800/6 X 10^6 cycles/sec = 800 MHz

CPI: Cycles Per Instruction
• Clock Cycles for program

 = Instructions executed for a program
 (called “Instruction Count”)

 x Average Clock cycles Per Instruction
 (abbreviated “CPI”)

• CPI also gives insight into style of ISA:

– RISC (e.g., MIPS, DEC Alpha, PowerPC) higher instruction
count, lower CPI

– CISC (e.g., Intel) lower instruction count, higher CPI

“Iron Triangle” of CPU Performance
–CPU execution time for program

= Clock Cycles for program x Clock Cycle Time

– Substituting for clock cycles:

CPU execution time for program
 = (Instruction Count x CPI)
 x Clock Cycle Time
 = Instruction Count x CPI x Clock Cycle Time

CPI

Instruction Count Clock Cycle Time

How Calculate the 3 Components?
• Clock Cycle Time: in specification of computer (Clock

Rate in advertisements)

• Instruction Count:
–count number of instructions executed in loop of

small program
–Use a simulator to count instructions
–Use a hardware counter in special CPU “register”

(e.g., Pentium II)

How Calculate the 3 Components?
• Average CPI:

–Calculate:

(1) Program Execution Time / Clock cycle time
 = Total Clock Cycles (for program)

(2) Total Clock Cycles
 Instruction Count

–To determine average CPI must execute program!

24

 Final thoughts: Performance Equation
Seconds
Program

 Instructions
Program = Seconds

Cycle Instruction
Cycles

Goal is to
optimize

execution
time, not
individual
equation

terms.

The CPI of
the

program.
Reflects

the
program’s
instruction

mix.

Machines
are

optimized
with

respect to
program

workloads.

Clock
period.

Optimize
jointly
with

machine
CPI.

25

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

 Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

 Final thoughts: Performance Equation

26

Example

A program executed in machine A with a 1ns clock gives
a CPI of 2.0. The same program with machine B
having same ISA and a 2ns clock gives a CPI of 1.2.
Which machine is faster and by how much?

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

Answer: Let I be the instruction count.
CPU clock cycles for A = I x 2.0
Execution time on A = 2 I ns
CPU clock cycles for B = I x 1.2
Execution time on B = I x 1.2 x 2 ns = 2.4 I ns
=> CPU A is faster by 1.2 times.

27

CPI

ICi is the instruction count of the ith instruction, CPIi is the
cycle per instruction of the ith instruction.

“Average cycles per instruction”

 timecycleClock cyclesclock CPU total timeCPU ×=

countn Instructio
cyclesclock CPU total CPI =

∑
=

×=
n

1i
 cyclesclock CPU total ii CPIIC

28

Example (RISC processor)

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) % Time
ALU 50% 1 .5 23%
Load 20% 5 1.0 45%
Store 10% 3 .3 14%
Branch 20% 2 .4 18%
 2.2

How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?

How does this compare with using branch prediction to shave a
cycle off the branch time?

What if two ALU instructions could be executed at once?

29

 CPI as an analytical tool to guide design
Machine CPI

5 x 30 + 1 x 20 + 2 x 20 + 2 x 10 + 2 x 20
100

= 2.7 cycles/instruction

Program
Instruction Mix

Where
program
spends
its time

30

Performance Evaluation Techniques

• Measurements – Only for the given machine

• Simulation – Answers what if questions
 accurate execution-driven simulators widely used for

computer architecture research
 EX: Simplescalar

What Programs Measure for Comparison?
• User reality: CPI varies with program, workload mix, OS,

compiler, etc.
• Ideally would run typical programs with typical input before

purchase
• Called a “workload”; For example:

– Engineer uses compiler, spreadsheet
– Author uses word processor, drawing program, compression

software

• In some situations its hard to do
– Don’t have access to machine to “benchmark” before purchase
– Don’t know workload in future

32

Basis of Evaluation

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

• representative
• very specific
• non-portable
• difficult to run, or
 measure
• hard to identify cause

• portable
• widely used
• improvements
useful in reality

• easy to run, early in
design cycle

• identify peak
capability and
potential bottlenecks

•less representative

• easy to “fool”

• “peak” may be a long
way from application
performance

33

Performance Summary
• Two performance metrics execution time and

throughput.
• Measuring CPU time: CPI

CPU time = Instruction count x CPI x clock cycle
time

CPU time = Instruction count x CPI / clock rate

	What is Computer Architecture ?
	Computer Architecture’s Changing Definition
	CS 572 Course Focus
	Computer Engineering Methodology
	Machine Organization �5 classic components of any computer
	Execution Cycle
	 The Instruction Set: a Critical Interface
	Outline
	Importance of Measurement
	Two notions of performance
	Example of Response Time v. Throughput
	Performance Definitions
	What is Execution Time?
	How to Measure Time?
	Measuring CPU time
	Example of Measuring CPU time
	Example of Measuring CPU time
	Performance Example
	Example
	CPI: Cycles Per Instruction
	“Iron Triangle” of CPU Performance
	How Calculate the 3 Components?
	How Calculate the 3 Components?
	 Final thoughts: Performance Equation
	 Final thoughts: Performance Equation
	Example
	CPI
	Example (RISC processor)
	 CPI as an analytical tool to guide design
	Performance Evaluation Techniques
	What Programs Measure for Comparison?
	Basis of Evaluation
	Performance Summary

