
CS572 Homework3

1. [20 points] List all the dependencies (output, anti and true) in the following code
fragment. Indicate whether the true dependences are loop-carried or not. Show why the
loop is not parallel (hints: For a loop to be parallel, each iteration must be independent of
all others; Loop-carried: data access in later iterations is dependent on data values
produced in earlier iterations.)

2. [20 Points] Consider the following assembly language code:

I0: ADD R4 = R1 + R0;
I1: SUB R9 = R3 - R4;
I2: ADD R4 = R5 + R6;
I3: LDW R2 = MEM[R3 + 100];
I4: LDW R2 = MEM[R2 + 0];
I5: STW MEM[R4 + 100] = R2;
I6: AND R2 = R2 & R1;
I7: BEQ R9 == R1, Target;
I8: AND R9 = R9 & R1;

Consider a pipeline with forwarding, hazard detection, and 1 delay slot for branches. The
pipeline is the typical 5-stage IF, ID, EX, MEM, WB MIPS design. For the above code,
complete the pipeline diagram below (instructions on the left, cycles on top) for the code.
Insert the characters IF, ID, EX, MEM, WB for each instruction in the boxes. Assume
that there two levels of bypassing, that the second half of the decode stage performs a
read of source registers, and that the first half of the write-back stage writes to the register
file.

Label all data stalls (Draw an X in the box). Label all data forwards that the forwarding
unit detects (arrow between the stages handing off the data and the stages receiving the
data). What is the final execution time of the code?

3. [20 points] This question covers your understanding of dependences between
instructions. Using the code below, list all of the dependence types (RAW, WAR,
WAW). List the dependences in the respective table (example INST-X to INST-Y) by
writing in the instruction numbers involved with the dependence.

I0: A = B + C;
I1: C = A - B;
I2: D = A + C;
I3: A = B * C * D;
I4: C = F / D;
I5: F = A ˆ G;
I6: G = F + D;

4. [20 points] Consider the following MIPS assembly code.

LD R1, 45(R2)
DADD R7, R1, R5
DSUB R8, R1, R6
OR R9, R5, R1
BNEZ R7, target
DADD R10, R8, R5
XOR R2, R3, R4

a. [10 points] Identify each dependence by type; list the two instructions involved;
identify which instruction is dependent; and, if there is one, name the storage location
involved.

b. [10 points] Assume the 5-stage MIPS pipeline (IF, ID, EX, MEM, WB), and a register
file that writes in the first half of a clock cycle and reads in the second half. Which of the
dependencies that you listed in part (a) become hazards, and which do not? Why?

5. [20 points] This exercise is intended to help you understand the relationship between
delay slots, control hazards, and branch execution in a pipelined processor. In this
exercise, we assume that the following MIPS code is executed on a pipelined processor
with a 5-stage pipeline, full forwarding, and a predict-taken branch predictor:

Label1: LW $1, 40 ($6)
 BEQ $2, $3, Labe2; Taken
 ADD $1, $6, $4
Label2: BEQ $1, $2, Label1; Not Taken
 SW $2, 20($4)
 AND $1, $1, $4

a. [10 points] Draw the pipeline execution diagram for this code, assuming there are
no delay slots used and that branches execute in the EX stage.

b. [10 points] Repeat 5.a, but assume that delay slots are used. In the given code, the

instruction that follows the branch is now the delay slot instruction for that
branch.

