
1

Attention, please!

• Homework Assignment 1 is due on Feb. 19 in class.

• Midterm Exam1 is scheduled Feb. 24 in class.

• On Feb. 19, I will spend one lecture to help you
prepare Midterm Exam1. Don’t miss it!

2

Chapter 3 Part 2
• Functions and functional blocks
• Rudimentary logic functions
• Selecting
• Decoding
• Encoding
• Implementing Combinational Functions

Using:
– Decoders and OR gates
– Multiplexers (and inverter)

3

Functions and Functional Blocks

• The functions considered are those found to be
very useful in design

• Corresponding to each of the functions is a
combinational circuit implementation called a
functional block.

• In the past, many functional blocks were
implemented as SSI, MSI, and LSI circuits.

• Today, they are often simply parts within a VLSI
circuits.

4

Rudimentary Logic Functions
• Functions of a single variable X
• Can be used on the

inputs to functional
blocks

5

Multiple-bit Rudimentary Functions

• Multi-bit Examples:

• A wide line is used to represent
a bus which is a vector signal

• In (b) of the example, F = (F3, F2, F1, F0) is a bus.
• The bus can be split into individual bits as shown in (b)
• Sets of bits can be split from the bus as shown in (c)

for bits 2 and 1 of F.
• The sets of bits need not be continuous as shown in (d) for bits 3, 1,

and 0 of F.

F
(d)

0

F3
1 F2

F1
A F0

(a)

0
1

A
1

2 3
4

F
0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

A A

6

• Selecting of data or information is a critical
function in digital systems and computers

• Circuits that perform selecting have:
– A set of information inputs from which the selection is

made
– A single output
– A set of control lines for making the selection

• Logic circuits that perform selecting are called
multiplexers

• Selecting can also be done by three-state logic
or transmission gates

Selecting

7

Multiplexers
• A multiplexer selects information from

an input line and directs the information
to an output line

• A typical multiplexer has n control inputs
(Sn - 1, … S0) called selection inputs, 2n

information inputs (I2n
- 1, … I0), and one

output Y
• A multiplexer can be designed to have

m information inputs with m < 2n as well
as n selection inputs

8

S

I0

I1

Decoder
Enabling
Circuits

Y

2-to-1-Line Multiplexer
• Since 2 = 21, n = 1
• The single selection variable S has two values:

– S = 0 selects input I0
– S = 1 selects input I1

• The equation:
Y = I0 + SI1

• The circuit:
S

9

2-to-1-Line Multiplexer (continued)

• Note the regions of the multiplexer circuit shown:
– 1-to-2-line Decoder
– 2 Enabling circuits
– 2-input OR gate

• To obtain a basis for multiplexer expansion, we combine
the Enabling circuits and OR gate into a 2 ´ 2 AND-OR
circuit:
– 1-to-2-line decoder
– 2 ´ 2 AND-OR

• In general, for an 2n-to-1-line multiplexer:
– n-to-2n-line decoder
– 2n ´ 2 AND-OR

10

Example: 4-to-1-line Multiplexer

• 2-to-22-line decoder
• 22 ´ 2 AND-OR

S1
Decoder

S0

Y

S1
Decoder

S0

Y

S1
Decoder

4 3 2 AND-ORS0

Y

I2

I3

I1

I0

11

Complete Single-Cycle Datapath

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD
Instruction

Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

12

Demultiplexers

Demultiplexers (or DeMUX for short) are
basically multiplexers where the inputs
and outputs have been switched. An 1-n
DeMUX consists of the following:

• Data inputs: 1
• Control inputs: ceil(log2 n)
• Outputs: n

13

Nature of DeMUX

• Think of a DeMUX like a mailroom. You
have many pieces of letters coming in, and
you must distribute each letter to one of
many different mail boxes.

14

Behavior of 1-2 DeMUX

15

Explanation

• When c == 0, the input, x, is directed to
the output z0. When c == 1, the input, x, is
directed to the output z1. Just as before,
we think of c as a 1 bit number, which
specifies the output we want to direct the
input to.

16

Truth Table for 1-2 DeMUX

Row c z0 z1

0 0 x 0
1 1 0 x

17

Boolean Expression

• z1 = cx
• z0 = c’x

18

Enabling Function
• Enabling permits an input signal to pass through

to an output
• Disabling blocks an input signal from passing

through to an output, replacing it with a fixed
value

• The value on the output when it is disable can
be Hi-Z (as for three-state buffers and
transmission gates), 0 , or 1 (see next slide)

19

Enabling

X
FEN

(a)

EN
X

F

(b)

•When disabled, 0 output
•When disabled, 1 output

20

• Decoding - the conversion of an n-bit input
code to an m-bit output code with
n £ m £ 2n such that each valid code word
produces a unique output code

• Circuits that perform decoding are called
decoders

• Here, functional blocks for decoding are
– called n-to-m line decoders, where m £ 2n,

and
– generate 2n (or fewer) minterms for the n

input variables

Decoding

21

• 1-to-2-Line Decoder

• 2-to-4-Line Decoder

Decoder Examples

22

Decoder Expansion
• General procedure given in book for any decoder with n

inputs and 2n outputs.
• This procedure builds a decoder backward from the

outputs.
• The output AND gates are driven by two decoders with

their numbers of inputs either equal or differing by 1.
• These decoders are then designed using the same

procedure until 2-to-1-line decoders are reached.
• The procedure can be modified to apply to decoders with

the number of outputs ≠ 2n

23

Decoder Expansion - Example 1

• 3-to-8-line decoder
– Number of output ANDs = 8
– Number of inputs to decoders driving output ANDs = 3
– Closest possible split to equal

• 2-to-4-line decoder
• 1-to-2-line decoder

– 2-to-4-line decoder
• Number of output ANDs = 4
• Number of inputs to decoders driving output ANDs = 2
• Closest possible split to equal

– Two 1-to-2-line decoders

• See next slide for result

24

Decoder Expansion - Example 1

• Result

25

• In general, attach m-enabling circuits to the outputs
• See truth table below for function

– Note use of X’s to denote both 0 and 1
– Combination containing two X’s represent four binary combinations

• Alternatively, can be viewed as distributing value of signal
EN to 1 of 4 outputs

• In this case, called a
demultiplexer

EN

A1

A0
D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0
1
1
1
1

X
0
0
1
1

X
0
1
0
1

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1

(a)

Decoder with Enable

26

Encoding
• Encoding - the opposite of decoding - the

conversion of an m-bit input code to a n-bit output
code with n £ m £ 2n such that each valid code
word produces a unique output code

• Circuits that perform encoding are called encoders
• An encoder has 2n (or fewer) input lines and n

output lines which generate the binary code
corresponding to the input values

• Typically, an encoder converts a code containing
exactly one bit that is 1 to a binary code corres-
ponding to the position in which the 1 appears.

27

Encoder Example
• A decimal-to-BCD encoder

– Inputs: 10 bits corresponding to decimal
digits 0 through 9, (D0, …, D9)

– Outputs: 4 bits with BCD codes
– Function: If input bit Di is a 1, then the

output (A3, A2, A1, A0) is the BCD code for i,
• The truth table could be formed, but

alternatively, the equations for each of
the four outputs can be obtained directly.

28

Truth Table (continued)

29

Priority Encoder
• If more than one input value is 1, then the

encoder just designed does not work.
• One encoder that can accept all possible

combinations of input values and produce a
meaningful result is a priority encoder.

• Among the 1s that appear, it selects the most
significant input position (or the least
significant input position) containing a 1 and
responds with the corresponding binary code
for that position.

30

Priority Encoder Example
• Priority encoder with 5 inputs (D4, D3, D2, D1, D0) - highest priority to

most significant 1 present - Code outputs A2, A1, A0 and V where V
indicates at least one 1 present.

• Xs in input part of table represent 0 or 1; thus table entries correspond
to product terms instead of minterms. The column on the left shows
that all 32 minterms are present in the product terms in the table

No. of Min-
terms/Row

Inputs Outputs

D4 D3 D2 D1 D0 A2 A1 A0 V
1 0 0 0 0 0 X X X 0
1 0 0 0 0 1 0 0 0 1
2 0 0 0 1 X 0 0 1 1
4 0 0 1 X X 0 1 0 1
8 0 1 X X X 0 1 1 1

16 1 X X X X 1 0 0 1

31

Priority Encoder Example (continued)

32

Q 3-8

• Design a combinational circuit that accept
a 3-bit number and generates a 6-bit
binary number output equal to the square
of the input number

33

Answer

Weekly Exercises
• 3-2
• 3-8
• 3-13
• 3-16
• 3-30
• 3-35
• 3-36
• 3-39
• 3-42
• 3-47

34

