Overview

- **Part 1 – Gate Circuits and Boolean Equations**
 - Binary Logic and Gates
 - Boolean Algebra
 - Standard Forms
- **Part 2 – Circuit Optimization**
 - Two-Level Optimization
 - Map Manipulation
- **Part 3 – Additional Gates and Circuits**
 - Other Gate Types
 - Exclusive-OR Operator and Gates
 - High-Impedance Outputs
Other Gate Types

- Why?
 - Implementation feasibility and low cost
 - Power in implementing Boolean functions
 - Convenient conceptual representation

- Gate classifications
 - Primitive gate - a gate that can be described using a single primitive operation type (AND or OR) plus an optional inversion(s).
 - Complex gate - a gate that requires more than one primitive operation type for its description

- Primitive gates will be covered first
Buffer

- A buffer is a gate with the function $F = X$:

 ![Buffer gate diagram]

- In terms of Boolean function, a buffer is the same as a connection!

- So why use it?
 - A buffer is an electronic amplifier used to improve circuit voltage levels and increase the speed of circuit operation.
The basic NAND gate has the following symbol, illustrated for three inputs:

- **AND-Invert (NAND)**

\[
F(X, Y, Z) = \overline{X \cdot Y \cdot Z}
\]

- NAND represents **NOT AND**, i.e., the AND function with a NOT applied. The symbol shown is an AND-Invert. The small circle (“bubble”) represents the invert function.
NAND Gates (continued)

- Applying DeMorgan's Law gives Invert-OR (NAND)

\[F(X, Y, Z) = \overline{X} + \overline{Y} + \overline{Z} \]

- This NAND symbol is called Invert-OR, since inputs are inverted and then ORed together.

- AND-Invert and Invert-OR both represent the NAND gate. Having both makes visualization of circuit function easier.

- A NAND gate with one input degenerates to an inverter.
Transistor NAND Gate

<table>
<thead>
<tr>
<th>B</th>
<th>A</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Q = \overline{A \cdot B} \]
NAND Gates (continued)

- The NAND gate is the natural implementation for the simplest and fastest electronic circuits

- *Universal gate* - a gate type that can implement any Boolean function.

- The NAND gate is a universal gate as shown in Figure 2-4 of the text.

- NAND usually does not have a operation symbol defined since
 - the NAND operation is not associative, and
 - we have difficulty dealing with non-associative mathematics!
NOR Gate

- The basic NOR gate has the following symbol, illustrated for three inputs:
 - OR-Invert (NOR)

\[
F(X, Y, Z) = \overline{X+Y+Z}
\]

- NOR represents NOT - OR, i.e., the OR function with a NOT applied. The symbol shown is an OR-Invert. The small circle ("bubble") represents the invert function.
NOR Gate (continued)

- Applying DeMorgan's Law gives Invert-AND (NOR)

- This NOR symbol is called Invert-AND, since inputs are inverted and then ANDed together.

- OR-Invert and Invert-AND both represent the NOR gate. Having both makes visualization of circuit function easier.

- A NOR gate with one input degenerates to an inverter.
NOR Gate (continued)

- The NOR gate is another natural implementation for the simplest and fastest electronic circuits
- The NOR gate is a **universal** gate
- NOR usually does not have a defined operation symbol since
 - the NOR operation is not associative, and
 - we have difficulty dealing with non-associative mathematics!
Transistor NOR Gate

<table>
<thead>
<tr>
<th>B</th>
<th>A</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Q = \overline{A+B} \]
NAND Flash & NOR Flash

Figure 1: Comparison of NOR vs NAND Architectures
A Flash Memory Cell (floating-gate transistor)
Exclusive OR/ Exclusive NOR

- The *exclusive OR (XOR)* function is an important Boolean function used extensively in logic circuits.

- The XOR function may be:
 - implemented directly as an electronic circuit (truly a gate) or
 - implemented by interconnecting other gate types (used as a convenient representation)

- The *exclusive NOR* function is the complement of the XOR function

- By our definition, XOR and XNOR gates are complex gates.
Excludes OR/ Exclusive NOR

- Uses for the XOR and XNORs gate include:
 - Adders/subtractors/multipliers
 - Counters/incrementers/decrementers
 - Parity generators/checkers

- Definitions
 - The XOR function is: \(X \oplus Y = X \overline{Y} + \overline{X} Y \)
 - The eXclusive NOR (XNOR) function, otherwise known as equivalence is: \(X \oplus Y = XY + \overline{X} \overline{Y} \)

- Strictly speaking, XOR and XNOR gates do not exist for more than two inputs. Instead, they are replaced by odd and even functions.
Truth Tables for XOR/XNOR

Because it is defined as $X \cdot Y + X' \cdot Y'$ that equals 1 if and only if $X = Y$ implying X is equivalent to Y.

- The XOR function means: X OR Y, but NOT BOTH
- Why is the XNOR function also known as the equivalence function, denoted by the operator \equiv?
The three-variable XOR is equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1. With three or more variables an odd number of variables must be equal to 1. Therefore, it’s called odd function.

\[X \oplus Y \oplus Z = \overline{X}YZ + XY\overline{Z} + XYZ + XY\overline{Z} \]

- The complement of the odd function is the even function.

- The XOR identities:
 \[X \oplus 0 = X \]
 \[X \oplus 1 = \overline{X} \]
 \[X \oplus X = 0 \]
 \[X \oplus \overline{X} = 1 \]
 \[X \oplus Y = Y \oplus X \]
 \[(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z \]
Symbols For XOR and XNOR

- XOR symbol:

- XNOR symbol:

- Symbols exist only for two inputs
The simple SOP implementation uses the following structure:

A NAND only implementation is:
Odd and Even Functions

- The odd and even functions on a K-map form “checkerboard” patterns.
- The 1s of an odd function correspond to minterms having an index with an odd number of 1s.
- The 1s of an even function correspond to minterms having an index with an even number of 1s.
- Implementation of odd and even functions for greater than 4 variables as a two-level circuit is difficult, so we use “trees” made up of:
 - 2-input XOR or XNORs
 - 3- or 4-input odd or even functions
Example: Odd Function Implementation

- Design a 3-input odd function $F = X \oplus Y \oplus Z$ with 2-input XOR gates
- Factoring, $F = (X \oplus Y) \oplus Z$
- The circuit:
Example: Even Function Implementation

- Design a 4-input even function $F = W \oplus X \oplus Y \oplus Z$ with 2-input XOR and XNOR gates
- Factoring, $F = (W \oplus X) \oplus (Y \oplus Z)$
- The circuit:
Hi-Impedance Outputs

- Logic gates introduced thus far
 - have 1 and 0 output values,
 - cannot have their outputs connected together, and
 - transmit signals on connections in only one direction.

- Three-state logic adds a third logic value, Hi-Impedance (Hi-Z), giving three states: 0, 1, and Hi-Z on the outputs.

- The presence of a Hi-Z state makes a gate output as described above behave quite differently:
 - “1 and 0” become “1, 0, and Hi-Z”
 - “cannot” becomes “can,” and
 - “only one” becomes “two”
Hi-Impedance Outputs (continued)

- What is a Hi-Z value?
 - The Hi-Z value behaves as an open circuit
 - This means that, looking back into the circuit, the output appears to be disconnected.
 - It is as if a switch between the internal circuitry and the output has been opened.

- Hi-Z may appear on the output of any gate, but we restrict gates to:
 - a 3-state buffer, or
 - a transmission gate,

 each of which has one data input and one control input.
The 3-State Buffer

- For the symbol and truth table, IN is the data input, and EN, the control input.
- For EN = 0, regardless of the value on IN (denoted by X), the output value is Hi-Z.
- For EN = 1, the output value follows the input value.
- Variations:
 - Data input, IN, can be inverted
 - Control input, EN, can be inverted by addition of “bubbles” to signals.
Resolving 3-State Values on a Connection

- Connection of two 3-state buffer outputs, B1 and B0, to a wire, OUT
- Assumption: Buffer data inputs can take on any combination of values 0 and 1
- Resulting Rule: At least one buffer output value must be Hi-Z. Why?
- How many valid buffer output combinations exist?
- What is the rule for \(n \) 3-state buffers connected to wire, OUT?
- How many valid buffer output combinations exist?

<table>
<thead>
<tr>
<th>Resolution Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Hi-Z</td>
</tr>
<tr>
<td>Hi-Z</td>
</tr>
<tr>
<td>Hi-Z</td>
</tr>
</tbody>
</table>
Answers to last slide

- One buffer output Hi-Z? Because any data combinations including (0,1) and (1,0) can occur. If one of these combinations occurs, and no buffers are Hi-Z, then high currents can occur, destroying or damaging the circuit.
- Valid buffer output combinations? 5
- Rule for n 3-state buffers? n-1 buffer outputs must be Hi-Z.
- Valid buffer output combinations? Each of the n-buffers can have a 0 or 1 output with all others at Hi-Z. Also all buffers can be Hi-Z. So there are $2n + 1$ valid combinations.
3-State Logic Circuit

- Data Selection Function: If \(s = 0 \), \(OL = IN0 \), else \(OL = IN1 \)
- Performing data selection with 3-state buffers:

<table>
<thead>
<tr>
<th>EN0</th>
<th>IN0</th>
<th>EN1</th>
<th>IN1</th>
<th>OL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- Since \(EN0 = \overline{S} \) and \(EN1 = S \), one of the two buffer outputs is always Hi-Z plus the last row of the table never occurs.
MUX using Tri-State Buffers
Terms of Use

- © 2004 by Pearson Education, Inc. All rights reserved.
- The following terms of use apply in addition to the standard Pearson Education Legal Notice.
- Permission is given to incorporate these materials into classroom presentations and handouts only to instructors adopting Logic and Computer Design Fundamentals as the course text.
- Permission is granted to the instructors adopting the book to post these materials on a protected website or protected ftp site in original or modified form. All other website or ftp postings, including those offering the materials for a fee, are prohibited.
- You may not remove or in any way alter this Terms of Use notice or any trademark, copyright, or other proprietary notice, including the copyright watermark on each slide.

Return to Title Page