
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.2 FEBRUARY 2006
631

PAPER Special Section on Parallel/Distributed Computing and Networking

A Security Middleware Model for Real-Time Applications on Grids

Tao XIE†a) and Xiao QIN†, Nonmembers

SUMMARY Real-time applications are indispensable for conducting
research and business in government, industry, and academic organiza-
tions. Recently, real-time applications with security requirements increas-
ingly emerged in large-scale distributed systems such as Grids. However,
the complexities and specialties of diverse security mechanisms dissuade
users from employing existing security services for their applications. To
effectively tackle this problem, in this paper we propose a security middle-
ware (SMW) model from which security-sensitive real-time applications
are enabled to exploit a variety of security services to enhance the trustwor-
thy executions of the applications. A quality of security control manager
(QSCM), a centerpiece of the SMW model, has been designed and imple-
mented to achieve a flexible trade-off between overheads caused by security
services and system performance, especially under situations where avail-
able resources are dynamically changing and insufficient. A security-aware
scheduling mechanism, which plays an important role in QSCM, is capa-
ble of maximizing quality of security for real-time applications running in
distributed systems as large-scale as Grids. Our empirical studies based on
real world traces from a supercomputing center demonstratively show that
the proposed model can significantly improve the performance of Grids in
terms of both security and schedulability.
key words: security middleware, real-time applications, real-time schedul-
ing, grid

1. Introduction

An increasing number of real-time systems have timing and
security constraints because sensitive data and processing
require special safeguards against unauthorized access [4],
[5]. In particular, a variety of military real-time applica-
tions running on parallel and distributed systems like clus-
ters and Grids require security protections to completely ful-
fill their security needs. Unfortunately, conventional wis-
dom on the design of real time systems is inadequate for
security-sensitive real-time applications because it did not
factor in the applications’ security needs.

To tackle the aforementioned problem, we propose a
security middleware model, which allows real-time applica-
tions to invoke various underlying security services through
specific application programming interfaces (APIs) to sat-
isfy their security needs. Employing the security services,
however, requires extra overhead in terms of CPU time, net-
work and disk bandwidth. Thus, real-time scheduling al-
gorithms need to consider the overhead to make efficient
schedules for tasks submitted. Consequently, applications

Manuscript received April 4, 2005.
Manuscript revised August 15, 2005.
†The authors are with the Department of Computer Science,

New Mexico Institute of Mining and Technology, Socorro, NM
87801, USA.

a) E-mail: xietao@cs.nmt.edu
DOI: 10.1093/ietisy/e89–d.2.631

or users are able to receive satisfactory service from real-
time systems, which achieve high performance with respect
to quality of security and schedulability. The security mid-
dleware model can benefit both applications and the real-
time systems. With the model in place, applications or users
are allowed to formally describe their security requirements
using security services specifications, e.g., security-related
APIs. These APIs then invoke an array of high-level security
services provided by the framework of the SMW model (see
Fig. 1). From a real-time system standpoint, it can leverage
the model to glean global information pertinent to the ap-
plications’ security needs. Additionally, the model makes
it possible for the real-time system to measure the applica-
tions’ security overhead. In doing so, the model is able to
make an effort to guarantee timing constraints and security
requirements. In a security-critical real-time system, a task
will be rejected by the system if the task’s minimal secu-
rity requirements cannot be met. This process is essential
because running tasks without guaranteeing their security
requirements tends to make the system vulnerable to attack.
In short, the model is intended to seamlessly integrate se-
curity into real-time scheduling for applications running in
parallel and distributed systems.

The contributions of this paper are three-fold. First,
a security middleware (SMW) model is proposed. Sec-
ond, a security-aware real-time scheduling mechanism is
implemented. Finally, a case study illustrates the perfor-
mance of the security-aware real-time scheduling mecha-
nism in the light of the security middleware (SMW) model.
Our simulator combines performance and security overhead
estimates using the security overhead model based on the
three most commonly used security services, i.e., authen-
tication, integrity, and confidentiality. We have used real
world traces from a supercomputing centre to drive our sim-
ulations. Empirical results demonstrate that the proposed
model, in which the scheduling mechanism is the center-
piece, is capable of achieving high quality of security while
guaranteeing timing constraints of real-time applications.

The rest of this paper is organized as follows. Related
work is discussed in Sect. 2. Section 3 introduces the archi-
tecture of our security middleware (SMW) model. Section 4
implements and evaluates the QSCM module, a core part of
the model, on a simulated Grid. Section 5 concludes the
paper with some comments on future work.

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers



632
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.2 FEBRUARY 2006

Fig. 1 Security middleware architecture.

2. Related Work

QoS-aware middleware has been extensively studied in the
past both experimentally and theoretically [2], [3]. Huang et
al. proposed a middleware-oriented Global Resource Man-
agement System, or GRMS, which provides distributed
applications with end-to-end QoS negotiation and adapta-
tion [3]. Abdelzaher et al. presented a scheme for QoS ne-
gotiation in real-time applications. The scheme provides a
generic way to express application-level semantics to con-
trol how application QoS is to be degraded under overload or
failure conditions [2]. Although the above works addressed
applications’ QoS requirements in parallel and distributed
systems, none of them paid attention to real-time applica-
tions’ security requirements, which are increasingly becom-
ing critical in real-time systems. Our work is orthogonal
and complementary to the above approaches in the sense
that the security middleware model centered around secu-
rity services is focused on the security needs of real-time
applications.

The security middleware model (SMW) provides a way
of explicitly specifying the security requirements of real-
time applications running on a parallel and distributed com-
puting platform. It is indispensable for the model to be
aware of extra resource overhead incurred by applications’
security requirements because the model has to achieve an
optimized trade-off between system security and perfor-
mance. To the best of our knowledge, the way of calcu-
lating costs of security service has received little attention.
Irvine et al. proposed a model of computing costs for quality
of security service [1]. In their approach application’s secu-
rity requirements are specified by a security vector, which

is composed of an array of sub-vectors with each sub-vector
being a particular security service used [1]. Wang et al. pre-
sented a security measurement framework, which is based
on theory and practice of formal measurements [7]. In our
previous work [6], we proposed a practical security over-
head model to estimate the CPU time overhead of some
commonly used security services like authentication and in-
tegrity. Our security overhead model leveraged the results
in [15], [16], which provided the CPU time units cost for
primitive security services such as confidentiality and in-
tegrity check. Take confidentiality for example, Nahum et
al. in [16] offers the performance of ten widely used encryp-
tion algorithms in terms of mega bytes per second (MB/s)
on a 175 MHz Dec Alpha600 machine. Detailed informa-
tion about how to quantitatively measure security overhead
can be found in our previous work [6], [14]. Most recently,
we proposed a family of dynamic security-aware scheduling
algorithms for a cluster [6] and a Grid [14].

3. Security Middleware Model (SMW)

Middleware is software that sits between two or more types
of software and translates information between them. It is
used to solve computer clients’ heterogeneity and distribu-
tion issues by offering distributed system services that have
standard programming interface and protocols [8]. We re-
fer to these system services as middleware services, because
they reside in a layer between networking, operating sys-
tem software and specific applications. In this section we
propose a security middleware (SMW) model, which aims
at meeting security requirements of a variety of applica-
tions and improving performance of distributed real-time
systems. Section 3.1 presents an overview of the archi-



XIE and QIN: A SECURITY MIDDLEWARE MODEL FOR REAL-TIME APPLICATIONS ON GRIDS
633

tecture for the SMW model. Detailed functional descrip-
tions of each component of the SMW model can be found in
Sect. 3.2. Section 3.3 illustrates how to specify applications’
security requirements.

3.1 Architecture of the SMW Model

The SMW model consists of a user interface, a framework,
low-level security service APIs, a quality of security control
manager, and security middleware services (Fig. 1).

The SMW model provides two different types of user
interfaces, namely, a professional user interface and a nor-
mal user interface. The professional user interface is an in-
terface between developers (e.g., programmers) and applica-
tions being developed. An editor, a compiler and a debugger
are essential components of the professional user interface.
Programmers are allowed to directly access the low-level
security service APIs, thereby efficiently constructing appli-
cations with various security functions. A normal user in-
terface sits between a normal user and the framework. By
using the normal user interface, usually an IDE (integrated
development environment), a normal user such as a system
administrator can leverage the framework to readily create
his applications with security requirements.

A framework is a software environment that is designed
to simplify application development and system manage-
ment for a specialized application domain [8]. The frame-
work illustrated in Fig. 1 is composed of a set of high-
level security service APIs, an array of tools, a secu-
rity middleware-service mapping module, and framework-
private middleware services. The functionality of the frame-
work is two-fold. First, it provides developers an efficient
computing environment in which security-aware applica-
tions can be rapidly developed. Second, the framework
makes it possible for users to manipulate security-related
system parameters. As a result, there is no need for de-
velopers and users to directly access low-level security ser-
vice APIs, which are, in most cases, complicated to use.
The high-level security service APIs may be (1) an ab-
straction of low-level security service APIs for the under-
lying security middleware services, or (2) a new set of APIs
that encapsulate the low-level security service APIs. When
the high-level APIs are different from their low-level peers,
they may add value by specializing user interface, simpli-
fying the low-level APIs, or import framework-private mid-
dleware services. The applications within the framework
are administration applications from which the users (in-
cluding administrators and programmers) can manage and
configure multiple security services by employing the high-
level APIs with the assistance of some tools. The objec-
tive of the tools in the framework is to simplify the use
of the high-level APIs. For example, a security service
virtualization tool offers users a visible table that demon-
strates all currently available security services and their cor-
responding costs. The security middleware services map-
ping module is responsible for translating the high-level se-
curity service APIs into their corresponding low-level coun-

terparts. Framework-private services provide specific func-
tions in addition to the underlying middleware services to
meet framework’s own needs.

The low-level security service APIs are programming
interfaces through which underlying security services in-
cluded in the middleware services can be invoked. We can
implement our low-level security service APIs based on the
Generic Security Service API described in [9], which allows
a calling application to authenticate principle identity asso-
ciated with a peer application, to delegate rights to a peer
application, and to exploit security services such as confi-
dentiality and integrity on a per-message basis [9]. A sam-
ple API routine could be gss verify mic(), which can check
a message integrity code (MIC) against a message to verify
integrity of a received message. Another example routine
is gss indicate mechs() that determines available underlying
authentication mechanism.

Quality of security control manager (QSCM) is a mod-
ule needed for optimizing applications’ security require-
ments based on available system resources. Conceptually, it
is an engine for security-critical real-time systems to achieve
a high system performance in terms of quality of security
and schedulability. Detailed description of QSCM will be
given in Sect. 3.2.

A middleware service is a generic service that oper-
ates between platforms and applications (see Fig. 1). The
middleware service, which is defined by APIs and sup-
ported protocols [8], has several features that differ itself
from general-purpose applications or platform-oriented ser-
vices. Specifically, the middleware service is distributed,
capable of running on multiple platforms, and supporting
standard interfaces and protocols. Among the middleware
services, authentication service, auditing service, confiden-
tiality service and access controller are commonly used se-
curity services in a distributed system. For instance, authen-
tication service provides functions to an application related
to establishing, verifying, and transferring a person or a pro-
cess. These security middleware services furnish a set of
standard APIs (e.g., low-level security service APIs), which
can be invoked in applications. The services are in forms
of standard routines, which can be implemented using pro-
gramming languages such as C and Java. For example, a
Java Security Service Module is a commercial product that
facilitates the above services implemented as classes [10].

3.2 Quality of Security Control Manager (QSCM)

QSCM (Fig. 2) is a centerpiece of the SMW model because
it can optimize the quality of security services requested by
applications while maintaining a high-level system perfor-
mance in terms of schedulability. The input of the QSCM
module is a security service attribute-value vector specified
by users, and the output is an array of selective values for
each required security service. The most important abstrac-
tion in our QSCM module is security level, which is used to
indicate the strength or safety degree of a particular security
service.



634
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.2 FEBRUARY 2006

Fig. 2 Quality of security control manager.

A security service is implemented by a particular secu-
rity mechanism. For example, encryption, a security mech-
anism, provides a means to implementing confidentiality,
which is a security service. Thus, the strength of a secu-
rity service is mainly decided by the robustness of the se-
curity mechanism that implemented it. Further, the strength
of the security mechanism largely depends on (1) how rig-
orously the security algorithm is tested, (2) how long it has
been used, and (3) how robust it is under attacks performed
against it [7]. From a normal user’s standpoint, a security
level may be a subjective and qualitative value like “low”,
“medium”, and “high”. For a security professional, on the
other hand, the security level could be a quantitatively mea-
sured value such as 0.3, a normalized value when setting the
strongest security mechanism as 1. In the latter case, se-
curity level is a relatively objective value obtained by some
reasonable and practical measurement methods. In addition,
security levels are represented in terms of security parame-
ters whose semantics only need be known to the user and
the service provider (e.g., security middleware service).

Please note that security mechanisms are not indepen-
dent of one another. Instead, it is common that multiple se-
curity mechanisms are needed in order to form an integrated
security solution. For example, authentication and message
integrity cannot work without each other [13]. The SMW
model offers users an array of basic security mechanisms so
that they can select one or multiple of them to form an in-
tegrated security solution to meet their security needs. In
other words, it is users’ responsibility to make a meaning-
ful combination of fundamental security mechanisms. The
local security optimization module, which will be described
shortly in this subsection, can assist users to accomplish this.

A security range, which is a scope, contains multiple
distinct security levels for a particular security service. The
lowest value in a security range indicates the minimal secu-
rity strength mandated by the user, while the highest value
implies the maximal security strength necessary for the user
and all the values above should not be considered.

The QSCM runs on top of middleware services and
uses the Resource Monitoring module to monitor the un-

derlying available resources. A user is enabled to submit a
task Ti along with its security requirements expressed by a
vector of security ranges, e.g., S i = (S 1

i , S
2
i , . . . , S

q
i ), where

Ti requires q security services. S j
i is the security range of

the jth requested security service.
The security optimization module, which plays a key

role in QSCM, is responsible for choosing the most appro-
priate point si in space S i, e.g., si = (s1

i , s
2
i , . . . , s

q
i ), where

s j
i ∈ S j

i , 1 ≤ j ≤ q. The objective of the security level
selection is to maximize overall utility in terms of quality of
security (see Sect. 4).

The local schedulability analyzer aims at checking
whether or not the selected security levels can be supported
under current workload conditions. With the assistance of
the local schedulability analyzer, the security optimization
module performs admission control on arrival application
tasks.

The scheduling mechanism has to make use of the
schedulability analyzer and the security optimization mod-
ule to measure the security benefits gained by each admitted
task. In particular, the security benefit of task Ti is quantita-
tively modeled as the following security level function.

S L(si) =
q∑

j=1

wj
i s j

i , 0 ≤ wj
i ≤ 1,

q∑

j=1

wj
i = 1, (1)

where W j
i is the weight of the jth security service. Note

that it is programmers’ responsibility to define the weights
to reflect relative priorities given to the required security ser-
vices.

Suppose Xi is all possible schedules for task Ti gener-
ated by the scheduling mechanism, and xi ∈ Xi is a schedul-
ing decision. The schedulability analyzer considers xi a fea-
sible schedule if (1) the security requirements are satisfied,
and (2) its deadline can be met. Given a real-time task Ti,
the security benefit of Ti is expected to be maximized by the
security level controller (See Fig. 1) under the timing con-
straint:

S B(xi) = max
xi∈Xi



q∑

j=1

wj
i s j

i (xi)

 , (2)

where min(S j
i ) ≤ s j

i (xi) ≤ max(S j
i ). min(S j

i ) and max(S j
i )

are the minimum and maximum security requirements.
The QSCM is focused on maximizing quality of secu-

rity, which is defined as the sum of the security levels of
admitted tasks. More formally, the following security func-
tion needs to be maximized, subject to certain timing and
security constraints:

S V(x) = max
x∈X


p∑

i=1

yiS B(xi)

 , (3)

where p is the number of submitted tasks, yi is set to 1 if
task Ti is accepted, and is set to 0 otherwise.

The local security optimization module is used to select
security levels only for local clients based on local machine



XIE and QIN: A SECURITY MIDDLEWARE MODEL FOR REAL-TIME APPLICATIONS ON GRIDS
635

resources, while the global security optimization module is
launched using a load-sharing algorithm, which can exploit
distributed system resources when local resources are insuf-
ficient to sustain client’s service requests. In addition, the
local security optimization module also validates security
mechanism selections made by local clients before selecting
security levels for them. If a client selects a number of se-
curity mechanisms that cannot form a meaningful integrated
protection solution, the local security optimization module
will send a warning message back to the client. This func-
tion enforces that only practical security solution requests
can be granted.

3.3 Security Service Requirements Specification

In this subsection we present an approach to specifying
users’ security service requirements. Irvine et al. proposed
the notion of security range that consists of a set of security
levels [11]. Users can define their security requirements for
a particular security service by specifying a security range.
To accomplish this goal, our SMW model provides users
with a task submission description language (TSDL), a ve-
hicle that users can leverage to articulate their security needs
upon the submissions of their tasks. Figure 3 illustrates an
example of the task submission structure (TSS) described in
TSDL.

A TSS is a highly flexible and extensible data model
that can be utilized to represent multiple security services
and constraints in a submitted task. It is a mapping from at-
tribute names to expressions. For example, Processor Num
is an attribute and the number 5 is its corresponding expres-
sion. An expression might be an integer, a string constant, or
a combination of complicated expressions constructed with
arithmetic and logical operators such as “0.3 <= Integrity
<= 0.8” (See Fig. 3). After a user submits a TSS, the secu-
rity service constraints will be translated into the high-level
security service APIs. Therefore, there is no need for users
to directly deal with the APIs. To further alleviate users’

Fig. 3 Task submission structure for flight control.

burden, the framework of the SMW model makes it pos-
sible for system administrators to specify security require-
ment expressions using a higher-level abstraction like secu-
rity abstract table.

4. QSCM Implementation and Results

The security middleware model (SMW) can take full advan-
tage of the QSCM module (see Fig. 2) to guarantee a diver-
sity of security requirements while improving the schedula-
bility performance of real-time systems. It is intuitive that
higher security requirements imply longer execution times,
which in turn may violate real-time tasks’ deadlines. In the
light of the schedulability analyzer and security optimiza-
tion module, the scheduling mechanism in the QSCM mod-
ule is capable of making appropriate trade-offs between se-
curity and real-time requirements. To quantitatively evalu-
ate the performance of the proposed model, we implemented
the QSCM module based on the model presented in Sect. 3.
In particular, we implemented the SAREG scheduling algo-
rithm [14] in the QSCM module. Note that SAREG detailed
in [14] is a real-time scheduling algorithm with security-
awareness.

Experimental results demonstrate that the performance
gain of the QSCM module, in which the SAREG algorithm
is employed, is significant due to the virtue of the security
middleware model. Therefore, the SMW model can even-
tually enhance the performance of distributed real-time sys-
tems in terms of security and schedulability (measured as
guarantee ratio). Section 4.1 presents an introduction of
the simulation experiments. Section 4.2 compares SAREG
with the three baseline algorithms. Section 4.3 shows that
SAREG still maintains a good performance in conventional
performance metrics.

4.1 Introduction of Experiments

Using extensive simulation experiments based on San Diego
Supercomputer Center (SDSC) SP2 log, we evaluate in this
section the potential benefits of the proposed security mid-
dleware model. We constructed a homogeneous Grid [14]
simulator, which assumes that (1) there are multiple sites
in the Grid; (2) the number of nodes in one site could be
different from the number of nodes in another site; and (3)
all nodes in the simulated Grid had an identical processing
power. The last assumption is reasonable in the sense that it
can be easily relaxed by incorporating a simple conversion
mechanism for relative heterogeneous processing capabili-
ties. Therefore, it’s readily to extend our SAREG scheme
to a heterogeneous Grid. Besides, to provide workload (ar-
rival tasks) for each site in the simulated Grid, we randomly
divided the trace into multiple parts and each part went to
one site. Similar experimental methodology was used in
[17], which collected real workload from one computer in
six daytime intervals. And then a distributed system, where
each of six hosts executes the workload arrivals from one of
the daytime traces, was simulated [17]. In addition, using



636
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.2 FEBRUARY 2006

(a) Guarantee ratio. (b) Security value. (c) Overall system performance.

Fig. 4 Performance impact of deadline.

trace from one supercomputing center to drive a simulated
Grid is reasonable because (1) a Grid is essentially a large-
scale virtual super-site that consists of multiple sites; (2) the
workload of each site in our simulated Grid came from par-
tial workload of one existing real site (SDSC).

In purpose of revealing the strength of the QSCM mod-
ule with SAREG, we compared it against two scenarios
where QSCM make use of three well-know scheduling algo-
rithms, namely, Min-Min, Sufferage [12], and earliest dead-
line first algorithm (EDF). To highlight the non-security-
aware characteristic of the EDF algorithm, we call it NS-
EDF (non-security-aware EDF) in this paper. Although
NS-EDF algorithm, a slightly modified version of EDF, is
intended to schedule real-time tasks with security require-
ments, it makes no effort to optimize quality of security.
For the sake of simplicity, throughout this section Suffer-
age is referred to SUFFER. The three baseline algorithms
are briefly described below.
(1) MINMIN: For each submitted task, the node that of-
fers the earliest completion time is tagged. Among all the
mapped tasks, the one that has the minimum earliest com-
pletion time is chosen and then allocate to the tagged node
(machine).
(2) SUFFER: Allocating a node to a submitted task that
would “suffer” most in terms of completion time if that node
is not allocated to it.
(3) NS-EDF: The task with the earliest deadline is always
executed first.

The admission controller randomly selects a security
level of each security service required by an arrival task for
all the three baseline algorithms above. The purpose of com-
paring SAREG with MINMIN and SUFFER is to show the
performance improvements over existing Grid scheduling
algorithms in a real-time computing environment where the
QSCM module were not deployed. The goal of comparing
SAREG with NS-EDF is to demonstrate the security perfor-
mance benefits gained by integrating SAREG in the QSCM
module. The performance metrics by which we evaluate
system performance include: security value (the total sum
of all accepted tasks’ security levels), guarantee ratio (mea-
sured as a fraction of total submitted tasks that are found to
be schedulable), overall system performance (defined as a
product of security value and guarantee ratio).

4.2 Overall Performance Comparisons

The goal of this experiment is two-fold: (1) to compare
the proposed SAREG algorithm against the three baseline
schemes, and (2) to understand the sensitivity of SAREG to
parameter β, or deadline base (Laxity).

Figure 4 shows the simulation results for these four
algorithms on a four-site Grid with 184 nodes where the
CPU power is fixed at 100MIPS. We observe from Fig. 4 (a)
that SAREG and NS-EDF exhibit similar performance in
terms of guarantee ratio (the performance difference is less
than 2%), whereas SAREG noticeably outperforms MIN-
MIN and SUFFER algorithms. Figure 4 (b) plots security
values of the four algorithms when the deadline base is in-
creased from 50 second to 800 second.

Figure 4 (b) reveals that SAREG consistently performs
better, with respect to quality of security, than all the other
three approaches. When the deadlines are tight, the secu-
rity values of SAREG are much larger than that of MINMIN
and SUFFER. In addition, SAREG also consistently outper-
forms NS-EDF. This is because that SAREG can promote
all accepted tasks’ security levels under constraints of their
deadlines and resources availability, while NS-EDF puts no
effort into optimizing submitted tasks’ security level at all.

4.3 Conventional Performance Metrics

In this subsection we compare SAREG with the other three
alternatives in terms of conventional performance metrics,
namely, mean slowdown and mean response time. The pur-
pose of the comparison is to verify if SAREG has good per-
formance in the two commonly used metrics.

Figures 5 and 6 shows us that SAREG substantially
outperforms MINMIN and SUFFER. SAREG tied with NS-
EDF in terms of mean slowdown and mean response time.
However, SAREG greatly outperforms NS-EDF in security
value, which is one of the most important performance met-
rics in a security-critical real-time Gird computing environ-
ment.



XIE and QIN: A SECURITY MIDDLEWARE MODEL FOR REAL-TIME APPLICATIONS ON GRIDS
637

Fig. 5 Deadline impact on mean response time.

Fig. 6 Deadline impact on mean slowdown.

5. Summary and Future Work

In this paper, we presented a novel security middleware
(SMW) model from which a security-sensitive real-time ap-
plication can exploit a variety of security services to enhance
the safety of its execution on Grids. In addition, we con-
structed a security-aware scheduling strategy, or SAREG,
for real-time applications on Grids by integrating the QSCM
module into the scheduling mechanism. This strategy paves
a way to the design of security-aware real-time schedul-
ing algorithms. The effectiveness of the SAREG strategy
was evaluated by developing a new security-aware real-
time scheduling algorithm (SAREG), which incorporates
the earliest deadline first (EDF) scheduling algorithm into
the SAREG strategy. To quantitatively validate the per-
formance of our SAREG algorithm, we conducted trace-
driven simulations and introduced two new performance
metrics, namely, security value and overall system perfor-
mance. Simulation results on various simulated Grids show
that SAREG achieves overall system performance over
three baseline real-time scheduling algorithms (MINMIN,
SUFFER and NS-EDF) by averages of 286.34%, 272.14%,
and 33.86%, respectively. In addition, the empirical results
reveal that SAREG significantly improves quality of secu-
rity for real-time tasks while maintaining high guarantee ra-
tios under a wide range of workload characteristics.

Future studies in this research can be performed in the
following directions. (1) Extend our SMW model to multi-
dimensional computing resources. For now, we simply con-
sider CPU time, which is only one of the computing re-

sources consumed by the security services. Memory, net-
work bandwidth and storage capacities should be considered
in the future. (2) Accommodate more security services like
authorization and auditing services into consideration into
our SMW model.

References

[1] C. Irvine and T. Levin, “Towards a taxonomy and costing method
for security services,” Proc. 15th Annual Computer Security Appli-
cations Conference, pp.183–188, 1999.

[2] T.F. Abdelzaher, E.M. Atkins, and K. Shin, “QoS negotiation in real-
time systems and its application to automated flight control,” IEEE
Trans. Comput., vol.49, no.11, pp.1170–1183, Nov. 2000.

[3] J. Huang, Y. Wang, and F. Cao, “On developing distributed mid-
dleware services for QoS- and criticality-based resource negotiation
and adaptation,” Real-Time Systems, vol.16, no.2, pp.187–221, May
1999.

[4] G. Donoho, “Building a Web service to provide real-time stock
quotes,” MCAD.Net, pp.38–42, Feb. 2004.

[5] E. Durant, “Embedded real-time system considerations,” EECS De-
partment of Milwaukee School of Engineering, pp.1–19, April 1998.

[6] T. Xie, X. Qin, and A. Sung, “SAREC: A security-aware scheduling
strategy for real-time applications on clusters,” Proc. 34th Interna-
tional Conference on Parallel Processing, pp.5–12, Norway, June
2005.

[7] C. Wang and W.A. Wulf, “Towards a framework for security mea-
surement,” Proc. Twentieth National Information Systems Security
Conference, pp.522–533, Baltimore, MD, Oct. 1997.

[8] P.A. Bernstein, “Middleware: A model for distributed system ser-
vices,” Commun. ACM, vol.39, no.2, pp.86–98, 1996.

[9] J. Wray, RFC2744- Generic Security Service API Version 2: C-
bindings, http://www.faqs.org/rfcs/rfc2744.html, 2000.

[10] Programming Security for Java Applications, http://e-docs.bea.com/
wles/docs42/programmersguide/

[11] C. Irvine and T. Levin, “Quality of security service,” Proc. New
Security Paradigms Workshop2000, pp.91–99, Cork, Ireland, Sept.
2000.

[12] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund,
“Dynamic matching and scheduling of a class of independent tasks
onto heterogeneous computing systems,” 8th IEEE Heterogeneous
Computing Workshop (HCW ’99), pp.30–44, April 1999.

[13] A.S. Tanenbaum and M. Steen, Distributed Systems: Principles and
Paradigms, ISBN 0130888931, Prentice Hall, 2002.

[14] T. Xie and X. Qin, “Enhancing security of real-time applications
on grids through dynamic scheduling,” Proc. 11th Workshop on Job
Scheduling Strategies for Parallel Processing, pp.146–158, Cam-
bridge, MA, USA, June 2005.

[15] A. Bosselaers, R. Govaerts, and J. Vandewalle, “Fast hashing on the
Pentium,” Proc. Advances in Cryptology, LNCS 1109, pp.298–312,
Springer-Verlag, 1996.

[16] E. Nahum, S. O’Malley, H. Orman, and R. Schroeppel, “Towards
high performance cryptographic software,” Proc. IEEE Workshop
Architecture and Implementation of High Performance Communi-
cation Subsystems, pp.69–72, Aug. 1995.

[17] M. Harchol-Balter and A. Downey, “Exploiting process lifetime dis-
tributions for load balancing,” ACM Trans. Comput. Syst., vol.3,
no.31, pp.253–285, 1997.



638
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.2 FEBRUARY 2006

Tao Xie is a Ph.D. Candidate in Computer
Science at the New Mexico Institute of Mining
and Technology in the USA. His research in-
terests are security-aware scheduling, high per-
formance computing, cluster and Grid com-
puting, parallel and distributed systems, real-
time/embedded systems, and information secu-
rity.

Xiao Qin received the BS and MS degrees in
computer science from Huazhong University of
Science and Technology in 1992 and 1999, re-
spectively. He received the PhD degree in com-
puter science from the University of Nebraska-
Lincoln in 2004. Currently, he is an assistant
professor in the department of computer science
at the New Mexico Institute of Mining and Tech-
nology. His research interests are in parallel and
distributed systems, storage systems, real-time
computing, performance evaluation, and fault-

tolerance. He is a member of the IEEE.


