
SOR: A Static File Assignment Strategy Immune to Workload Characteristic
Assumptions in Parallel I/O Systems

Tao Xie
Department of Computer Science

San Diego State University
San Diego, California 92182

xie@cs.sdsu.edu

Abstract

The problem of statically assigning nonpartitioned
files in a parallel I/O system has been extensively
investigated. A basic workload characteristic
assumption of existing solutions to the problem is that
there exists a strong inverse correlation between file
access frequency and file size. In other words, the most
popular files are typically small in size, while the large
files are relatively unpopular. Recent studies on the
characteristics of web proxy traces suggested,
however, the correlation, if any, is so weak that it can
be ignored. Hence, the following two questions arise
naturally. First, can existing algorithms still perform
well when the workload assumption does not hold?
Second, if not, can one develop a new file assignment
strategy that is immune to the workload assumption?
To answer these questions, in this paper we first
evaluate the performance of three well-known file
assignment algorithms with and without the workload
assumption, respectively. Next, we develop a novel
static file assignment strategy for parallel I/O systems,
called static round-robin (SOR), which is immune to
the workload assumption. Comprehensive
experimental results show that SOR consistently and
noticeably improves the performance in terms of mean
response time over the existing schemes.

1. Introduction

Many real-world applications intensively read data
stored in large-scale parallel I/O systems like RAID,
Redundant Arrays of Inexpensive Disks [7]. To
guarantee the quality of service demanded by end-
users, prompt responses to read requests are essential
for these applications. For example, a Video-On-
Demand (VOD) server has to quickly respond access
requests from multiple users so as to provide them with
continuous glitch-free video [12][26]. Similarly, a

data-intensive Web server application that publishes
significant amounts of data stored in a back-end
database must answer end-users’ inquiries instantly
before they lose patience [6][23]. It is obvious that the
performance of these read-intensive applications
largely depends on the performance of underlying
parallel I/O systems, where disk arrays serve arrival
requests simultaneously. More precisely, reducing
mean response time of parallel disk storage systems is
a must for these applications.

There are a wide variety of ways to reduce the mean
response time or to improve the system throughput for
parallel I/O systems [12][15][16][20][29]. File
assignment, allocation of all the files onto disk arrays
before they are accessed, is one of such avenues that
can significantly affect the overall performance of a
parallel I/O system [20][29]. In order to fully exploit
the capacities of a parallel disk storage system, file
assignment problem (FAP) for parallel disk systems
have been extensively investigated in the literature
[10][32]. A generic FAP formulation can be
summarized as follows. Given a set of M files and N
disks, find the file-disk allocation that optimizes some
cost functions or performance metrics. While common
cost functions include communication costs, storage
costs, and queuing costs, popular performance metrics
are mean response time and overall system throughput
[10]. It is well-known that finding the optimal solution
for a cost function or a performance metric in the
context of file assignment on multiple disks is an NP-
complete problem [10]. Thus, heuristics algorithms
became practical solutions.

Typically, heuristic file assignment algorithms fall
into two camps: static and dynamic. Most static file
assignment algorithms require complete knowledge
about the workload statistics such as service times and
access rates of all the files. Dynamic file assignment
algorithms, on the other hand, generate file-disk
allocation schemes on-line to adapt to varying

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

workload patterns without a prior knowledge of the
files to be assigned in the future. In this paper, we
address the problem of statically assigning
nonpartitioned files in a parallel disk storage system
where file accesses exhibit Poisson arrival rates and
fixed service times.

Several previous studies [9][13] show that the
distribution of web page requests generally follows a
Zipf distribution [20] where the relative probability of
a request for the i’th most popular page is proportional
to 1/i. Moreover, they claim that the request frequency
and the file size are inversely correlated, i.e., the most
popular files are typically small in size, while the large
files are relatively unpopular. Based on these workload
characteristic study results, many existing static file
assignment algorithms such as Greedy [14], SP [20],
and HP [20] were developed to reduce parallel I/O
systems’ mean response times. Experimental results
either from prototype implementation or synthetic
simulations demonstrate that they work well when the
workload characteristics clearly exhibit. Some recent
investigations on the characteristics of web proxy
traces, however, discovered that the correlation
between access frequency and file size, if any, is very
weak that it can be ignored [4][24]. In other words, at
least in some real-world applications, the workload
assumption on the correlation does not hold. Therefore,
it is necessary to re-examine the existing static file
assignment approaches to verify whether they are still
efficient when the correlation does not exist. More
importantly, it is indispensable to design and
implement a new file assignment strategy, which can
deliver good mean response times no matter the
correlation assumption holds or not.

To achieve these two goals, we first measure the
performance of three well-known algorithms, namely,
Greedy [14], SP [20], and HP [20] when the correlation
assumption holds. Then we compare it with the
performance when the correlation assumption does not
hold. Next, we develop a novel static file assignment
strategy, called static round-robin (SOR), which aims
at minimizing mean response time under different
workload conditions no matter the correlation
assumption is valid or not. The basic idea of SOR is to
assign all files sorted in their size onto an array of disks
in a round-robin fashion. Further, we evaluate the
performance of SOR with Greedy, SP, and HP when
the correlation assumption holds. Experimental results
manifest that SOR consistently performs best, while SP
delivers a comparable performance. Finally, we
examine the four algorithms under the situation where
the file access frequency is independent of the file size.
Again, SOR outperforms the three traditional
algorithms in all the tested cases, whereas Greedy, SP,
and HP increase their mean response times on average

by 2.44, 2.48, and 2.45 times, respectively. In
summary, SOR demonstrates its strength and
effectiveness under various workload conditions.

The rest of the paper is organized as follows. In the
next section we discuss the related work and
motivation. In Section 3, we formulate the problem and
present the SOR strategy as well as the three existing
algorithms. In Section 4 we evaluate performance of
our algorithms based on synthetic benchmarks. Section
5 concludes the paper with summary and future
directions.

2. Related work

The file assignment problem (FAP) exists in a wide
range of distributed systems including distributed file
systems [29], distributed databases [33], video servers
[27], content distribution networks [5] and the Grid
[11]. The first research work on FAP dates back to late
1960s [8]. Since then FAP has been comprehensively
investigated because the potential gain obtained by
solving a FAP is significant [10]. Typically, solutions
to FAP fall into two categories: static and dynamic.
Most static file assignment algorithms assume that
access statistics are immutable, and hence the file
assignment allocation scheme needs to be computed
only once and can continuously work for a long time
period [8][10][17][21][25][28]. Greedy, originated
from longest processing time (LPT) algorithm
proposed by Graham in [14] is one of the most well-
known static file assignment heuristic algorithms.
Dynamic file assignment algorithms [25] [32], on the
other hand, update the file allocation scheme
potentially upon every request. Obviously, they are
effective when the files are relatively small in size such
as the case in Web proxy caching. However, in
applications like distributed video servers [27], since
the files are of large size and they do not change in
size, dynamic schemes become less useful.

With the advent of advances of distributed systems,
new algorithms have been developed recently to solve
problems such as data object replica placement
[18][22], data management for large-scale storage
systems [2][20][31], and automatic near-optimal
storage system designs [3]. Essentially, these problems
are either directly derived from or closely related to the
FAP problem. In recognition that minimizing the
variance of service times at each disk is of the same
importance as minimizing the utilization of each disk,
Lee et al. proposed a static file assignment algorithm
called sort partition (SP) and a semi-dynamic file
assignment algorithm named hybrid partition (HP)
[20]. Compared with the traditional Greedy algorithm,
SP significantly improves the mean response time by

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

taking the two minimizations into account
simultaneously [20]. On the other hand, HP is a batch-
based variant of SP, which can run in on-line mode.
Based on our knowledge, SP is one of the best existing
static file assignment algorithms so far.

All the new algorithms mentioned above, however,
are based on some critical workload characteristic
assumptions. Two most important ones are: the file
access rate obeys a Zipfian distribution and the file
access frequency is inversely correlated to the file size.
These two workload assumptions were supported by
several early studies on web requests [1][9][13].
However, some recent research projects [4][24]
conducted on real-world web proxy traces suggested
otherwise. They revealed that the distribution of file
requests generally follows a Zipf-like distribution,
where the relative probability of a request for the i’th
most popular page is proportional to 1/i , with
typically varying between 0 and 1, rather than a strict
Zipfian distribution. In addition, the correlation
between file access frequency and file size does not
explicitly exist. Consequently, the foundation of the
existing file assignment algorithms is potentially
shaken by the new findings [4][24] at least in some
applications. Therefore, it is necessary to re-examine
the existing algorithms under the conditions where the
two assumptions do not hold. To this end, we
conducted a group of tests to evaluate three
representative traditional algorithms, namely, Greedy,
SP, and HP, under the situation where the file access
frequency is independent of file size and the
distribution of file sizes follows a random uniform
distribution. Our preliminary results show that on
average the mean response times of the three
algorithms degrade to 2.44~2.48 times compared with
the situations where the correlation assumption holds.
Hence, it is mandatory to design and implement a new
file assignment algorithm, which can deliver good
mean response times no matter the workload
assumptions hold or not. In other words, the need of a
new file assignment algorithm that is immune to these
workload assumptions is greatly felt.

In this paper, we are proposing SOR, a static
heuristic file assignment strategy, which offers better
mean response time performance compared with the
three representative existing algorithms under a wide
spectrum of workload conditions with or without the
workload assumptions. Although we model a parallel
I/O system as a set of homogeneous stand-alone disks
in this paper, our algorithm can be easily extended to
RAID-structured storage systems. This is because the
delays on the buses or controllers of the disks are
negligible compared with the queuing delays on the
disks, which are the dominant components in overall
response times for many disk I/O-intensive

applications due to heavy workloads. Similarly, we do
not consider file partitioning or file replication in this
work, and thus, each file must be allocated entirely
onto one disk. This does not restrict the generality of
our scheme as each file partition can be treated as a
stand-alone file.

3. The SOR algorithm

A parallel I/O system in its most general form
consists of a linked group, e.g., D = {d1, ..., dj, …, dn},
of independent homogeneous disk drives. The set of
files can be represented as F = {f1, …, fi, ..., fm}. In the
system, a disk dj is modeled as a three-element tuple dj
= (cj, tj, lj), where cj, tj, lj are the disk capacity in
GByte, transfer rate (read speed) in Mbyte/second, and
load (total sum of files’ heats on the disk). We assume
that disks are always large enough to accommodate
files to be assigned on them. Similarly, a file fi is
modeled as a set of rational parameters, e.g., fi = (si, i,
ti, hi), where si, i, ti, hi are the file’s size in Mbyte,
access rate, expected service time, and heat. In this
paper, disk accesses to a file fi are modeled as a
Poisson process with a mean access rate i. Also, we
assume a fixed service time ti for file fi. This
assumption is realistic for the following two reasons.
First, each access to file fi could be a sequential read of
the entire file, which is a typical scenario in most file
systems or WWW servers [19]. Second, for large files,
when the access unit is the entire file, the seek times
and rotation latencies are negligible compared with the
transfer time. Thus, ti is determined by si and tj if fi is
allocated on dj. Since we consider a homogeneous
parallel I/O system with each disk having the same
transfer rate, the service time of each file is fixed.
Since the combination of i and ti accurately gives the
load of fi, we define the heat hi of fi as follows [20]:

 hi = i · ti. (1)
Consequently, the average disk load can be

obtained by the following equation:

 =
⋅= m

i ih
n 1

1ρ
 (2)

File assignment algorithms like Greedy, SP, HP,
and SOR allocate a group of files onto a set of identical
disks so that the mean response time can be minimized.
Here, we employ the First-Come-First-Serve (FCFS)
scheduling heuristic. Suppose there are totally u
requests in the request set, which is modeled as R =
{r1, ..., rk, …, ru}. Each request is modeled as rk = (fidk,
ak), where fidk is the file identifier targeted by the
request and ak is the request’s arrival time. For each
arrival request, the FCFS scheduler uses the allocation
scheme X to find the disk on which the target file of the
request resides. And then it directs the request to the

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

disk’s local queue. In fact, the request workload is a
multi-class workload with each class of requests
having its fixed i and ti.

To obtain the response time of a request rk, two
important parameters, the start time and finish time of
rk on a disk dj must be computed. We denote the start
time and finish time of rk on disk dj by stj(rk) and ftj(rk),
respectively. In what follows we present derivations
leading to the final expressions for these two
parameters. There are three cases when rk arrives in Qj
(1 j n), the local queue of disk dj. First, dj is idle
and Qj is empty. Second, dj is busy and Qj is empty.
Third, dj is busy and Qj is not empty. Thus, stj(rk) is
expressed as

++

+=

≤∈

otherwise,

emptyisandbusyisif,

emptyisandidleisif,

)(

, kpjp

p
aaQr

fidjk

jjjk

jjk

kj

tra

Qdra

Qda

rst

 (3)
where rj represents the remaining service time of a
request currently running on dj, and

≤∈ kpjp

p
aaQr
fidt

,

 is the

overall service time of requests in Qj whose arrival
times are earlier than that of rk. Consequently, ftj(rk)
can be calculated by

 ftj(rk) = stj(rk) +
kfidt , (4)

, where
kfidt is the service time of the file that

request rk targets on. As a result, the response time of
rk can be obtained by

 rtj(rk) = ftj(rk) - stj(rk). (5)
Thus, the mean response time of the request set R is

expressed as below
 mrt(R) = urrt

u

njk
kj

≤≤= 1,1
)(. (6)

The FAP problem now can be formulated as: given
a set of files F and a parallel I/O system D, find an
allocation scheme X that optimizes the mean response
time expressed by Eq. 6.

 Fig. 1 outlines the SOR algorithm with some
detailed explanations. It is recognized that even
distribution of workload among all disks and
minimization of the variance of the service time at each
disk are two important paths towards the goal of
minimizing the queuing delay [20]. SOR takes these
two critical aspects into account as well. Specifically,
SOR computes the average disk load in step 1 and
enforces the load on each disk not to exceed (Step 9).
Step 7 sorts the file set F in file size so that files with
similar sizes can be allocated onto the same disk, a
clever strategy that was employed by SP and HP as
well [20]. Besides, SOR separates the most popular
files onto different disks by utilizing a round-robin

manner rather than a consecutive allocation of a sorted
file set, which was adopted by SP. Note that the round-
robin fashion used by SOR is actually a partial round-
robin in the sense that only the first n-1 disks are
involved in the round-robin file assignment process
(Step 14). The reason why we exclude disk dn out of
the round-robin procedure is that it will be exclusively
used by files with very big sizes. Confining very big
files in one disk will prevent them from severely block
responses to the requests for small files, which could
happen if they are mixed together with small files on
the same disk. The advantage of a round-robin file
assignment strategy is that files with higher load (heat)
values will be distributed onto distinct disks so that the
overall load balancing could be further improved.
Moreover, SOR overcomes a hidden drawback of SP
where the allocation of files onto disks is not even in
terms of number of files on each disk. If a file fi cannot
be allocated onto disk dj, SOR searches a disk dk that is
closet to dj to accept it (Steps 19-23). If failed, which

Fig. 1. The SOR algorithm.

Input: A parallel I/O system D with n
identical disks, a collection of m files in a
queue F
Output: A file allocation matrix X (n, m)
1. Use Eq. 2 to compute the average disk
load
2. for each disk j do
3. loadj = 0; X(dj, :) = 0
4. end for
5. fi = 1
6. dj = 1
7. Sort all files in F in ascending order of
their service time si
8. while fi • m do
9. if loadj •
10. X(dj, :) = fi

11. loadj = loadj + load(fi)
12. fi = fi + 1
13. if dj = = (n -1)
14. dj = 1
15. else
16. dj = dj + 1
17. end if
18. else
19. Search for a disk dk from the rest
disks to
 accommodate file fi

20. If successful
21. X(dk, :) = fi
22. loadk = loadk + load(fi)
23. fi = fi + 1
24. else
25. X(dn, :) = fi
26. loadn = loadn + load(fi)
27 f f 1

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

means fi is a big file, it will be put into disk dn, a disk
dedicated for these unusual size files (Steps 25-27).

4. Performance evaluation

Now we are in a position to evaluate the
effectiveness of the proposed SOR algorithm. To
demonstrate the strength of SOR, we compare it with
Greedy, SP, and HP. The three algorithms are briefly
described below.
 (1) Greedy: It can operate in either on-line mode or
off-line mode. Here, we only consider its off-line mode
because SOR is an off-line file assignment strategy. It
first calculates the mean load of all files and then
assigns a consecutive set of files whose total load is
equal to the mean load onto each disk. Its goal is to
generate a file assignment scheme such that the mean
response time of the parallel I/O system can be
minimized.

(2) SP (Sort Partition): It first computes the average
disk utilization using Eq. 2. Next, it sorts all files into a
list I in descending order of their service times.
Finally, it allocates each disk dj the next contiguous
segment of I until its load loadj reaches the maximum
allowed threshold . The remainder files (if any) after
one round allocation will be assigned to dn. It improves
the performance of the Greedy algorithm by
minimizing the variances of service times at each disk.

(3) HP (Hybrid Partition): In case files arrive in
batches, which can be sorted prior to their assignment,
HP attempts to simultaneously minimize the load
variance across all disks, as well as the service time
variance at each disk. For each batch, HP assigns files
to disks in distinct allocation intervals. The algorithm
selects, for each allocation intervals l, a different disk
dk as the allocation target. It chooses the disk with the
smallest accumulated load (heat). During one
allocation interval, a number of files are allocated to
the target disk dk until its load reaches a given
threshold Tk.

4.1. Simulation setup

We have developed an execution-driven simulator
that models an array of conventional Cheetah
ST39205LC disks. The performance metrics by which
we evaluate system performance include:
• Mean response time: average response time of all
file access requests submitted to the simulated parallel
I/O system. Note that the mean response times are
normalized in the scale [0, 1] for all graphs in this
section.

• Mean response time improvement: decrease (in
seconds) of mean response time gained by SOR
compared with the three existing algorithms.
• Mean slowdown: the ratio between average request
turnaround time and average request service time.

Mean disk utilization: average ratio between a
disk’s total service time and its total operation time.
The operation time is defined as the time period
between the arrival time of the first file access request
and the finish time of the last file access request.

Table 1 summarizes the configuration parameters of
a simulated parallel I/O system used in our
experiments and characteristics of the synthetic
workload. All synthetic workload used from Section
4.2 to Section 4.3 were created by our trace generator.
Although number of disks, aggregate access rate, and
size of files are synthetically generated, we examined
impacts of these important parameters on system
performance by controlling the parameters.

4.2. Impact of aggregate access rate

The goal of this experiment is to compare the
proposed SOR algorithm against the three well-known
file assignment schemes, and to understand the
sensitivity of the four heuristics to the aggregate access
rate in a parallel I/O system, where an array of
identical disk drives serve incoming requests
simultaneously. The aggregate access rate varies from
25 (1/second) to 1000 (1/second) and the file sizes
were distributed according to Zipf’s law with skew
degree 70:30.

Parameter Value (Fixed) – (Varied)

Number of files (5000)

File load (heat)
Each file imposes a load
(heat) that is defined as hi

= i * ti.

Coverage of the
file system

(100%) – each file is at
least accessed once

Number of
batches (HP)

(4) – each batch has 1250
files

Number of disks (16) – (8, 12, 16, 20, 24)

Aggregate
access rate
(1/second)

(200) – (25, 50, 100, 200,
300, 400, 500, 600, 700,
800, 900,1000)

Table 1. System parameters.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Fig. 2 shows the simulation results for the four
algorithms on a parallel I/O disk array with 16 disk
drives. We observe from Fig. 2a that SOR consistently
outperforms the three exiting approaches in terms of
mean response time. This is because SOR considers
both minimizing variance of service time for each disk
and fine-tuning load balancing degree. Consequently,
the sorted files were continuously assigned to disks
such that a more evenly distributed workload allocation
scheme was generated. SP takes the second place in
mean response time metric, which is consistent with
our expectation because it is one of the best existing
static file assignment heuristics. To clearly demonstrate
the performance improvement, Fig. 2b provides mean
response time decrease gained by SOR compared with
Greedy, SP, HP, respectively. In particular, SOR can
reduce mean response time on average by 1118.3,
1052.8, and 269.6 seconds, compared with HP,
Greedy, and SP, respectively. An interesting
observation is that the mean response time
improvement becomes more significant when the
overall workload represented by the aggregate access
rate increases. The implication is that SOR exhibits its

strength in situations where system workload is heavy.
In terms of mean slowdown, SOR also performs best
among the four heuristics (Fig. 2c), which is consistent
with the results shown in Fig. 2a. Since the total
workload is relatively heavy, the mean disk utilization
in Fig. 2d quickly arises to 1 when aggregate access
rate is larger than 25 (1/second).

4.3. Scalability

This experiment is intended to investigate the
scalability of the four algorithms. We scale the number
of disks in the system from 8 to 24. The aggregate
access rate is configured to 200 (1/second) and 1000
(1/second). The skew degree is still set to 70:30. Fig. 3
plots the performance of the four algorithms as
functions of the number of disks. The results show that
SOR exhibits a good scalability.

Fig. 3 shows that all of the four algorithms deliver
better performance in both mean response time and
mean slowdown when the number of disks increases.
This is because each disk has few files to be assigned
on when the system is scaled up. One important

(a) (b)

(c) (d)

Fig. 4. Impact of aggregate access rate in Zipfian file size distribution.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Fig. 3. Scalability test.
observation is that SOR outperforms the rest three
approaches in all tested cases. The implication of this
observation is that SOR is suitable for a parallel I/O
system where the number of disks is not sufficient for a
heavy workload. From Fig. 3 we can see that the mean
response time improvement becomes more pronounced
when the aggregate access rate is large.

5. Conclusions

In this paper, we address the issue of statically
allocating non-partitioned files onto a parallel I/O
system where the file access requests exhibit Poisson
arrival rates and fixed service times. We found that the
performance of existing file assignment algorithms in
terms of mean response time dramatically degraded
when the inverse correlation between file access
frequency and file size does not hold. Therefore, a
static round-robin (SOR) file assignment strategy is
developed to generate optimized file allocations that
minimize mean response time no matter the correlation
exists or not. To quantitatively evaluate the
effectiveness and practicality of the proposed SOR
scheme, we conducted extensive experiments using
synthetic benchmarks. Experimental results show that
when the distribution of access rates across the files
and the distribution of file sizes were inversely
correlated with the same skew parameter , SOR
consistently improves the performance of parallel I/O
systems in terms of mean response time over three
well-known file assignment algorithms. Compared
with SP, one of the best existing static non-partitioned
file assignment algorithms, SOR achieves
improvement in mean response time on averages of
269.6 seconds. The improvement of SOR in mean
response time over Greedy and HP are 1052.8 seconds
and 1118.3 seconds on average, respectively.

Future studies in this research can be performed in
the following directions. First, we will extend our

scheme to a fully dynamic environment, where file
access characteristics are not known in advance and
may vary over time. As a result, a dynamic file
assignment algorithm is mandatory so that dynamically
arrived files can be re-allocated by migrating files from
one disk to another. Second, we intend to enable the
SOR scheme to cooperate with the RAID architecture,
where files are usually partitioned and then distributed
across disks in order to further reduce the service time
of a single request.

Acknowledgements

This work was supported by the National Science
Foundation under grant number CCF-0702781.

References

[1] V. Almeda, M. Cesario, R. Fonseca, W. Meira Jr. and C.
Murta, “Analyzing the behaviour of a proxy server,” 3rd Int’l
WWW Caching Workshop, 1998.

[2] G.A. Alvarez et al., “Minerva: An automated resource
provisioning tool for large-scale storage systems,” ACM
Trans. Computer Systems, Vol. 19, No. 4, pp. 483 - 518,
Nov. 2001.

[3] E. Anderson, S. Spence, R. Swaminathan, M. Kallahalla
and Q. Wang, “Quickly finding near-optimal storage
designs,” ACM Trans. Computer Systems, Vol. 23, No. 4, pp.
337 - 374, Nov. 2005.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker,
“Web Caching and Zip-like Distributions: Evidence and
Implications,” IEEE INFOCOM, pp. 126 - 134, 1999.

[5] S. Buchholz and T. Buchholz, “Replica placement in
adaptive content distribution networks,” ACM Symp. Applied
Computing, pp. 1705 - 1710, 2004.

[6] E.V. Carrera, E. Pinheiro and R. Bianchini, “Conserving
disk energy in network servers,” Proc. 17th Annual Int’l
Conf. Supercomputing, pp. 86 - 97, 2003.

[7] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A.
Patterson, “RAID: High-Performance, Reliable Secondary
Storage,” ACM Computing Surveys, Vol. 26, No.2, pp. 145 -
185, 1994.
[8] W. Chu, “Optimal file allocation in a multiple computer
system,” IEEE Trans. Computers, Vol. 18, No. 10, pp. 885 -
889, 1969.

[9] C. Cunha, A. Bestavros and M. Crovella,
“Characteristics of WWW Client-based Traces,” Technical
Report, 1995-010, Boston University, 1995.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

[10] W. Dowdy and D. Foster, “Comparative Models of the
File Assignment Problem,” ACM Computing Surveys, vol.
14, No. 2, pp. 287 - 313, 1982.

[11] I. Foster, “The Grid: Blueprint for a New Computing
Infrastructure,” Morgan Kaufmann, 2 Ed., 2004.

[12] S. Ghandeharizadeh, S.H. Kim, and C. Shababi, “On
disk scheduling and data placement for video servers,” ACM
Sigmetrics Performance Evaluation, Vol. 23, Issue 1, pp. 37
- 46, 1995.

[13] S. Glassman, “A caching relay for the World Wide
Web,” First conf. World-Wide Web, pp. 165 - 173, 1994.

[14] R.L. Graham, “Bounds on Multiprocessing Timing
Anomalies,” SIAM Journal Applied Math., Vol. 7, No. 2, pp.
416 – 429, 1969.

[15] W.W. Hsu, A.J. Smith, and H.C. Young, “The automatic
improvement of locality in storage systems,” ACM
Transactions on Computer Systems, Vol. 23, Issue 4, pp. 424
- 473, 2005.

[16] H. Huang, W. Hung, and K.G. Shin, “FS2: dynamic data
replication in free disk space for improving disk performance
and energy consumption,” Proc. 12th ACM SOSP, pp. 263-
276, 2005.

[17] J. Kangasharju, J. Roberts, and K. Ross, “Object
replication strategies in content distribution networks,”
Computer Communications, Vol. 25, No. 4, pp. 367 - 383,
2002.

[18] M. Karlsson and C. Karamanolis, “Choosing replica
placement heuristics for wide-area systems,” Proc. 24th Int'l
Conf. Distributed Computing Systems. pp. 350 - 359, 2004.

[19] T. Kwan, R. Mcgrath, and D. Reed, “Ncsas World Wide
Web Server Design and Performance,” Computer, vol. 28,
no. 11, pp. 67 - 74, Nov.1995.

[20] L.W. Lee, P. Scheuermann and R. Vingralek, “File
assignment in parallel I/O systems with Minimal Variance of
Service Time,” IEEE Trans. Computers, Vol. 49, No. 2, Feb.
2000.

[21] T. Loukopoulos and I. Ahmad, “Static and adaptive data
replication algorithms for fast information access in large
distributed systems,” Proc. ICDCS, pp. 385 - 392, April
2000.
[22] T. Loukopoulos, P. Lampsas and I. Ahmad, “Continuous
replica placement schemes in distributed systems,” Proc.
19th Int'l Conf. Supercomputing, pp. 284 - 292, 2005.

[23] P. Merialdo, P. Atzeni, and G. Mecca, “Design and
development of data-intensive web sites: The Araneus
approach,” ACM Transactions on Internet Technology, Vol.
3, Issue 1, pp. 49 - 92, Feb. 2003.

[24] N. Nishikawa, T. Hosokawa, Y. Mori, K. Yoshida and
H. Tsuji, “Memory-based architecture for distributed WWW
caching proxy,” Proc. 7th Int'l Conf. World Wide Web, pp.
205 - 214, 1998.

[25] L. Qiu, et al., “On the placement of web server
replicas,” Proc. IEEE INFOCOM, pp. 1587 - 1596, April
2001.

[26] N.J. Sarhan and C.R. Das, “Adaptive Block
Rearrangement Algorithms for Video-On-Demand Servers,”
Proc. 30th International Conference on Parallel Processing,
pp. 452 -462, 2001.

[27] P. Scheuermann, G. Weikum, and P. Zabback, “Data
Partitioning and Load Balancing in Parallel Disk Systems,”
VLDB., Vol.7, No.1, pp. 48 - 66, 1998.

[28] X. Tang and J. Xu, “On replica placement for QoS-
aware content distribution,” 23rd Annual Joint Conf. IEEE
Computer and Communications Societies (INFOCOM), Vol.
2, pp. 806 - 815, Mar. 2004.

[29] R. Tewari, “Distributed file allocation with consistency
constraints,” Proc. ICDCS, pp. 408 - 415, June 1992.

[30] P. Triantafillou, S. Christodoulakis, and C. Georgiadis,
“Optimal data placement on disks: a comprehensive solution
for different technologies,” IEEE Trans. Knowledge Data
Eng.., Vol. 12, Issue. 2, pp. 324 - 330, 2000.

[31] S.A. Weil, S.A. Brandt, E.L. Miller and C. Maltzahn,
“CRUSH: controlled, scalable, decentralized placement of
replicated data,” Proc. ACM/IEEE conf. Supercomputing,
No. 122, 2006.

[32] J. Wolf, K. Pattipati, “A File Assignment Problem
Model for Extended Local Area Network Environments,”
Proc. 10th Int'l Conf. Distributed Computing Systems, pp.
554 - 561, 1990.

[33] O. Wolfson, S. Jajodia, and Y. Huang, “An adaptive
data replication algorithm,” ACM Trans. Database Systems,
Vol. 22, No. 4, pp. 255 - 314, 1997.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

