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Abstract 

The problem of statically assigning nonpartitioned 
files in a parallel I/O system has been extensively 
investigated.  A basic workload characteristic 
assumption of existing solutions to the problem is that 
there exists a strong inverse correlation between file 
access frequency and file size. In other words, the most 
popular files are typically small in size, while the large 
files are relatively unpopular. Recent studies on the 
characteristics of web proxy traces suggested, 
however, the correlation, if any, is so weak that it can 
be ignored. Hence, the following two questions arise 
naturally. First, can existing algorithms still perform 
well when the workload assumption does not hold? 
Second, if not, can one develop a new file assignment 
strategy that is immune to the workload assumption? 
To answer these questions, in this paper we first 
evaluate the performance of three well-known file 
assignment algorithms with and without the workload 
assumption, respectively. Next, we develop a novel 
static file assignment strategy for parallel I/O systems, 
called static round-robin (SOR), which is immune to 
the workload assumption. Comprehensive 
experimental results show that SOR consistently and 
noticeably improves the performance in terms of mean 
response time over the existing schemes.  

1. Introduction 

Many real-world applications intensively read data 
stored in large-scale parallel I/O systems like RAID, 
Redundant Arrays of Inexpensive Disks [7]. To 
guarantee the quality of service demanded by end-
users, prompt responses to read requests are essential 
for these applications. For example, a Video-On-
Demand (VOD) server has to quickly respond access 
requests from multiple users so as to provide them with 
continuous glitch-free video [12][26]. Similarly, a 

data-intensive Web server application that publishes 
significant amounts of data stored in a back-end 
database must answer end-users’ inquiries instantly 
before they lose patience [6][23]. It is obvious that the 
performance of these read-intensive applications 
largely depends on the performance of underlying 
parallel I/O systems, where disk arrays serve arrival 
requests simultaneously. More precisely, reducing 
mean response time of parallel disk storage systems is 
a must for these applications.  

There are a wide variety of ways to reduce the mean 
response time or to improve the system throughput for 
parallel I/O systems [12][15][16][20][29]. File 
assignment, allocation of all the files onto disk arrays 
before they are accessed, is one of such avenues that 
can significantly affect the overall performance of a 
parallel I/O system [20][29]. In order to fully exploit 
the capacities of a parallel disk storage system, file 
assignment problem (FAP) for parallel disk systems 
have been extensively investigated in the literature 
[10][32]. A generic FAP formulation can be 
summarized as follows. Given a set of M files and N 
disks, find the file-disk allocation that optimizes some 
cost functions or performance metrics. While common 
cost functions include communication costs, storage 
costs, and queuing costs, popular performance metrics 
are mean response time and overall system throughput 
[10]. It is well-known that finding the optimal solution 
for a cost function or a performance metric in the 
context of file assignment on multiple disks is an NP-
complete problem [10]. Thus, heuristics algorithms 
became practical solutions.  

Typically, heuristic file assignment algorithms fall 
into two camps: static and dynamic. Most static file 
assignment algorithms require complete knowledge 
about the workload statistics such as service times and 
access rates of all the files. Dynamic file assignment 
algorithms, on the other hand, generate file-disk 
allocation schemes on-line to adapt to varying 
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workload patterns without a prior knowledge of the 
files to be assigned in the future. In this paper, we 
address the problem of statically assigning 
nonpartitioned files in a parallel disk storage system 
where file accesses exhibit Poisson arrival rates and 
fixed service times.  

Several previous studies [9][13] show that the 
distribution of web page requests generally follows a 
Zipf distribution [20] where the relative probability of 
a request for the i’th most popular page is proportional 
to 1/i. Moreover, they claim that the request frequency 
and the file size are inversely correlated, i.e., the most 
popular files are typically small in size, while the large 
files are relatively unpopular. Based on these workload 
characteristic study results, many existing static file 
assignment algorithms such as Greedy [14], SP [20], 
and HP [20] were developed to reduce parallel I/O 
systems’ mean response times. Experimental results 
either from prototype implementation or synthetic 
simulations demonstrate that they work well when the 
workload characteristics clearly exhibit. Some recent 
investigations on the characteristics of web proxy 
traces, however, discovered that the correlation 
between access frequency and file size, if any, is very 
weak that it can be ignored [4][24]. In other words, at 
least in some real-world applications, the workload 
assumption on the correlation does not hold. Therefore, 
it is necessary to re-examine the existing static file 
assignment approaches to verify whether they are still 
efficient when the correlation does not exist. More 
importantly, it is indispensable to design and 
implement a new file assignment strategy, which can 
deliver good mean response times no matter the 
correlation assumption holds or not.  

To achieve these two goals, we first measure the 
performance of three well-known algorithms, namely, 
Greedy [14], SP [20], and HP [20] when the correlation 
assumption holds. Then we compare it with the 
performance when the correlation assumption does not 
hold. Next, we develop a novel static file assignment 
strategy, called static round-robin (SOR), which aims 
at minimizing mean response time under different 
workload conditions no matter the correlation 
assumption is valid or not. The basic idea of SOR is to 
assign all files sorted in their size onto an array of disks 
in a round-robin fashion. Further, we evaluate the 
performance of SOR with Greedy, SP, and HP when 
the correlation assumption holds. Experimental results 
manifest that SOR consistently performs best, while SP 
delivers a comparable performance. Finally, we 
examine the four algorithms under the situation where 
the file access frequency is independent of the file size. 
Again, SOR outperforms the three traditional 
algorithms in all the tested cases, whereas Greedy, SP, 
and HP increase their mean response times on average 

by 2.44, 2.48, and 2.45 times, respectively. In 
summary, SOR demonstrates its strength and 
effectiveness under various workload conditions. 

The rest of the paper is organized as follows. In the 
next section we discuss the related work and 
motivation. In Section 3, we formulate the problem and 
present the SOR strategy as well as the three existing 
algorithms. In Section 4 we evaluate performance of 
our algorithms based on synthetic benchmarks. Section 
5 concludes the paper with summary and future 
directions.

2. Related work 

The file assignment problem (FAP) exists in a wide 
range of distributed systems including distributed file 
systems [29], distributed databases [33], video servers 
[27], content distribution networks [5] and the Grid 
[11]. The first research work on FAP dates back to late 
1960s [8]. Since then FAP has been comprehensively 
investigated because the potential gain obtained by 
solving a FAP is significant [10]. Typically, solutions 
to FAP fall into two categories: static and dynamic. 
Most static file assignment algorithms assume that 
access statistics are immutable, and hence the file 
assignment allocation scheme needs to be computed 
only once and can continuously work for a long time 
period [8][10][17][21][25][28]. Greedy, originated 
from longest processing time (LPT) algorithm 
proposed by Graham in [14] is one of the most well-
known static file assignment heuristic algorithms. 
Dynamic file assignment algorithms [25] [32], on the 
other hand, update the file allocation scheme 
potentially upon every request. Obviously, they are 
effective when the files are relatively small in size such 
as the case in Web proxy caching. However, in 
applications like distributed video servers [27], since 
the files are of large size and they do not change in 
size, dynamic schemes become less useful.  

With the advent of advances of distributed systems, 
new algorithms have been developed recently to solve 
problems such as data object replica placement 
[18][22], data management for large-scale storage 
systems [2][20][31], and automatic near-optimal 
storage system designs [3]. Essentially, these problems 
are either directly derived from or closely related to the 
FAP problem. In recognition that minimizing the 
variance of service times at each disk is of the same 
importance as minimizing the utilization of each disk, 
Lee et al. proposed a static file assignment algorithm 
called sort partition (SP) and a semi-dynamic file 
assignment algorithm named hybrid partition (HP) 
[20]. Compared with the traditional Greedy algorithm, 
SP significantly improves the mean response time by 
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taking the two minimizations into account 
simultaneously [20]. On the other hand, HP is a batch-
based variant of SP, which can run in on-line mode. 
Based on our knowledge, SP is one of the best existing 
static file assignment algorithms so far.  

All the new algorithms mentioned above, however, 
are based on some critical workload characteristic 
assumptions. Two most important ones are: the file 
access rate obeys a Zipfian distribution and the file 
access frequency is inversely correlated to the file size. 
These two workload assumptions were supported by 
several early studies on web requests [1][9][13]. 
However, some recent research projects [4][24] 
conducted on real-world web proxy traces suggested 
otherwise. They revealed that the distribution of file 
requests generally follows a Zipf-like distribution, 
where the relative probability of a request for the i’th 
most popular page is proportional to 1/i , with 
typically varying between 0 and 1, rather than a strict 
Zipfian distribution. In addition, the correlation 
between file access frequency and file size does not 
explicitly exist. Consequently, the foundation of the 
existing file assignment algorithms is potentially 
shaken by the new findings [4][24] at least in some 
applications. Therefore, it is necessary to re-examine 
the existing algorithms under the conditions where the 
two assumptions do not hold. To this end, we 
conducted a group of tests to evaluate three 
representative traditional algorithms, namely, Greedy, 
SP, and HP, under the situation where the file access 
frequency is independent of file size and the 
distribution of file sizes follows a random uniform 
distribution. Our preliminary results show that on 
average the mean response times of the three 
algorithms degrade to 2.44~2.48 times compared with 
the situations where the correlation assumption holds. 
Hence, it is mandatory to design and implement a new 
file assignment algorithm, which can deliver good 
mean response times no matter the workload 
assumptions hold or not. In other words, the need of a 
new file assignment algorithm that is immune to these 
workload assumptions is greatly felt.  

In this paper, we are proposing SOR, a static 
heuristic file assignment strategy, which offers better 
mean response time performance compared with the 
three representative existing algorithms under a wide 
spectrum of workload conditions with or without the 
workload assumptions. Although we model a parallel 
I/O system as a set of homogeneous stand-alone disks 
in this paper, our algorithm can be easily extended to 
RAID-structured storage systems. This is because the 
delays on the buses or controllers of the disks are 
negligible compared with the queuing delays on the 
disks, which are the dominant components in overall 
response times for many disk I/O-intensive 

applications due to heavy workloads. Similarly, we do 
not consider file partitioning or file replication in this 
work, and thus, each file must be allocated entirely 
onto one disk. This does not restrict the generality of 
our scheme as each file partition can be treated as a 
stand-alone file. 

3. The SOR algorithm 

A parallel I/O system in its most general form 
consists of a linked group, e.g., D = {d1, ..., dj, …, dn}, 
of independent homogeneous disk drives. The set of 
files can be represented as F = {f1, …, fi, ..., fm}. In the 
system, a disk dj is modeled as a three-element tuple dj
= (cj, tj, lj), where cj, tj, lj are the disk capacity in 
GByte, transfer rate (read speed) in Mbyte/second, and 
load (total sum of files’ heats on the disk). We assume 
that disks are always large enough to accommodate 
files to be assigned on them. Similarly, a file fi is 
modeled as a set of rational parameters, e.g., fi = (si, i,
ti, hi), where si, i, ti, hi are the file’s size in Mbyte, 
access rate, expected service time, and heat. In this 
paper, disk accesses to a file fi are modeled as a 
Poisson process with a mean access rate i. Also, we 
assume a fixed service time ti for file fi. This 
assumption is realistic for the following two reasons. 
First, each access to file fi could be a sequential read of 
the entire file, which is a typical scenario in most file 
systems or WWW servers [19]. Second, for large files, 
when the access unit is the entire file, the seek times 
and rotation latencies are negligible compared with the 
transfer time. Thus, ti is determined by si and tj if fi is 
allocated on dj. Since we consider a homogeneous 
parallel I/O system with each disk having the same 
transfer rate, the service time of each file is fixed. 
Since the combination of i and ti accurately gives the 
load of fi, we define the heat hi of fi as follows [20]: 

                               hi = i · ti.                                (1) 
Consequently, the average disk load  can be 

obtained by the following equation: 

                         =
⋅= m

i ih
n 1

1ρ
                         (2) 

File assignment algorithms like Greedy, SP, HP, 
and SOR allocate a group of files onto a set of identical 
disks so that the mean response time can be minimized. 
Here, we employ the First-Come-First-Serve (FCFS) 
scheduling heuristic. Suppose there are totally u
requests in the request set, which is modeled as R = 
{r1, ..., rk, …, ru}. Each request is modeled as rk = (fidk,
ak), where fidk is the file identifier targeted by the 
request and ak is the request’s arrival time. For each 
arrival request, the FCFS scheduler uses the allocation 
scheme X to find the disk on which the target file of the 
request resides. And then it directs the request to the 
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disk’s local queue. In fact, the request workload is a 
multi-class workload with each class of requests 
having its fixed i and ti.

To obtain the response time of a request rk, two 
important parameters, the start time and finish time of 
rk on a disk dj must be computed. We denote the start 
time and finish time of rk on disk dj by stj(rk) and ftj(rk), 
respectively. In what follows we present derivations 
leading to the final expressions for these two 
parameters. There are three cases when rk arrives in Qj
(1 j n), the local queue of disk dj. First, dj is idle 
and Qj is empty. Second, dj is busy and Qj is empty. 
Third, dj is busy and Qj is not empty. Thus, stj(rk) is 
expressed as  

++

+=

≤∈

otherwise,

emptyisandbusyisif,

emptyisandidleisif,

)(

, kpjp

p
aaQr

fidjk

jjjk

jjk

kj

tra

Qdra

Qda

rst

         (3) 
where rj represents the remaining service time of a 
request currently running on dj, and 

≤∈ kpjp

p
aaQr
fidt

,

 is the 

overall service time of requests in  Qj whose arrival 
times are earlier than that of rk.  Consequently, ftj(rk)
can be calculated by 

                       ftj(rk) = stj(rk) +
kfidt ,                     (4)  

, where 
kfidt is the service time of the file that 

request rk targets on. As a result, the response time of 
rk can be obtained by 

                           rtj(rk) = ftj(rk) - stj(rk).                 (5) 
Thus, the mean response time of the request set R is 

expressed as below 
                 mrt(R) = urrt

u

njk
kj

≤≤= 1,1
)( .                 (6) 

The FAP problem now can be formulated as: given 
a set of files F and a parallel I/O system D, find an 
allocation scheme X that optimizes the mean response 
time expressed by Eq. 6. 

 Fig. 1 outlines the SOR algorithm with some 
detailed explanations. It is recognized that even 
distribution of workload among all disks and 
minimization of the variance of the service time at each 
disk are two important paths towards the goal of 
minimizing the queuing delay [20]. SOR takes these 
two critical aspects into account as well. Specifically, 
SOR computes the average disk load  in step 1 and 
enforces the load on each disk not to exceed  (Step 9). 
Step 7 sorts the file set F in file size so that files with 
similar sizes can be allocated onto the same disk, a 
clever strategy that was employed by SP and HP as 
well [20]. Besides, SOR separates the most popular 
files onto different disks by utilizing a round-robin 

manner rather than a consecutive allocation of a sorted 
file set, which was adopted by SP. Note that the round-
robin fashion used by SOR is actually a partial round-
robin in the sense that only the first n-1 disks are 
involved in the round-robin file assignment process 
(Step 14). The reason why we exclude disk dn out of 
the round-robin procedure is that it will be exclusively 
used by files with very big sizes. Confining very big 
files in one disk will prevent them from severely block 
responses to the requests for small files, which could 
happen if they are mixed together with small files on 
the same disk. The advantage of a round-robin file 
assignment strategy is that files with higher load (heat) 
values will be distributed onto distinct disks so that the 
overall load balancing could be further improved. 
Moreover, SOR overcomes a hidden drawback of SP 
where the allocation of files onto disks is not even in 
terms of number of files on each disk. If a file fi cannot 
be allocated onto disk dj, SOR searches a disk dk that is 
closet to dj to accept it (Steps 19-23). If failed, which 

Fig. 1. The SOR algorithm.

Input: A parallel I/O system D with n
identical disks, a collection of m files in a 
queue F
Output: A file allocation matrix X (n, m)
1.  Use Eq. 2 to compute the average disk 
load  
2.  for each disk j do
3.     loadj = 0; X(dj, :) = 0    
4.  end for 
5.  fi = 1                   
6.  dj = 1                  
7.  Sort all files in F in ascending order of 
their service time si    
8.  while fi  •  m do
9.     if loadj •
10.       X(dj, :) = fi

11.       loadj = loadj + load(fi)
12.        fi = fi + 1                   
13.       if dj = = (n -1)    
14.            dj = 1 
15.       else
16.            dj = dj + 1 
17.       end if
18.  else
19.        Search for a disk dk from the rest 
disks to 
             accommodate file fi

20.        If  successful 
21.             X(dk, :) = fi     
22.             loadk = loadk + load(fi)
23.              fi = fi + 1   
24.        else 
25.             X(dn, :) = fi     
26.             loadn = loadn + load(fi)
27 f f 1
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means fi is a big file, it will be put into disk dn, a disk 
dedicated for these unusual size files (Steps 25-27). 

4. Performance evaluation 

Now we are in a position to evaluate the 
effectiveness of the proposed SOR algorithm. To 
demonstrate the strength of SOR, we compare it with 
Greedy, SP, and HP. The three algorithms are briefly 
described below. 
     (1) Greedy:  It can operate in either on-line mode or 
off-line mode. Here, we only consider its off-line mode 
because SOR is an off-line file assignment strategy. It 
first calculates the mean load of all files and then 
assigns a consecutive set of files whose total load is 
equal to the mean load onto each disk. Its goal is to 
generate a file assignment scheme such that the mean 
response time of the parallel I/O system can be 
minimized.  

(2) SP (Sort Partition): It first computes the average 
disk utilization using Eq. 2. Next, it sorts all files into a 
list I in descending order of their service times.  
Finally, it allocates each disk dj the next contiguous 
segment of I until its load loadj reaches the maximum 
allowed threshold . The remainder files (if any) after 
one round allocation will be assigned to dn. It improves 
the performance of the Greedy algorithm by 
minimizing the variances of service times at each disk. 

(3) HP (Hybrid Partition): In case files arrive in 
batches, which can be sorted prior to their assignment, 
HP attempts to simultaneously minimize the load 
variance across all disks, as well as the service time 
variance at each disk. For each batch, HP assigns files 
to disks in distinct allocation intervals. The algorithm 
selects, for each allocation intervals l, a different disk 
dk as the allocation target. It chooses the disk with the 
smallest accumulated load (heat). During one 
allocation interval, a number of files are allocated to 
the target disk dk until its load reaches a given 
threshold Tk.

4.1. Simulation setup 

We have developed an execution-driven simulator 
that models an array of conventional Cheetah 
ST39205LC disks. The performance metrics by which 
we evaluate system performance include:  
• Mean response time: average response time of all 
file access requests submitted to the simulated parallel 
I/O system. Note that the mean response times are 
normalized in the scale [0, 1] for all graphs in this 
section. 

• Mean response time improvement: decrease (in 
seconds) of mean response time gained by SOR 
compared with the three existing algorithms.  
• Mean slowdown: the ratio between average request 
turnaround time and average request service time.  

Mean disk utilization: average ratio between a 
disk’s total service time and its total operation time. 
The operation time is defined as the time period 
between the arrival time of the first file access request 
and the finish time of the last file access request.  

Table 1 summarizes the configuration parameters of 
a simulated parallel I/O system used in our 
experiments and characteristics of the synthetic 
workload. All synthetic workload used from Section 
4.2 to Section 4.3 were created by our trace generator. 
Although number of disks, aggregate access rate, and 
size of files are synthetically generated, we examined 
impacts of these important parameters on system 
performance by controlling the parameters. 

4.2. Impact of aggregate access rate 

The goal of this experiment is to compare the 
proposed SOR algorithm against the three well-known 
file assignment schemes, and to understand the 
sensitivity of the four heuristics to the aggregate access 
rate in a parallel I/O system, where an array of 
identical disk drives serve incoming requests 
simultaneously. The aggregate access rate varies from 
25 (1/second) to 1000 (1/second) and the file sizes 
were distributed according to Zipf’s law with skew 
degree 70:30.  

Parameter Value (Fixed) – (Varied) 

Number of files (5000) 

File load (heat) 
Each file imposes a load 
(heat) that is defined as hi

= i * ti.

Coverage of the 
file system 

(100%) – each file is at 
least accessed once 

Number of 
batches (HP) 

(4) – each batch has 1250 
files 

Number of disks (16) – (8, 12, 16, 20, 24) 

Aggregate 
access rate 
(1/second) 

(200) – (25, 50, 100, 200, 
300, 400, 500, 600, 700, 
800, 900,1000)  

Table 1. System parameters.
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Fig. 2 shows the simulation results for the four 
algorithms on a parallel I/O disk array with 16 disk 
drives. We observe from Fig. 2a that SOR consistently 
outperforms the three exiting approaches in terms of 
mean response time.  This is because SOR considers 
both minimizing variance of service time for each disk 
and fine-tuning load balancing degree. Consequently, 
the sorted files were continuously assigned to disks 
such that a more evenly distributed workload allocation 
scheme was generated. SP takes the second place in 
mean response time metric, which is consistent with 
our expectation because it is one of the best existing 
static file assignment heuristics. To clearly demonstrate 
the performance improvement, Fig. 2b provides mean 
response time decrease gained by SOR compared with 
Greedy, SP, HP, respectively. In particular, SOR can 
reduce mean response time on average by 1118.3, 
1052.8, and 269.6 seconds, compared with HP, 
Greedy, and SP, respectively. An interesting 
observation is that the mean response time 
improvement becomes more significant when the 
overall workload represented by the aggregate access 
rate increases. The implication is that SOR exhibits its 

strength in situations where system workload is heavy. 
In terms of mean slowdown, SOR also performs best 
among the four heuristics (Fig. 2c), which is consistent 
with the results shown in Fig. 2a. Since the total 
workload is relatively heavy, the mean disk utilization 
in Fig. 2d quickly arises to 1 when aggregate access 
rate is larger than 25 (1/second). 

4.3. Scalability 

This experiment is intended to investigate the 
scalability of the four algorithms. We scale the number 
of disks in the system from 8 to 24. The aggregate 
access rate is configured to 200 (1/second) and 1000 
(1/second). The skew degree is still set to 70:30. Fig. 3 
plots the performance of the four algorithms as 
functions of the number of disks. The results show that 
SOR exhibits a good scalability.  

Fig. 3 shows that all of the four algorithms deliver 
better performance in both mean response time and 
mean slowdown when the number of disks increases. 
This is because each disk has few files to be assigned 
on when the system is scaled up. One important 

(a) (b) 

(c) (d) 

Fig. 4. Impact of aggregate access rate in Zipfian file size distribution. 
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Fig. 3. Scalability test. 
observation is that SOR outperforms the rest three 
approaches in all tested cases. The implication of this 
observation is that SOR is suitable for a parallel I/O 
system where the number of disks is not sufficient for a 
heavy workload.  From Fig. 3 we can see that the mean 
response time improvement becomes more pronounced 
when the aggregate access rate is large.  

5. Conclusions 

In this paper, we address the issue of statically 
allocating non-partitioned files onto a parallel I/O 
system where the file access requests exhibit Poisson 
arrival rates and fixed service times. We found that the 
performance of existing file assignment algorithms in 
terms of mean response time dramatically degraded 
when the inverse correlation between file access 
frequency and file size does not hold. Therefore, a 
static round-robin (SOR) file assignment strategy is 
developed to generate optimized file allocations that 
minimize mean response time no matter the correlation 
exists or not. To quantitatively evaluate the 
effectiveness and practicality of the proposed SOR 
scheme, we conducted extensive experiments using 
synthetic benchmarks. Experimental results show that 
when the distribution of access rates across the files 
and the distribution of file sizes were inversely 
correlated with the same skew parameter , SOR 
consistently improves the performance of parallel I/O 
systems in terms of mean response time over three 
well-known file assignment algorithms. Compared 
with SP, one of the best existing static non-partitioned 
file assignment algorithms, SOR achieves 
improvement in mean response time on averages of 
269.6 seconds. The improvement of SOR in mean 
response time over Greedy and HP are 1052.8 seconds 
and 1118.3 seconds on average, respectively.  

Future studies in this research can be performed in 
the following directions. First, we will extend our 

scheme to a fully dynamic environment, where file 
access characteristics are not known in advance and 
may vary over time. As a result, a dynamic file 
assignment algorithm is mandatory so that dynamically 
arrived files can be re-allocated by migrating files from 
one disk to another. Second, we intend to enable the 
SOR scheme to cooperate with the RAID architecture, 
where files are usually partitioned and then distributed 
across disks in order to further reduce the service time 
of a single request. 
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