
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-0423-1206 1

Security-Aware Resource Allocation for Real-
Time Parallel Jobs on Homogeneous and

Heterogeneous Clusters
Tao Xie, Member, IEEE, and Xiao Qin, Member, IEEE

Abstract— Security is increasingly becoming an important issue in the design of real-time parallel applications, which are
widely used in industry and academic organizations. However, existing resource allocation schemes for real-time parallel jobs
on clusters generally do not factor in security requirements when making allocation and scheduling decisions. In this paper, we
develop two resource allocation schemes, called TAPADS (Task Allocation for Parallel Applications with Deadline and Security
constraints) and SHARP (Security- and Heterogeneity-Aware Resource allocation for Parallel jobs), by taking into account
applications’ timing and security requirements in addition to precedence constraints. We consider two types of computing
platforms: homogeneous clusters and heterogeneous clusters. To facilitate the presentation of the new schemes, we build
mathematical models to describe a system framework, security overhead, and parallel applications with deadline and security
constraints. The proposed schemes are applied to heuristically find resource allocations that maximize the quality of security
and the probability of meeting deadlines for parallel applications running on clusters. Extensive experiments using real world
applications and traces as well as synthetic benchmarks demonstrate the effectiveness and practicality of the proposed
schemes.

Index Terms— Security constraints, real-time scheduling, security overhead model, parallel jobs, clusters.

—————————— ——————————

1 I RODUCTIONNT

VER the past decade, clusters have become increas-
ingly popular as powerful and cost-effective plat-
forms for executing real-time parallel applications

[27][28]. To improve their utilization and share their re-
sources to outside users, more and more clusters are
switching from traditional proprietary computing envi-
ronments to open systems that are frequently exposed to
public networks [23]. Consequently, they are subject to a
variety of external attacks such as computing cycles steal-
ing [23], inter-node communication snooping [17], and
cluster services disruption [14]. Therefore, security
mechanisms in the form of security services like authenti-
cation, integrity check, and confidentiality have been de-
ployed on clusters to thwart the attacks [17][23]. These
security services not only protect cluster computing plat-
forms from being compromised by hackers [24], but also
meet security requirements imposed by applications run-
ning on clusters [6][8].

Real-time parallel applications with security require-
ments running on clusters are emerging in many do-
mains, including on-line transaction processing systems
[2], medical electronics [9], aircraft control [1], and scien-
tific parallel computing [6]. These applications propose
various security requirements like data privacy [6], data
integrity check [8], and software execution protection

[24], and thus, are fundamentally distinguished by run-
time uncertainties that are caused by security needs. For
example, in parallel computing, protection of computa-
tionally expensive or irreplaceable data as well as valu-
able application software is critical [13]. Especially, in the
business world and government, where the data is con-
sidered sensitive, the potential data losses due to a secu-
rity incident could be catastrophic [13]. As a result, em-
ploying the security services provided by clusters is es-
sential for security-critical real-time parallel applications.

Using security services to satisfy the applications’ se-
curity needs, however, incurs security overhead in terms
of computation time, which might violate the applica-
tions’ deadlines. The conflicting requirements of good
real-time performance and high quality of security protec-
tion imposed by security-critical real-time applications
introduce a new challenge for resource allocation
schemes, i.e., how to solve the real-time and security di-
lemma. Moreover, security heterogeneity (see Section 5.1)
existed in heterogeneous clusters makes solving this di-
lemma more difficult as security overhead is node-
dependent, which means for the same level of security
service different computing nodes incur distinct security
overhead. Unfortunately, existing resource allocation
schemes for real-time parallel applications on clusters
[27][28] normally do not factor in applications’ security
requirements when making resource allocation decisions,
and thus, are inadequate for security-critical real-time
parallel applications. Hence, security-aware resource allo-
cation schemes must be developed to bridge the gap be-
tween the incapability of existing schemes and the needs

O

————————————————

T. Xie is with the Department of Computer Science, San Diego State Uni-
versity, San Diego, CA 92182. E-mail: xie@cs.sdsu.edu.
X. Qin is with the Department of Computer Science and Software Engi-
neerin, Auburn University, Auburn, AL 36849. E-mail: xqin@auburn.edu.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

Digital Object Indentifier 10.1109/TPDS.2007.70776 1045-9219/$25.00 © 2007 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-0423-1206

of high quality of security demanded by security-critical
real-time applications. Motivated by this discrepancy, in
this paper, we design and evaluate two security-aware
resource allocation schemes called TAPADS (Task Alloca-
tion for Parallel Applications with Deadline and Security
constraints) and SHARP (Security- and Heterogeneity-
Aware Resource allocation for Parallel jobs) for real-time
parallel applications running on homogeneous and het-
erogeneous clusters, respectively. While TAPADS is de-
veloped for parallel applications represented by DAGs
(Directed Acyclic Graph) where precedence constraints
and communications among tasks in an application exist,
SHARP is dedicated for embarrassingly parallel applica-
tions with no such precedence constraints and communi-
cations [37]. To the best of our knowledge, TAPADS and
SHARP are the first two security-aware resource alloca-
tion strategies for real-time parallel applications running
on clusters. The fundamental contributions of this paper
include the following three aspects:

Design and evaluation of two resource allocation
schemes for real-time parallel jobs with security con-
straints running on homogeneous and heterogeneous
clusters. Extensive experiments using synthetic work-
loads, traces, and real-world applications validate the
effectiveness of the two security-aware resource alloca-
tion strategies.

Proposition of a security overhead model that can be
used to quantitatively measure security overhead in
terms of computation time introduced by security ser-
vices.

Investigation of the impacts of heterogeneities on
real-time performance and quality of security.

The rest of the paper is organized as follows. We
summarize related work and our new approach in the
next section. Section 3 describes the system architecture
and security overhead model. In Section 4, we propose
the security-aware allocation scheme for homogeneous
clusters. Section 5 presents the resource allocation scheme
for security sensitive and real-time applications on het-
erogeneous clusters. Section 6 concludes the paper with
summary and future directions.

2 RELATED WORK AND OUR NEW APPROACH

In this section, first we discuss related work on parallel
job scheduling, cluster security techniques, and trade-offs
between real-time performance and security. Next, we
introduce our new approach to solving the security and
real-time dilemma for security-critical real-time parallel
applications.

2.1 Related Work
Since allocation and scheduling parallel jobs onto a set of
processors generally fall into the class of NP-complete
problems [11], the scheduling problem modelled in this
paper is NP-complete as well because it is essentially a
general problem of scheduling parallel jobs onto a set of
processors plus one more constraint in satisfying security
requirements of parallel jobs. Thus, heuristic scheduling
algorithms become practical solutions to the problem.

The issue of allocating and scheduling real-time appli-
cations using heuristic approaches has been thoroughly
studied [1][19][26]. Normally, the goal of these heuristic
algorithms is to improve real-time performance by de-
creasing the number of jobs whose deadlines are missed.
Hou and Shin proposed a resource allocation scheme for
periodic tasks with precedence constraints in distributed
real-time systems [12]. He et al. studied the problem of
dynamic scheduling of parallel real-time jobs executing
on heterogeneous clusters [10]. These schemes provide
high schedulability for real-time systems. However, they
are not suitable for security-sensitive real-time parallel
applications due to their oversight and ignorance of secu-
rity requirements imposed by the applications.

Security concerns on clusters attracted attentions from
researchers in recent years. A vast variety of security
techniques have been developed for clusters
[3][6][17][23]. Connelly and Chien addressed the issue of
protecting tightly coupled, high-performance component
communication [6]. Apvrille and Pourzandi proposed a
new security policy language named distributed security
policy, or DSP, for clusters [3]. Although the above secu-
rity techniques are not developed for solving the issue of
scheduling real-time applications, the security services
that they provided can be exploited by security-critical
real-time parallel applications to satisfy their security
needs.

Since the utilization of security services causes extra
overhead in terms of computation time, a security over-
head model that quantitatively measures security over-
head for commonly used security services is essential for
a security-aware resource allocation scheme. Unfortu-
nately, the only previous work on measuring security cost
was a preliminary method for defining the costs associ-
ated with network security services proposed by Irvine
and Levin [16]. Even so, they only illustrated three simple
security cost examples without offering a feasible security
overhead measurement model.

The closest work to this research reported in the litera-
ture was accomplished by Song et al. very recently [25].
They developed three risk-resilient strategies and a ge-
netic algorithm based scheme STGA (Space-Time Genetic
Algorithm) to provide security assurance in Grid job
scheduling. However, their algorithms cannot be applied
on clusters for real-time parallel applications with secu-
rity requirements. First, their algorithms are unable to
support real-time applications as Grid jobs can hardly
have real-time constraints. Next, their algorithms only
consider batch scheduling where jobs are independent
from each other, and thus, cannot schedule parallel jobs
where precedence constraints and communications
among tasks within one job exist.

2.2 Our New Approach
Our work is built upon the related work on cluster secu-
rity, security overhead measurement, and real-time paral-
lel job scheduling. Since snooping, alteration, and spoof-
ing are three common attacks in cluster environments
[23], we considered three security services, authentication
service, integrity service, and confidentiality service, to

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND HETEROGENEOUS CLUS-
TERS 3

guard clusters. For example, snooping, an unauthorized
interception of information, can be countered by confi-
dentiality services, which encrypt data by using crypto-
graphic algorithms so that a hacker cannot correctly in-
terpret the data [4]. We assume that the three security
services are available to security-critical real-time parallel
jobs submitted to a cluster where a security-aware re-
source allocation scheme is applied. How the three secu-
rity services are provided to parallel jobs can be found in
our previous work [35][36]. Security services usually
consume multiple computing resources like computation
time, memory, bandwidth, and storage capacities. How-
ever, in real-time job scheduling, computation time is the
most important security overhead because it delays jobs’
completion times, which in turn could violate their dead-
lines. Hence, we only consider security overhead in terms
of computation time in this work, and leave the investiga-
tion of the impacts of rest types of security overhead on
security-aware resource management in our future work.
Thereafter, security overhead means computation time
caused by security services.

Two formats of security requirement specification, a
single security level for each required security service and
a security range for each required security service, are
used in this work. A security level is the strength or
safety degree of a particular security service. Normally, a
security level of a security service corresponds to a par-
ticular security mechanism because different security
mechanisms provide distinct security strengths. Basically,
a security level is a normalized value when setting the
strongest security mechanism as 1. A security range is a
scope that contains multiple distinct security levels for a
particular security service. The lowest value in a security
range indicates the minimal security strength mandated
by the user, while the highest value implies the maximal
security strength necessary for the user and all the values
above should not be considered. The single security level
format is suitable for situations where each job only de-
mands a baseline (minimal) security level for each secu-
rity service required, whereas the security range format is
adequate for scenarios where a security level higher than
the maximal value in the security range is not necessary
for a job due to the job’s relatively low importance or the
user’s tight budget.

Parallel applications generally fall into two camps,
non-embarrassingly parallel applications represented by
DAGs and embarrassingly parallel applications. We con-
sidered both in this work with TAPADS for DAGs and
SHARP for embarrassingly parallel applications. Each
parallel application consists of multiple tasks that share a
common deadline, which is the deadline of the entire ap-
plication. Each task in an application demands an array of
security services with different levels. For security re-
quirements in a security range format, TAPADS verifies
whether the application’s deadline can be met with all its
tasks’ minimal security levels for all required security
services satisfied. If so, TAPADS further optimizes the
tasks’ security levels within the security range under the
condition that the security level enhancements will not
result in the application’s deadline to be violated. Other-

wise, the job will be dropped because its execution is un-
safe. For each task, SHARP discovers all computing nodes
that can meet its deadline. If no such node can be found
for a task, the entire application will be aborted. If each
task has one or multiple nodes that can meet the applica-
tion’s deadline, SHARP assigns the task onto a node that
can minimize the degree of security deficiency.

3 PRELIMINARIES

We describe in this section mathematical models, which
were built to represent a resource allocation framework
and security overhead. For future reference, we summa-
rize notations used in this study in Table 1.

3.1 Resource Allocation Architecture
As depicted in Fig. 1, a cluster is comprised of m nodes
connected via a high-performance network to process
parallel applications submitted by users. Note that
throughout this paper the terms application and job are
used interchangeably. Let Y = {y1, y2, …, ym} denote the set
of m nodes in a cluster. Each node communicates with
other nodes through message passing, and the communi-
cation time between two tasks assigned to the same node
is assumed to be negligible. Note that the communication
subsystem, an underlying communication infrastructure
of a cluster, supports messages with time constraints,
meaning that the worst-case link delay is predictable and
bounded. Examples of such real-time communication
subsystems can be found in the literature [38]. Addition-
ally, the communication subsystem considered in our
study provides full connectivity in a way that any two
nodes are connected through either a physical link or a
virtual link. This assumption is arguably reasonable for
modern interconnection networks (e.g. Myrinet [29]) that
are widely used in high-performance clusters.

The resource allocation architecture consists of a secu-
rity-aware task allocator, an admission controller, and a
real-time scheduler. The security-aware task allocator is
intended to generate resource allocation decision for each
task of a parallel application, satisfying both security and
real-time requirements. The admission controller is de-
ployed to perform feasibility checks by determining if
arriving parallel applications can be completed by a clus-
ter before their specified deadlines. An application will be
admitted into the system if its deadline can be met. The
scheduler is to satisfy timing requirements of parallel ap-
plications by assigning high priorities to jobs with early
deadlines.

3.2 Security Overhead Model
For each security service, we assume that there are sev-
eral alternative security methods or algorithms, which
can be used to accomplish the service. More precisely, we
assume that three authentication methods HMAC-MD5,
HMAC-SHA-1, and CBC-MAC-AES are available for us-
ers to select to fulfil the authentication service. Similarly,
we assume that seven hash functions (MD4, MD5,
RIPEMD, RIPEMD-128, SHA-1, RIPEMD-160 and Tiger)
and eight encryption algorithms (SEAL, RC4, Blowfish,
Knufu/Khafre, RC5, Rijndael, DES and IDEA) are pro

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-0423-1206

TABLE 1. DEFINITIONS OF NOTATIONS

)jj sc

(
geaj

i
j
ii sc j

i
j
i Ss

e
i)(g

i
g
i s)

j
iS

vided for users to realize the integrity service and the con
fidentiality service, respectively. In what follows, we first
give a general expression of our security overhead model.
Next, we use the integrity service as an example to show
how we assign security levels to different security
mechanisms and how we calculate security overhead for
each security service. Last, we justify the feasibility of our
security overhead m
odel.

We assume that task ti requires all of the three security
services provided in a sequential order. Let and

ii be the security level and the overhead of the jth (j
{a, e, g}) security service, the security overhead ci ex-

perienced by ti, can be computed using (1).

j
is

(

 c , , (1)
},,{

)j

)(ei sc , c , and are overheads caused by
the confidentiality, integrity, and authentication services
[33]. denotes task ti’s required security level range of
the jth service.

(a
i

a
i sc

The performance of the seven hash functions is listed
in Table 2. For example, 23.90 KB/ms means for every
millisecond the hash function MD4 can process 23.90 KB
data. Based on its performance, each function is assigned
a security level in the range from 0.18 to 1.0. We assign
security level 1 to the strongest yet slowest hash function
Tiger, and security levels for the other hash functions can
be calculated by (2), where is the performance of the
ith (1 i 7) hash function.

g
i

 .71,36.4 is g
ii

For example, the security level of hash function RIPEMD
is 0.36 because 4.36/12 is about 0.36. Let i be the integ-
rity security level of task ti, and the overhead of the integ-
rity service can be calculated using (3), where li is the
amount of data whose integrity must be achieved, and

i is a function used to map a security level to its
corresponding hash function’s performance.

g

gs

g s

 (2)

)(g

)()(g
iiii

For instance, the output of the function i is 4.36
KB/ms when the input i is 1. Similarly, let i be the confi-
dentiality security level of task ti, and the computation overhead

ggg sls
g s

s es

c . (3)
)(g

g

Notation Definition Notation Definition

T A set of n non-preemptable real-time tasks E A set of weighted and directed edges representing
 communications among tasks in T

p Period, a constant time interval between two succes-
sive job instances of a parallel application J J A non-embarrassingly parallel application, J = (T, E, p)

ti The ith task in the task set T (1 i < n) ei The execution time of ti without security overhead
li The amount of security-sensitive data (KB) of task ti Si The security requirement vector of task ti
j
iS

)jis

An element of Si, the security level range of the jth
security service required by ti

j
is

The security level of the jth (j {a, e, g}) security service
required by task ti

(jic
The security overhead of the jth (j {a, e, g}) security
service imposed by task ti

)(g
i

g s A function mapping an integrity security level to its cor-
responding hash function’s performance

)eis(
e A function mapping a confidentiality security level to its

corresponding encryption algorithm’s performance
)(a

i
a s A function mapping an authentication security level to its

corresponding authentication method’s performance
a, e, g Authentication, Confidentiality, Integrity mk The kth computing node in a cluster

eij
The volume of data transmitted between task ti (on
node mk) and task tj (on node ma)

bka The bandwidth between node mk and node ma

SL(si) The security benefit of task ti (see 5) SV(T,E) Security Value, the total security benefit gained by a
parallel application J (see 12)

PSD(X) The probability that all tasks meet deadline constraints
under an allocation scheme X (see 23) PSC(X) QSA, the quality of security of application J under an

allocation scheme X (see 31)
PC(X) The probability that all tasks are free from being at-

tacked under an allocation scheme X (see 26) PL(X) The probability that messages are risk-free under an
allocation scheme X (see 30)

HC The computational heterogeneity of an embarrassingly
parallel application (see 33) HV The heterogeneity in security services of the cluster (see

38)

DSD(T,X) The sum of security deficiency values of all tasks in an
embarrassingly parallel application (see. 44) Prf Risk-free probability of a heterogeneous cluster (see 53)

j
iw The weight of the jth security service for task ti (see 5) j

i
Risk rate caused by the jth security service required by
task ti (see 24)

Arrival Queue

User N

User 2

User 1 y1

y2

ym

Real-Time
Scheduler

Admission
Controller

Security-Aware
Task Allocator

Accepted Queue

 Rejected Queue

 Fig. 1. Security-aware resource allocation architecture.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND HETEROGENEOUS CLUS-
TERS 5

)ee s

)ee s

of a selected confidentiality service can be calculated using (4),
where li is the amount of data whose confidentiality must be
guaranteed, and i is a function used to map a security
level to its corresponding encryption method’s performance.
The function i was defined in Table 1 Cryptographic Al-
gorithms for Confidentiality in our previous work [33], where
the performance and the security levels of the eight encryption
algorithms were summarized.

(

(

)eee sls

)
)aa s

g
i

()(e
iiii

Since the security overhead of a particular authentica-
tion method is a constant value, the security overhead of
authentication service is equal to its perform-
ance

i
. The function can be derived from

the Table 3 in [33].

c . (4)

(a
i

a
i sc

()(a
i

a s

TABLE 2. HASH FUNCTIONS FOR INTEGRITY

Hash Functions s :Security Level)(g
i

g s :KB/ms

MD4 0.18 23.90

MD5 0.26 17.09

RIPEMD 0.36 12.00

RIPEMD-128 0.45 9.73

SHA-1 0.63 6.88

RIPEMD-160 0.77 5.69

Tiger 1.00 4.36

In fact, how to quantitatively measure security is still
an open question [5][16][18][22] and is out of the scope of
this paper. The security model used in this paper is only a
step towards finding a way to quantitatively approximate
relative strength of some commonly used security
mechanisms. We believe that our model is reasonable in
this research due to the following three reasons. First, the
fundamental assumption of our security overhead model
is valid. Our assumption is that people only accept a
slower security mechanism if and only if it can provide a
higher level security compared with its faster peers. Al-
though the strength of some cryptographic schemes could
be orthogonal to their processing overhead, this assump-
tion is generally safe because many security mechanisms
can achieve a higher amount of security by doing more
computations [5]. For example, the strength of encryption
schemes depends on the size of the key and the number
of encryption rounds [21]. Larger key sizes or number of
rounds result in higher levels of security at the cost of
additional computation time [5]. Therefore, the way we
assign different security mechanisms with distinct secu-
rity levels based on their performance is reasonable. Sec-
ond, although the measurements of security requirements
and security levels are not completely objective, the im-
provements of our TAPADS and SHARP algorithms
compared with the existing approaches in terms of secu-
rity are still valid because all algorithms were evaluated
by using the same set of security calculation criteria un-
der the same circumstance. Third, quantitatively model-
ing security requirements and security levels makes it
possible for us to compare the security performance of
different algorithms and perceive the differences among
them.

4 SECURITY-AWARE RESOURCE ALLOCATION
SCHEME FOR HOMOGENEOUS CLUSTERS

4.1 Task Model

4.1.1 Deadline and Precedence Constraints
Applications with dependent real-time tasks can be mod-
elled by Directed Acyclic Graphs (DAGs) [15]. Through-
out this paper, a parallel application is defined as a vector
J = (T, E, p), where T = {t1, t2,...,tn} represents a set of non-
preemptable real-time tasks, E is a set of weighted and
directed edges used to represent communication among
tasks, e.g., (ti, tj) E is a message transmitted from task ti

to tj, and p is the period, a constant time interval between
two successive job instances of the parallel application J.
Precedence constraints of the parallel application is repre-
sented by all the edges in E. Communication time for
sending a message (ti, tj) E from task ti on node mk to
task tj on node ma is determined by eij/bka, where eij is the
volume of data and bka is the bandwidth between mk and
ma. A task is characterized by three parameters, e.g., ti =
(ei, li, Si), where ei is the execution time, li denotes the
amount of data (measured in KB) to be protected, and Si

is a vector of security requirements (see section 4.1.2.).
Note that ei can be estimated by code profiling techniques
and it does not include security overhead.

This study is focused on the issue of allocating peri-
odic jobs on clusters. A parallel application generates a
sequence of job instances iii where i must
be finished before can start executing. Note that
there is a constant interval between two consecutive job
instances. The deadline of is the arrival time of the
next task instance. Although the arrival time of a task
instance is not explicitly specified in the model, the arri-
val time can be determined when the task instance is re-
leased dynamically during the system execution. It has
been proved that there exists a feasible schedule for a set
of periodic tasks if and only if there is a feasible schedule
for the planning cycle of the tasks [12]. Note that the plan-
ning cycle is the least common multiple of all the tasks’
periods. Thus, the behaviour of the set of periodic tasks
can be effectively analysed within the planning cycle.

...,,, 210 JJJ jJ

J

S S jS

1s qs

1j
iJ

j
i

4.1.2 Security Constraints
A collection of security services required by task ti is
specified as Si = (, , …,), where i represents
the required security level range of the jth security ser-
vice. Our allocation schemes aim at determining the most
appropriate point si in space Si, e.g., si = (i , i , …, i),
where 1 j q. A real-world example of real-
time applications with various levels of security require-
ments was illustrated in [32].

1
iS

2
i

q
i

2s
,ji

j
i Ss

In an effort to maximize quality of security, the re-
source allocation schemes have to measure security bene-
fits gained by a parallel application. We model the secu-
rity benefit of the ith task in T as a security level function
denoted by SL: Si , where is the summation of a set
of positive real numbers:

 , (5)
q

j

j
i

j
ii swsSL

1

)(

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-0423-1206

where q
iiii sss ,...,, 21 1j

iw

j
iw

)

s , 0 , and .

Note that is the weight of the jth security service for
the task. Users specify in their requests the weights to
reflect relative priorities given to the required security
services. The security benefit of a task set is computed as
the summation of the security levels of all the tasks. Thus,
we have:

q

j

j
iw

1

1

, wehre
n

i
isSLTSL

1
()(q

iiii ssss ,...,, 21 (6)

We can obtain the following non-linear optimization
problem formulation for a task set T:

 maximize ,
n

i

q

j

j
i

j
i swTSL

1 1

 subject to (7)

where and are the minimum and maxi-
mum security requirements of task ti.

),max()min(j
i

j
i

j
i SsS

)ji)

)

ij

)

p 1ˆ kijw

k

min(S max(j
iS

An array of security services required by message (ti,
tj) E is specified as , where denotes

the required security level range of the kth security ser-
vice. The most appropriate point in space has to be

calculated, e.g., , where 1 j q

We model the security benefit of the message as the fol-
lowing function:

ˆ,...,ˆ,ˆ(ˆ 21 p
ijijijij SSSS k

ijŜ

ŝ ijŜ

ˆ,...,ˆ,ˆ(ˆ 21 p
ijijijij ssss ,ˆˆ k

ij
k
ij Ss

 (8)
p

k

k
ij

k
ijij swsSL

1

ˆˆ)ˆ(

where , 0 , and .)ˆ,...,ˆ,ˆ(ˆ 21
ijijijij ssss

p

j

k
ijw

1
1ˆ

Note that weight
ij

reflects relative priorities of the
kth required security service. The security benefit of a
message set is calculated as the summation of the security
levels of all the messages.

ŵ

Ett

ij
ji

sSLESL
),(

)ˆ()(, where s . (9))ˆ,...,ˆ,ˆ(21 p
ijijij sssˆij

t i

 The optimal security benefit of the message set can be
computed as follows:

 maximize ,ˆˆ)(
),(1Ett

p

k

k
ij

k
ij

ji

swESL

 subject to (10)),ˆmax(ˆ)ˆmin(k
ij

k
ij

k
ij SsS

where and are the minimum and maxi-

mum security requirements of the message.
)ˆmin(k

ijS)ˆmax(k
ijS

Now we can define an optimization problem formula-
tion to compute an optimal security benefit of a parallel
application, subject to certain timing and security con-
straints:

 maximize SV(T,E)=SL(T)+SL(E). (11)
Substituting (7) and (10) into (11) yields the following

security value objective function

 (12)
n

i

q

k

k
i

k
i swETSV

1 1
),(,ˆˆ

),(1Et

p

k

k
ij

k
ij

j

sw

4.2 The TAPADS Algorithm
This section presents a resource allocation algorithm
(TAPADS) for homogeneous clusters. Let X be an m by n
binary matrix corresponding to an allocation, in which n
tasks are assigned to m nodes in the cluster. Element xij

equals to 1 if and only if ti has been allocated to node mj;
otherwise xij = 0.

The algorithm outlined in Fig. 2 aims at achieving high
security under two conditions: (1) increasing security lev-
els will not result in missing deadlines; and (2) prece-
dence constraints are satisfied. To meet deadline and
precedence constraints, TAPADS assigns tasks to nodes
in a way to maximize security measured by PSC(X), which
is the probability that all tasks are executed without any
risk of being attacked and all messages are risk-free dur-
ing the course of transmissions. Further, TAPADS can

1. Sort and renumber tasks so that if (ti, tj) E then i < j;
2. Compute the critical path of the task graph;

3. Calculate the tentative finish time, , where ei is the computation time of task ti, and is the secu-
rity overhead of task ti when the minimal security requirements of ti are met.

path critical

min)(
it

ii cef min
ic

4. Allocate and schedule all ti in the critical path subject to minimal security requirements;
5. Allocate and schedule all ti critical path subject to precedence and minimal security constraints;
6. Obtain slack time, slk = d – f, where d is the deadline;
while (slack time 0) do
 7.1 select i' and j’ subject to

)()(max)()(
1,1

'
'

'
'

'
'

'
'

'
'

'
'

'
'

j
i

j
i

j
i

j
i

j
i

j
i

j
iqjni

j
i

j
i

j
i

j
i

j
i

j
i

j
i scsscswscsscsw

 7.2 select a’ and b’ subject to
)ˆ(ˆ)ˆˆ(ˆˆˆmax)ˆ(ˆ)ˆˆ(ˆˆˆ

1
),(

'
''

'
''

'
''

'
''

'
''

'
''

'
''

k
ab

k
ab

k
ab

k
ab

k
ab

k
ab

k
ab

pk
Ett

k
ba

k
ba

k
ba

k
ba

k
ba

k
ba

k
ba scsscswscsscsw

ba

 7.3 if)ˆ(ˆ)ˆˆ(ˆˆˆ)()('
''

'
''

'
''

'
''

'
''

'
''

'
''

'
'

'
'

'
'

'
'

'
'

'
'

'
'

k
ba

k
ba

k
ba

k
ba

k
ba

k
ba

k
ba

j
i

j
i

j
i

j
i

j
i

j
i

j
i scsscswscsscsw then

 increase security level s if s ;'
'

'
'

'
'

j
i

j
i

j
i ss }max{ '

'
'

'
lj

i
j
i S

 7.4 else increase security level if s ;'
''

'
''

'
'' ˆˆˆ k

ba
k
ba

k
ba sss }ˆmax{ˆ '

''
'

''
lk
ba

k
ba S

 7.5 update task allocation, e.g., start times of tasks and messages;
 7.6 update slack time based on the increased security level;
end while

Fig. 2. The TAPADS algorithm.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND HETEROGENEOUS CLUS-
TERS 7

maintain a high schedulability measured by PSD(X),
which is the probability that all tasks are timely com-
pleted. Note that PSC(X) and PSD(X) will be derived in Sec-
tion 4.3.

Before optimizing the security level of each task and
message of a job, TAPADS makes the best effort to satisfy
the deadline and precedence constraints. This can be ac-
complished by calculating the earliest start time and the
minimal security overhead of each task and message in
Steps 4 and 5. If the deadline can be guaranteed provided
that the minimal security requirements are met, the slack
time of the initial allocation can be obtained by Step 6.

kˆ and

To efficiently improve the quality of security of the job,
in Step 7 TAPADS chooses the most appropriate task or
message in which the security level will be increased.
Specifically, it is desirable to give higher priorities to se-
curity services with higher weights and lower security
overhead. Hence, we define the following two benefit-
cost ratio functions, e.g.,

iji
, which measure the

increase of security level by unit security overhead.
j

i tof serviceth for the ,)()(jscsscsw j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

, (13)

),(of serviceth for the ,)ˆ(ˆ)ˆˆ(ˆˆˆˆ
ji

k
ij

k
ij

k
ij

k
ij

k
ij

k
ij

k
ij

k
ij ttkscsscsw , (14)

where the numerators represent the weighted increase in
the security level, whereas the denominators indicate the
corresponding increase in security overhead.

After performing Steps 7.1 and 7.2, TAPADS identifies
the best candidate in T E that has the highest benefit-cost
ratio. Formally, the best candidate is chosen based on the
following expression,

otherwise. ,)ˆ(maxmax

,ˆmaxmax if ,max

1,),(

'
''

1,),(1,11,1

'
'

k
ijpkEtt

k
ji

k
ijpkEtt

j
iqjni

j
iqjni

j
i

ji

ji (15)

To yield a maximized security level of the job, Steps 7.3
and 7.4 are responsible for increasing security levels of
more important services at the minimal cost. Thus, the
slack time is distributed on a task or message with the
highest benefit-cost ratio. Step 7.5 updates the task alloca-
tion in accordance with the increased security level, be-
cause start times of other tasks and messages are depend-
ent of how the slack time is distributed. Finally, step 7.6
updates the slack time.
Theorem 1. The time complexity of TAPADS is
O(k(q|T|+p|E|)), where k is the number of times Step 7 is
repeated, q is the number of security services for computation, p
is the number of security service for communication. |T| is the
number of nodes (tasks) in a DAG and |E| is the number of
directed edges in a DAG.
Proof. The time complexity of allocating and scheduling
tasks subject to precedence and minimal security con-
straints is O(|T|+|E|) (Steps 1-6). To effectively boost
security levels of tasks and messages under the con-
straints (Steps 7.3-7.4), it takes time O(|T|+|E|) to select
the most appropriate task or message as a candidate
whose quality of security will be improved. The time
complexity of step 7 becomes O(k(q|T|+p|E|)). Thus, the
time complexity of TAPADS is: O(|T|+|E|) +
O(k(q|T|+p|E|)) = O(k(q|T|+p|E|)).

k cannot be very big number in practice, because k in

many cases is much smaller than |T|+|E|. Therefore, the
time complexity of TAPADS is reasonably low based on
the expression above

4.3 Evaluation of Timeliness and Security Risks
In this section, we first explain a way in which tasks are
allocated to nodes subject to precedence constraints.
Then, we derive the probability PSD(X) that all tasks meet
their deadline constraints. Finally, we calculate the prob-
ability PSC(X) that all tasks and messages are risk-free
during the execution of the job. It is to be noted that
PSD(X) and PSC(X) help in evaluating the performance of
our algorithm in Section 4.4.

4.3.1 Task and Message Scheduling
The proposed allocation scheme relies on the way of
scheduling tasks and messages, which in turn depend on
the values of two important parameters: (1) est(t), the ear-
liest start time for task t, and (2) eat(t), the earliest avail-
able time for t. Although both est(t) and eat(t) indicate a
time when task t's precedence constraints have been met
(i.e. all messages from t’s predecessors have arrived),
est(t) additionally signifies that node m(t) (to which t is
allocated) is now available for t to start execution. Thus,
est (t) eat(t), and at time eat(t) node m(t) may not be
ready for t to execute. In what follows, we derive the ex-
pressions of eat(t) and est(t) needed for scheduling tasks
and messages.

If task ti had only one predecessor task tj, then the ear-
liest available time eatk(tj, ti) on the kth node is given by
the following expression, where f(tj) is the finish time of tj,
mstuv(tj, ti) is the earliest start time of message (tj, ti), dji is
the data volume, Buv is the network bandwidth, and dji/Buv

is the transmission time for the message. Note that tj and
ti are allocated to the uth and vth nodes.

otherwise),(
)() if)(

),(
uvjiijuv

jij
ijk Bdttmst

tmm(ttf
tteat (16)

mstuv(tj, ti) depends on how the message is scheduled
on the links. A message is allocated to a link if the link has
an idle time slot that is later than the sender’s finish time
and is large enough to accommodate the message. Task ti

must wait until the last message from all its predecessors
has arrived. Hence, the earliest available time of ti is the
maximum of eatk(tj, ti) over all its predecessors.

)}.,({max)(
),(ijkEttik tteatteat
ij

 (17)

With (17) in place, we can obtain the earliest start time
estj(ti) on the jth node by checking if the node has an idle
time slot that starts later than task’s eatj(ti) and is large
enough to accommodate the task. estj(ti) is a parameter
used to derive est(ti), the earliest start time for the task on
any node. Expression for est(ti) is given below.

)}.({min)(ijMMi testtest
j

 (18)

4.3.2 Calculation of PSD(X)
We now calculate the probability that all tasks meet dead-
line constraints under allocation X. It is worth noting that
the initial allocation of X must satisfy the following tim-
ing constraint property:

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-0423-1206

 , (19)dcetestni min
iii)(:1

e

min

where est(ti) is the time obtained from expression (18), d is
the deadline, i is the computation time, and is the
security overhead when the minimal security require-
ments are met. can be calculated by the following
equation:

min
ic

ic

 . (20)
q

j

j
i

j
i

min
i Scc

1

min

Based on an initial task allocation, the scheme judi-
ciously raises security levels of tasks and messages pro-
vided that the following property is satisfied.

 . (21))()(:1
1

dscetestni
q

j

j
i

j
iii

The allocation X is feasible if all tasks can be com-
pleted before the deadline. Therefore, the probability

)s with under completed timely are tasks(XPSD is expressed as
below:
 1)(ii s , for dscetest

q

j

j
i

j
iii

1

)()(

 0)(ii s , otherwise, where),,...,,(21 nssss
n

i
ii sXP

1

)()s with under completed timely are tasks(, (22)

Under allocation X, the probability that all tasks are
timely completed can be computed as:

ksall
kSD XPpXP)s with under completed timely are tasks()(k

.)(

1ksall

n

i
kiik sp

 (23)

where the security level vector is represented as
),,...,,(21 knkkk ssss and pk is the probability that the se-

curity level vector is k

je

s .

4.3.3 Calculation of PSC(X)
The quality of security of a task ti with respect to the jth
security service is calculated as ii , where is a
risk rate (see 24) and ei is the execution time.

)exp(j
i

)1(exp1 j
ii

Note that this risk rate model assumes that a risk rate
is a function of security levels, and the distribution of
risk-count for any fixed time interval is approximated
using a Poisson probability distribution. The risk rate
model is for illustration purpose only, and the model can
be replaced by any risk rate model with a reasonable pa-
rameter (is set to 0.002 in our experiments).

j s

k
ij

ˆ

ta

. (24)

The quality of security of ti can be obtained below by
considering all security services. Thus,

. (25)q

j

j
i

q

l

l
i

l
ii

q

j

q

l

l
i

l
ii

j
i scesce

111 1
)(exp)(exp

Given an allocation X, the probability that all tasks are
free from being attacked during the execution of the tasks
is computed based on (25). Consequently, we have:

.)(exp)(
1 11

n

i

q

j

j
i

q

l

l
i

l
iiC sceXP (26)

Likewise, for the kth security service available for a
link between Mi and Mj, the quality of security of the link

during the time interval t is , where de-

notes the risk rate. Without loss of generality, the risk rate
is expressed as the following function of the correspond-
ing security level.

)ˆexp(tkij

 (27) .)1(exp1ˆ k
ij

k
ij s

The quality of security of a message Etb),(is cal-
culated by taking all security services provided to the
message into account. Thus,

 ,ˆexp)ˆexp(
11

p

k

k
ij

ij

ab
p

k ij

abk
ij B

d
B
d (28)

where xai=1, xbj=1.
Given an allocation X, the probability that all messages

allocated to the link between Mi and Mj are risk-free is
computed as the product of the quality of security of all
the messages. Then, we have:

 .ˆexp)(
1 ,1 1

n

a

n

abb

p

k

k
ij

ij

ab
bjaiij B

d
xxXP (29)

Let PL(X) be the quality of security of all links under al-
location X, and PL(X) can be written as:

 . (30)
m

i

m

ijj
ijL XPXP

1 ,1

Finally, the probability PSC(X) can be calculated as fol-
lows, where PC(X) and PL(X) are obtained from (26) and
(30).

)()()(XPXPXP LCSC (31)

4.4 Performance Evaluation
To demonstrate the strength of TAPADS, we compare it
with the LIST algorithm, a well-known scheduler for par-
allel applications. To make the comparisons fair, we
slightly modified LIST into three variants: LISTMIN,
LISTMAX, and LISTRND, in a way that these schemes
can meet parallel applications’ security requirements in a
heuristic manner. However, these three algorithms make
no effort to optimize quality of security. We believe that
comparing TAPADS with the three non-security-aware
scheduling policies is meaningful because this way the
security improvements brought by a security-aware
scheduler can be clearly noticed. The three baseline algo-
rithms are follows.
(1) LISTMIN: The scheduler intentionally selects the low-
est security level of each security services required by
each task of a parallel job.
(2) LISTMAX: The scheduler chooses the highest security
level for each security requirement posed by each task
within a parallel job.
(3) LISTRND: Unlike the above two baseline algorithms,
LISTRND randomly picks a value within the security
level range of each service required by a task.

4.4.1 Simulator and Simulation Parameters
Some preliminary results of this part of the study have
been presented in [34]. A simulator was designed and
implemented based on the model and the algorithm de-
scribed in the previous sections. Table 3 summarizes the
key configuration parameters of the simulated clusters.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND HETEROGENEOUS CLUS-
TERS 9

The parameters of nodes are chosen to resemble real-
world workstations like Sun SPARC-20 and Sun Ultra 10.

TABLE 3. CHARACTERISTICS OF SYSTEM PARAMETERS

Parameter Value (Fixed) - (Varied)

CPU Speed 100 million instructions/second

Network bandwidth 100 Mbps

Number of nodes (32, 64,128, 256), (8, 12, 16, 20)

Required security services Confidentiality, Integrity, and
Authentication

Weight of security services 0.2 (authentication), 0.5 (confi-
dentiality), 0.3 (integrity)

Since there is no widely accepted benchmark graph for
the scheduling of parallel jobs represented by DAGs [15],
we use random graphs with diverse parameters to test the
performance of the TAPADS algorithm. The synthetic
parallel job used for Sections 4.4.2 was created by TGFF
[7], a randomized task graph generator. We believe that
random graphs with different parameters can approxi-
mate various types of real-world parallel applications.
Section 4.4.3 validates the experimental results from syn-
thetic task graphs by using a real-world application –
digital signal processing system (DSP) [31]. In a random
task graph, the computational time (security overhead is
not included) of each node (task) was randomly selected
from a triangular distribution. Similarly, the size of secu-
rity-required data generated by a task was arbitrarily
chosen from a triangular distribution. Based on our ob-
servations on practical parallel jobs, the majority of tasks
in a parallel job have a very similar execution time, while
only a few tasks have either a very short execution time
or a quite long execution time. The maximal number of
out degrees in a task graph was set to 25. The number of
in degrees is randomly selected from a uniform distribu-
tion in the range [1, 10].

The performance metrics by which we evaluate system
performance include: Security Value (see 12); QSA: the
quality of security for applications (see 31); Guarantee fac-
tor: it is zero if a job’s deadline cannot be met. Otherwise,
it is one; and Job completion time: earliest time that a job
can finish its execution.

4.4.2 Scalability
This experiment is intended to investigate the scalability
of our algorithm. We scale the number of nodes, or PEs,
in the cluster from 32 to 256. Note that PE (Processing
Element) and node are interchangeable throughout this

paper. We used a task graph with 520 tasks, and the
deadline is set to 400 seconds. Fig. 3 plots the perform-
ances as functions of the number of nodes in the cluster.

(c) (b)(a)

 Fig. 3. Performance impact of number of nodes.

The results show that TAPADS exhibits good scalabil-
ity. It is observed from Fig. 3a that the amount of im-
provement over LISTMIN becomes more prominent with
the increasing value of node number. This result can be
explained by the conservative nature of LISTMIN, which
merely meets the minimal security requirements for jobs.
Conversely, LISTMAX can only achieve the same per-
formance as TAPADS when there are 256 nodes. This is
because LISTMAX only guarantees the maximal security
requirements of jobs when more nodes are available. We
observe from Fig. 3c that all four algorithms can finish the
job in a shorter time period when more nodes are avail-
able.

4.4.3 Evaluation in Real Application
To validate the results from the synthetic task graphs, we
evaluated the TAPADS scheme using a real system – digi-
tal signal processing system (DSP) [31]. Fig. 4 shows the
impact of deadlines on these schemes, and Fig. 5 reveals
the scalability of the four algorithms. Figures 4 and 5

(c)

 Fig. 4. Performance impact of deadline for DSP.

(b)(a)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-0423-1206

(c) (b)(a)

 Fig. 5. Performance impact of number of nodes for DSP.

e

1 s qs

w

CH

H

demonstrate that TAPADS can gain performance im-
provements in a real system. The strength of TAPADS
can be fully exhibited when the application has a rela-
tively tight deadline. When the deadline is loose,
TAPADS reduces to LISTMAX. It is suggested that
TAPADS can significantly improve security value and
QSA without increasing hardware cost when applications
have tight deadline requirements.

5 SECURITY-AWARE RESOURCE ALLOCATION FOR
HETEROGENEOUS CLUSTERS

TAPADS presented in the previous section can signifi-
cantly improve the performance of homogeneous clusters
in terms of security and schedulability. However, the
TAPADS scheme has no inherent capability of supporting
heterogeneous clusters because it assumes that all nodes
in a cluster are identical in terms of computation capacity.
This assumption is not always valid in reality. Still, there
are many heterogeneous clusters [10][20] on which paral-
lel jobs with real-time and security requirements are run-
ning. In a heterogeneous cluster, the computation capaci-
ties of computing nodes are diverse. As a result, the exe-
cution time of a task ti in a heterogeneous cluster is a vec-
tor of values rather than one fixed value. Similarly, the
security overhead of task ti is also decided by which com-
puting node it is assigned. These two new challenges in
the forms of computational heterogeneity and security
heterogeneity prevent TAPADS from being applied in
heterogeneous clusters. In this regard, we are motivated
to introduce the concept of security heterogeneity, and to
propose a heterogeneity-aware resource allocation algo-
rithm to improve security of real-time parallel applica-
tions running on heterogeneous clusters.

5.1 Modeling Computational Heterogeneity and
Security Heterogeneity

We consider a class of embarrassingly parallel applica-
tions (see [30] for some examples) each of which can be
envisioned as a set of tasks without any interaction be-
tween one another. An application is modeled as a tuple
(T, a, f, d, l), where T = {t1, t2, ..., tn} represents a set of n
tasks, a and f are the arrival and finish times, d is the
specified deadline, and l denotes the amount of data
(measured in MB) to be protected. Each task ti T is la-
beled with a pair, e.g., ti = (Ei, Si), where Ei and Si are vec-
tors of execution times and security requirements for task
ti. The execution time vector denoted by Ei = (, , …,

i) represents the execution time of ti on each node in the
cluster. Each task of a parallel application requires a set of
security services providing various security levels, which
are normalized in the range from 0.1 to 1.0. Suppose ti T
requires q security services, Si = (is , i ,…, i), a vector of
security levels, characterizes the security requirements of
the task. The impacts of these two heterogeneities on sys-
tem performance and security will be investigated in Sec-
tion 5.4.3.

1
ie 2

ie

m

2

Let i denote the computational weight of task ti on
node mj. i is computed as a ratio between its execution
time on mj and that on the fastest node in the cluster. The
computational heterogeneity level of ti, referred to as i ,
is quantitatively measured by the standard deviation of
the computational weights. That is, is expressed as:

jw
j

C
i

 n

j

j
i

avg
i

C
i ww

n
H

1

21 , (32)

where and nw
n

j

j
i

avg
i

1

k
i

n

k

j
i

j
i eew

1
min w .

The computational heterogeneity of a parallel applica-
tion with task set T is calculated as:

TT

C
i

C

i

H
T

H
||

1 (33)

Besides computation heterogeneity, a cluster may ex-
hibit security heterogeneity. Each node provides an array
of security services measured by security levels normal-
ized in the range from 0.1 to 1.0. Security services pro-
vided by node mj is characterized as a vector of security
levels, Pj = (

j
,

j
, …,

j
), where

j
 (1 k q) is the

security level of the kth security service provided by mj.
1p p p p

s s

2 q k

Given a task ti and its security requirement Si =
(is , i ,…, i), the heterogeneity of security requirement
for ti is represented by the standard deviation of the secu-
rity levels in the vector. Thus,

1 2 q

 q

j

j
i

avg
i

S
i ss

q
H

1

21 , (34)

where nss
q

j

j
i

avg
i

1

.

The security requirement heterogeneity of a parallel
application with task set T is computed by:

TT

S
i

S

i

H
T

H
||

1 (35)

The heterogeneity of the kth security service in a het-
erogeneous cluster is expressed as:

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND HETEROGENEOUS CLUS-
TERS 11

 n

i

k
i

k
avg

V
k pp

n
H

1

21 , (36)

where npp
n

i

k
i

k
avg

1

.

Similarly, the heterogeneity of security services in
node mj is expressed as:

 q

k

k
j

avg
j

M
j pp

q
H

1

21 , (37)

where qpp
q

k

k
j

avg
j

1

.

Using (36), the heterogeneity in security services of the
cluster can be computed as:

q

k

V
k

V H
q

H
1||

1 . (38)

Now we consider heterogeneity in security overhead.
As before, the following model account for three security
services, including confidentiality, integrity, and authen-
tication [33]. Let i and

iij
 be the security level and

overhead of the kth security service, the security overhead
ij experienced by ti on node mj can be computed using

(39) and (40).

ks)k sc

c

)

)

e
is)(g

i
g
ij sc)

k

for

(k

 , where . (39)
q

k

k
i

k
ijij scc

1

(i
k
i Ss

 , where . (40)
},,{

(
geak

k
i

k
ijij scc i

k
i Ss

where , , and are overheads caused

by the authentication, confidentiality, and integrity ser-
vices. Finally, the security overhead of a task set T is cal-
culated by:

)(eijc (a
i

a
ij sc

 , (41)
Tt

n

j geak

k
i

k
ijij

Tt

n

j
ijij

ii

scxcxc
1 },,{1

)(

where .
i

k
i

n

j
ijjiij Ssxmtx and ,1 , node toallocated is if 1

1

5.2 The SHARP Algorithm

5.2.1 Problem Formulation
We introduce a closed form expression for the security
benefit of task ti. Thus, the security benefit of ti is meas-
ured by Security Deficiency (SD), which is quantified as the
discrepancy between requested security levels and of-
fered security levels. The SD value of the kth service is
defined as:

 , (42)
otherwise,

 if,0
),(

k
j

k
i

k
j

k
ik

j
k
i

ps

ps
psg

where ti is allocated to mj.
For the kth security service, a small SD value indicates

a high degree of service satisfaction. A zero SD value im-
plies that ti’s requirement placed on the kth security ser-
vice can be perfectly met. The SD value of ti on mj can be
derived from (43). Thus, the SD value of ti is computed as
a weighted sum of the SD values of q required security
services. Formally, we have:

 , (43)

where is the weight of the kth security ser-

vice, , and .

q

k

k
j

k
i

k
iji psgwPsSD

1

,),(

k
iw

10 k
iw

q
k
iw

1
1

Likewise, the security benefit of a parallel application
with task set T is measured by Degree of Security Deficiency
(DSD), which is defined as the sum of the security defi-
ciency values of all the tasks in the task set. Consequently,
the DSD value of task set T under allocation X can be
written as:

Tt

n

j
jiij

i

PsSDxXTDSD
1

,),(

 (44) ,,
1 1Tt

n

j

q

k

k
j

k
i

k
iij

i

psgwx

where .
i

k
i

n

j
ijjiij Ssxmtx and ,1 , node toallocated is if 1

1

Let X be the schedule for all the tasks in task set T. The
following objective function needs to be minimized,
meaning that the degree of security deficiency of T is op-
timized.
 minimize (45) ,,),(

1 1Tt

n

j

q

k

k
j

k
i

k
iij

i

psgwxXTDSD

subject to fi d and if ti is allo-

cated to node mj, where fi is the finish time of the ith task
in the task set.

1: 1,
1

ij

n

j
ijij xxXx

Given a heterogeneous cluster and a sequence of sub-
mitted parallel applications, the SHARP algorithm is in-
tended to minimize the cluster’s overall DSD value de-
fined as the sum of the degree of security deficiency of all
the submitted applications. Finally, we can obtain the
following non-linear optimization problem formulation
for the heterogeneous cluster, subject to the timing con-
straints:

 minimize (46) .),(
T all

XTDSD

Thus, SHARP is designed to minimize the average de-
gree of security deficiency.

T allfor T allfor 1 1
,)(TPpsgwxTPDSD sd

Tt

n

j

q

k

k
j

k
i

k
iijsd

i

 (47)

where Psd(T) is a step function,

and
otherwise,0

completed timely becan set task if,1
)(

T
TPsd

.

The earliest start time can be computed as: j
i

ddmt

q

k

k
l

k
l

j
l

j
i

ll

sce
. 1

)((48)

where is the current time, and
ddm

q

k

k
l

k
l

j
l

l

sce
. 1

)(
tl

i

is

the overall execution time (security overhead is factored
in) of all tasks with earlier deadlines than d. If task ti is
running on node mj, the start time is the earliest avail-
able time of ti on mj.

j

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-0423-1206

5.2.2 Algorithm Description
The SHARP algorithm is outlined in Fig. 6. The goal of
the algorithm is to deliver high quality of security under
two conditions: (1) deadlines of submitted parallel appli-
cations are met; and (2) the degree of security deficiency
(see 44) of each admitted parallel application is mini-
mized.

l
ijc

Before reducing the security deficiency value of each
task of a parallel application, SHARP makes an effort to
meet the timing constraint of the application. This can be
accomplished by calculating the earliest start time and the
security overhead of each task (see 39) in Steps 5 and 6,
followed by checking if all the tasks of the application can
be completed before its deadline d (see Step 7). If the
deadline of a task in the application can not be met, the
application is rejected by Step 16.

The security deficiency value of each task in the appli-
cation is minimized in the following way. Step 7 is in-
tended to identify a set of candidate nodes satisfying the
timing constraint. Steps 9-11 are used to choose a node
with the minimal security deficiency among the candidate
nodes. Thus, SHARP eventually allocates each task to a
node that can reduce security deficiency while meeting
the real-time requirement of parallel applications.
Theorem 2. The time complexity of SHARP is O(mnq), where
m is the number of nodes in a cluster, n is the number of tasks
in a parallel application, and q is the number of security ser-

vices.
Proof. Selecting a parallel application with the earliest
deadline takes constant time O(1). The time complexity of
finding the security overhead of each task on a node is
O(q) (Step 6), since SHARP considers q security services.
The time complexity of feasibility checking is a constant
O(1) (Step 7). Since there exist m nodes and n tasks, Steps
5-13 are executed for mn times. Therefore, the time com-
plexity of Steps 2-17 is bounded by O(mnq). Steps 18-22
take O(n) time to allocate n task to m nodes in the cluster.
Thus, the time complexity of SHARP is O(1+nmq+n) =
O(nmq).

1. Select a parallel application, which has the earliest deadline
 among applications in the arrival queue;
2. for each task ti of the application chosen in step 1 do
3. Initialize the security deficiency of task ti, SDi ;
4. for each node mj in the heterogeneous cluster do
5. Use (48) to compute j

i
5.3 Evaluation of Security Risks

6. Calculate ti’s security overhead
Now we derive the probability Prf(ti,mj) that ti remains
risk-free during the course of its execution on node mj. It
is to be noted that the risk-free probability can be used as
a complementary means of quantifying the quality of se-
curity. The risk-free probability of task ti with respect to
the kth service is:

, where
q

k

k
i

k
ij sc

1

)(

otherwise,

 if,
k
j

k
i

k
ik

i
p

ss
s

k
jp ; (see 39)

7. if dsce
q

k

k
i

k
ij

j
i

j
i

1

)(then

8. Use (43) to compute the security deficiency = , (49)),(ji
k
rf mtP q

l

l
i

l
ij

j
i

k
i sce

1
)(exp SD(si, Pj) of task ti on node mj;

9. if SD(si, Pj) < SDi then
where i is the risk rate (see 24), and is the
security overhead.

k)(l
is10. SDi SD(si, Pj);

11. xij 1; k j: xik 0;
12. end if
13. end if The risk-free probability of task ti on node mj can be

written as (50), where all security services provided to the
task are considered. Thus, we have:

14. end for
15. if no feasible schedule is available for ti then
16. Reject the parallel application;
17. else
18. Record the start time and the finish time of task ti on
 node mj where xij=1;
19. Update the schedule on node mj where xij=1;
20. end if
21. end for
22. if all the tasks of the parallel application can be finished
 before deadline d then
23. for each task ti of the parallel application do
24. allocate task ti to node mj , subject to 1 j n, xij = 1;
25. end for
26. end if

Fig. 6. The SHARP algorithm.

q

k
ji

k
rfjirf mtPmtP

1

,,

 q

k

q

l

l
i

l
ij

j
i

k
i sce

1 1
)(exp

 . (50) q

k

k
i

q

l

l
i

l
ij

j
i sce

11
)(exp

Using (50), we can write the overall risk-free probabil-
ity of task ti in the cluster as:

,
n

j
jirfijirf mtPxPtP

1
),(1

 (51) n

j

q

k

k
i

q

l

l
i

l
ij

j
iij scep

1 11
)(exp

where pij is the probability that ti is allocated to node mj,

and . Given a parallel

application with task set T, the probability that all tasks
are free from being attacked during their executions is
computed based on (51). Consequently, the risk-free
probability of the task set can be computed as below:

otherwise,0
 node onto assigned is if,1 ji

ij

mt
p

Tt
irfrf

i

tPTP)(

 (52) .)(exp
1 11TT

n

j

q

k

k
i

q

l

l
i

l
ij

j
iij

i

scep

Finally, we can calculate the average risk-free probabil-
ity of all schedulable parallel applications on a heteroge-
neous cluster using (53), where Psd(T) is a step function,

and . It is
otherwise,0

completed timely becan if,1
)(

T
TPsd

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND HETEROGENEOUS CLUS-
TERS 13

worth noting that the SHARP approach is conducive to
maximizing the risk-free probabilities of heterogeneous
clusters. As we explained in Section 5.2.2, for each task ti,
Steps 9-11 of SHARP (see Fig. 9) choose a node with the
minimal security deficiency among the candidate nodes.
Therefore, a node who can best meet ti’s security level
requirements will be selected by SHARP as the destina-
tion node for ti (see 42). Consequently, ti will be executed
with its required security levels or with higher security
levels close to its requirements. In other words, the ob-
tained security levels of ti will be maximized. Based on
(24), a higher security level for the jth security service
implies a lower risk rate . A lower risk rate indicates a
higher risk-free probability (see 49, 50, and 51), which in
turn results in a higher risk-free probability of a hetero-
geneous cluster (see 53). Thus, SHARP maximizes Prf.

j
i

T allfor T allfor

TPTPTPP sdrfsdrf

T allfor T allfor

TPTPTP sd
TT

irfsd
i

 (53)

The risk-free probability computed by (53) is used in
concert with the degree of security deficiency (see 47) to
measure the quality of security provided by a heteroge-
neous cluster. In the subsequent section, we quantita-
tively evaluate the risk-free probability and degree of se-
curity deficiency for heterogeneous cluster under a wide
range of workload conditions.

TABLE 4. SYSTEM PARAMETERS

5.4 Performance Results and Comparisons
In purpose of revealing the strength of SHARP, we com-
pared it with two well-known algorithms, namely, EDF
(Earliest Deadline First) and LLF (Least Laxity First).

These algorithms briefly described below are representa-
tive dynamic scheduling algorithms for clusters.
(1) EDF: An algorithm that schedules a ready job with the ear-
liest deadline.
(2) LLF: A heuristic that assigns priority based on laxity of
jobs. Job with minimum laxity is assigned highest priority. Lax-
ity = Deadline – Worst case computation time.

Table 4 summarizes the key configuration parameters
of the simulated heterogeneous cluster.

5.4.1 Simulation Parameters
The parameters of nodes in the simulated cluster are cho-
sen to resemble real-world workstations like IBM SP2
nodes. We made use of a real world trace (e.g., San Diego
Supercomputer Center SP2 log sampled on a 128-node
cluster) to conduct simulations. We modified the trace by
adding a block of security-sensitive data for each task.
“job number”, “submit time”, “execution time” and
“number of requested processors” of jobs submitted to
the system are taken directly from the trace. “deadlines”,
“security requirements of jobs”, and “security-sensitive
data size” are synthetically generated, since these pa-
rameters are not available in the trace. The performance
metrics we used include: Average risk-free probability
(ARFP, see 53), Average degree of security deficiency (ADSD,
see 47), and Guarantee ratio (GR, measured as a fraction of
total submitted parallel applications that are found to be
schedulable). While ADSD gives users a quantitative way
to compare different scheduling algorithms in terms of
their security service satisfaction abilities, ARFP provides
us a means of measuring probabilities of risk-free task
executions supplied by distinct scheduling schemes. Al-
though both ADSD and ARFP are security-related per-
formance metrics, they complement each other by offer-
ing two different angles to evaluate the quality of security
delivered by scheduling algorithms. GR is a traditional
performance metric to evaluate scheduling algorithms. A
high performance scheduling algorithm can result in a
high value of GR, which means the majority of submitted
jobs can be scheduled so that their deadlines are met.

5.4.2 Impact of the Size of Security-Sensitive Data
In this set of experiments we evaluated the performance impact
of security-sensitive data size. We tested six configurations of
size of data to be secured (see Table 4).

The experimental results are shown in Fig. 7 When the
security-sensitive data size increases, the degree of secu-
rity deficiency of SHARP slightly increases. This observa-
tion can be explained as follows. When SHARP is de-

Parameter Value (Fixed) - (Varied)
Nnnumber of tasks (6400) – The first three

month trace data from
SDSC SP2 log

Number of nodes (64) – (32, 64, 128, 192,
256)

CPU Speedup (1) – (2, 3, 4, 5, 6, 7, 8, 9,
10)

Size of security-sensitive data (1–100) – (0.01–1,0.1–
10,1–100,10–1000,100–
10000,1000–100000) MB

Computational heterogeneity (1.08) – (0, 0.43, 1.08,
1.68, 2.27) (see 33)

Security heterogeneity (0.22) – (0, 0.14, 0.22,
0.34, 0.56) (see 38)

 Fig. 7. Performance impact of size of data to be secured.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-0423-1206

ployed in the cluster, security overhead becomes moder-
ately dominant with the growing data size and, therefore,
tasks of a parallel application are more likely to be allo-
cated to nodes providing lower security levels. The nodes
with small total execution time have low security over-
head, meaning that security levels offered by these nodes
are lower. Thus, the degree of security deficiency for
SHARP enlarges with increasing data size. Unlike
SHARP, the degrees of security deficiency of EDF and
LLF marginally reduce with the increasing value of data
size. This result is reasonable because EDF and LLF only
admit applications with low security demands when se-
curity-sensitive data size is large, thereby being able to
meet the security constraints of most admitted applica-
tions.

5.4.3 Heterogeneities in Security and Computation
In this experiment, we investigate the performance im-
pacts of heterogeneities in security and computation. The
five heterogeneity configurations are detailed in Table 4.

Fig. 8 shows that SHARP fully exhibits its strength
when the heterogeneities increase, e.g., SHARP substan-
tially performs better than the alternatives. Additionally,
the risk-free probabilities and degrees of security defi-
ciency of EDF and LLF marginally change when the secu-
rity and computational heterogeneities increase. When
deadlines are tight, SHARP is significantly superior to

EDF and LLF in terms of guarantee ratio. The implication
behind this result is that SHARP is the most appropriate
algorithm for scenarios where parallel applications on
heterogeneous clusters have tight deadlines.

5.4.4 Scalability
This group of experiments is intended to investigate the
scalability of SHARP. We scale the number of nodes in a
heterogeneous cluster from 32 up to 256. It is observed
from Fig. 9 that SHARP makes more prominent im-
provement in degree of security deficiency and risk-free
probability when the heterogeneous cluster size scales up.
Importantly, SHARP can achieve high performance pro-
vided that there exist a large number of nodes in the clus-
ter, because there is a strong likelihood that SHARP can
meet applications’ security demands while minimizing
the execution times.

5.4.5 CPU Capacity
In this set of experiments we examine security and per-
formance sensitivities of the three algorithms to CPU ca-
pacities. We varied the CPU capacity (measured as
speedup over the baseline computational node) from 2 to
10. The CPU speed of the IBM SP2 66MHz nodes is nor-
malized to 1. We normalized the CPU capacity of the
nodes to the values from 2 to 10. The laxity is set to 10000
seconds, and the number of nodes is fixed to 32.

 Fig. 8. Performance impact of security and computational heterogeneities.

 Fig. 9. Performance impact of number of nodes.

 Fig. 10. Performance impact of CPU speedup.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND HETEROGENEOUS CLUS-
TERS 15

As before, Fig. 10 reveals that SHARP is superior to the
other two competitors in all the three performance met-
rics. In addition, the improvements of SHARP in degree
of security deficiency and risk-free probability become
more prominent when the CPU capacity increases. These
results as well as those presented in Section 5.4.4 indicate
that SHARP exhibits good scalability, and SHARP can
improve both security and performance of large-scale
heterogeneous clusters with powerful CPUs.

6 CONCLUSIONS

This paper aims at presenting security-aware resource
allocation schemes for real-time parallel applications run-
ning on clusters. The schemes consider two parallel appli-
cation models where timeliness and security require-
ments are factored in. For the first part of this study, we
propose TAPADS, an allocation scheme makes use of
critical path analysis as well as security level refinement
to maximize security and schedulability. In the second
part of the study, we develop SHARP, a security-aware
resource allocation algorithm for real-time jobs on hetero-
geneous clusters. SHARP is applied to maximize the
probability that parallel applications are timely executed
without any risk of being attacked.

Future studies can be performed in the following di-
rections. First, we will extend the heuristic schemes to
accommodate data transmissions among disk I/O nodes.
Second, we will propose a security-aware resource alloca-
tion scheme where multi-dimensional computing re-
sources are considered. For now we only consider CPU
time, which is one of the computing resources consumed
by security services. Still, security services require other
resources like memory, network bandwidth and storage
capacities. They might compete with submitted parallel
jobs for these resources. As a result, the resource competi-
tion could noticeably affect the computation time of both
submitted jobs and their required security services. We
will investigate the impact of resource competition on
computation time in our future work. Finally, we intend
to incorporate more security services (e.g., authorization
and auditing services) into our resource allocation
schemes.

ACKNOWLEDGMENT
The work reported in this paper was supported by the US
National Science Foundation under Grant No. CCF-
0742187, San Diego State University under a startup fund,
Auburn University under a startup grant, the Intel Cor-
poration under Grant No. 2005-04-070, and the Altera
Corporation under an equipment grant. The authors wish
to thank the anonymous reviewers for their helpful com-
ments.

REFERENCES

[1] T.F. Abdelzaher, E. M. Atkins, and K.G. Shin., “QoS Negotia-
tion in Real-Time Systems and Its Application to Automated
Flight Control,” IEEE Trans. Computers, vol. 49, pp.1170-1183,
2000.

[2] Q. Ahmed and S. Vrbsky, “Maintaining security in firm real-
time database systems,” Proc. 14th Ann. Computer Security Ap-
plication Conf., pp. 83-90, 1998.

[3] A. Apvrille and M. Pourzandi, “XML Distributed Security Pol-
icy for Clusters,” Computers & Security Journal, Elsevier, vol.23,
no.8, pp. 649-658, 2004.

[4] M. Bishop, Computer Security, ISBN 0-201-44099-7, Addison-
Wesley, 2003.

[5] R. Chandramouli, S. Bapatla, K. P. Subbalakshmi and R. N.
Uma, “Battery power-aware encryption,” ACM Trans. Informa-
tion and System Security, vol. 9 , no. 2, pp. 162-180, 2006.

[6] K. Connelly and A. A. Chien, “Breaking the barriers: high per-
formance security for high performance computing,” Proc.
Workshop on New Security Paradigms, pp. 36-42, 2002.

[7] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for
free,” Proc. Int. Workshop. Hard-ware/Software Codesign, pp. 97-
101, 1998.

[8] I. Foster, N.T. Karonis, C. Kesselman and S. Tuecke, “Managing
security in high-performance distributed computations,” Clus-
ter Computing, vol. 1, no. 1, pp. 95-107, 1998.

[9] S. Gritzalis, “Enhancing Privacy and Data Protection in Elec-
tronic Medical Environments,” Journal of Medical Systems, vol.
28, no. 6, pp. 535 – 547, 2004.

[10] L. He, A. Jatvis, and D. P. Spooner, “Dynamic scheduling of
parallel real-time jobs by modelling spare capabilities in het-
erogeneous clusters,” Proc. Int’l Conf. Cluster Computing, pp. 2-
10, 2003.

[11] A. Jones and J.C. Rabelo, “Survey of Job Shop Scheduling Tech-
niques,” NISTIR, National Institute of Standards and Technol-
ogy, 1998.

[12] C.-J. Hou and K. G. Shin, “Allocation of Periodic Task Modules
with Precedence and Deadline Constraints in Distributed Real-
Time Systems,” IEEE Trans. Computers, vol. 46, no. 12, pp.1338-
1356, 1997.

[13] W.T.C. Kramer, A. Shoshani, D.A. Agarwal, B.R. Draney, G. Jin,
G.F. Butler, and J.A. Hules, “Deep scientific computing requires
deep data,” IBM Journal of Research and Development, vol. 48, no.
2, pp. 209 – 232, 2004.

[14] B. Krebs, “Hackers Strike Advanced Computing Networks,”
Washington Post, April 2004.

[15] Y.-K. Kwok and I. Ahmad, “Efficient Scheduling of Arbitrary
Task Graphs to Multiprocessors Using a Parallel Genetic Algo-
rithm,” Journal of Parallel and Distributed Computing, vol. 47, no.
1, pp. 58-77, 1997.

[16] C. Irvine and T. Levin, “Towards a taxonomy and costing
method for security services,” Proc. 15th Ann. Computer Security
Applications Conf., pp. 183-188, 1999.

[17] W. Li and R.B. Vaughn, “Cluster Security Research Involving
the Modeling of Network Exploitations Using Exploitation
Graphs,” Proc. Sixth IEEE Int’l Symp. Cluster Computing and
Grid, pp. 26-36, 2006.

[18] B. Littlewood, S. Brocklehurst, N. E. Fenton, P. Mellor, S. Page,
D. Wright, J. Dobson, J. McDermid and D. Gollmann, “Towards
Operational Measures of Computer Security,” Journal of Com-
puter Security, vol. 2, no. 3, pp. 211-230. 1993.

[19] C.L. Liu, J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in A Hard Real-Time Environment,” Journal of the
ACM, vol.20, no.1, pp. 46-61, 1973.

[20] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamic matching and scheduling of a class of inde-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-0423-1206

pendent tasks onto heterogeneous computing systems,” Proc.
IEEE Heterogeneous Computing Workshop, pp. 30–44, 1999.

[21] J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti and E.
Roback, “Status Report On The First Round Of The Develop-
ment Of The Advanced Encryption Standard,” Journal of the Re-
search of the National Institute of Standards and Technology, vol.
104, no. 5, pp. 435-459, 1999.

[22] J. Pamula, S. Jajodia, P. Ammann and V. Swarup, “A weakest-
adversary security metric for network configuration security
analysis,” Proc. 2nd ACM workshop on Quality of Protection, pp.
31-38, 2006.

[23] M. Pourzandi, D. Gordon, W. Yurcik and G. A. Koenig, “Clus-
ters and security: distributed security for distributed systems,”
Proc. Fifth IEEE Int’l Symp. Cluster Computing and the Grid, pp.
96-104, 2005.

[24] W. Shi, H.H.S. Lee, C. Lu and M. Ghosh, “Towards the issues in
architectural support for protection of software execution,”
ACM SIGARCH Computer Architecture News, vol. 33, no. 1, Spe-
cial issue workshop on architectural support for security and anti-
virus (WASSA), pp. 6-15, 2005.

[25] S. Song, K. Hwang, Y.K. Kwok, “Risk-Resilient Heuristics and
Genetic Algorithms for Security-Assured Grid Job Scheduling,”
IEEE Trans. Computers, Vol. 55, No. 6, June 2006.

[26] J. A. Stankovic, M. Spuri, K. Ramamritham, G.C. buttazzo,
“Deadline Scheduling for Real-Time Systems – EDF and Re-
lated Algorithms,” Kluwer Academic Publishers, ISBN 978-
0792382690, 1998.

[27] V. Subramani, V., R. Kettimuthu, S. Srinivasan, J. Johnston, and
P. Sadayappan, “Selective buddy allocation for scheduling par-
allel jobs on clusters,” Proc. IEEE Int’l Conf. Cluster Computing,
pp. 107 – 116, 2002.

[28] M.E. Thomadakis and J.-C. Liu, “On the efficient scheduling of
non-periodic tasks in hard real-time systems,” Proc. 20th IEEE
Real-Time Systems Symp., pp.148-151, 1999.

[29] A. Wagner, H.-W. Jin, D.K. Panda, and R. Riesen, “NIC-based
Offload of Dynamic User-defined Modules for Myrinet Clus-
ters,” IEEE Int’l Conf. Cluster Computing, pp. 205 – 214, 2004.

[30] B. Wilkinson and M. Allen, “Parallel Programming, Techniques
and Applications Using Networked Workstations and Parallel
Computers”, Prentice-Hall, Inc., ISBN 978-0136717102, 1999.

[31] C.M. Woodside and G.G. Monforton, "Fast Allocation of Proc-
esses in Distributed and Parallel Systems", IEEE Trans. Parallel
and Distributed Systems, vol. 4, no. 2, pp. 164-174, 1993.

[32] T. Xie, “Security-Aware Scheduling for Real-Time Systems”,
Ph.D. Dissertation, New Mexico Institute of Mining and Tech-
nology, May 2006.

[33] T. Xie and X. Qin, “Scheduling Security-Critical Real-Time Ap-
plications on Clusters,” IEEE Trans. Computers, vol. 55, no. 7,
pp. 864-879, 2006.

[34] T. Xie and X. Qin, “A New Allocation Scheme for Parallel Ap-
plications with Deadline and Security Constraints on Clusters,”
The 7th IEEE Int’l Conf. on Cluster Computing, pp. 1-10, 2005.

[35] T. Xie and X. Qin, “A Security Middleware Model for Real-time
Applications on Grids,” IEICE Transactions on Information and
Systems, Special Issue on Parallel/Distributed Computing and Net-
working, Vol.E89-D, No.2, pp.631-638, 2006.

[36] T. Xie and X. Qin, “A Security-Oriented Task Scheduler for
Heterogeneous Distributed Systems,” Proc. 13th Annual IEEE
Int’l Conf. High Performance Computing, Lecture Notes in Computer
Science (LNCS 4297), ISSN 0302-9743, pp. 35-46, 2006.

[37] T. Xie, X. Qin and M. Nijim, “SHARP: A New Real-Time
Scheduling Algorithm to Improve Security of Parallel Applica-
tions on Heterogeneous Clusters,” Proc. 25th IEEE Int’l Perform-
ance Computing and Communications Conf., April 10-12, 2006.

[38] Q. Zheng and K.G. Shin, “On the Ability of Establishing Real-
Time Channels in Point-to-Point Packet Switched Network,”
IEEE Trans. Comm., vol. 42, pp. 1096-1105, 1994.

Tao Xie received the PhD degree in computer
science from the New Mexico Institute of Min-
ing and Technology in 2006. He received the
BSc and MSc degrees from Hefei University of
Technology, China, in 1991 and 2000, respec-
tively. He is currently an assistant professor in
the Department of Computer Science at San
Diego State University, San Diego, California.
His research interests are security-aware
scheduling, high performance computing, clus-

ter and Grid computing, parallel and distributed systems, real-
time/embedded systems, storage systems, and information security.
He is a member of the IEEE.

Xiao Qin (S’99-M’04) received the BS and
MS degrees in Computer Science from
Huazhong University of Science and Tech-
nology, China, in 1996 and 1999, respec-
tively. He received the PhD in Computer Sci-
ence from the University of Nebraska-Lincoln
in 2004. Currently, he is an Assistant Profes-
sor of Computer Science at Auburn Univer-
sity. Prior to joining Auburn University in 2007,
he had been with New Mexico Institute of
Mining and Technology for three years. In

2007, he received an NSF Computing Processes & Artifacts (CPA)
Award. His research interests include parallel and distributed sys-
tems, real-time computing, storage systems, and fault tolerance. He
has been on the program committees of various international confer-
ences, including IEEE Cluster, IEEE IPCCC, and ICPP. He had
served as a subject area editor of IEEE Distributed System Online
(2000-2001). He is a member of the IEEE.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

