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Security-Aware Resource Allocation for Real-
Time Parallel Jobs on Homogeneous and 

Heterogeneous Clusters
Tao Xie, Member, IEEE, and Xiao Qin, Member, IEEE

Abstract— Security is increasingly becoming an important issue in the design of real-time parallel applications, which are 
widely used in industry and academic organizations. However, existing resource allocation schemes for real-time parallel jobs 
on clusters generally do not factor in security requirements when making allocation and scheduling decisions. In this paper, we
develop two resource allocation schemes, called TAPADS (Task Allocation for Parallel Applications with Deadline and Security 
constraints) and SHARP (Security- and Heterogeneity-Aware Resource allocation for Parallel jobs), by taking into account 
applications’ timing and security requirements in addition to precedence constraints. We consider two types of computing 
platforms: homogeneous clusters and heterogeneous clusters. To facilitate the presentation of the new schemes, we build 
mathematical models to describe a system framework, security overhead, and parallel applications with deadline and security 
constraints. The proposed schemes are applied to heuristically find resource allocations that maximize the quality of security 
and the probability of meeting deadlines for parallel applications running on clusters. Extensive experiments using real world 
applications and traces as well as synthetic benchmarks demonstrate the effectiveness and practicality of the proposed 
schemes.

Index Terms— Security constraints, real-time scheduling, security overhead model, parallel jobs, clusters.  
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1 I RODUCTIONNT

VER the past decade, clusters have become increas-
ingly popular as powerful and cost-effective plat-
forms for executing real-time parallel applications 

[27][28]. To improve their utilization and share their re-
sources to outside users, more and more clusters are 
switching from traditional proprietary computing envi-
ronments to open systems that are frequently exposed to 
public networks [23]. Consequently, they are subject to a 
variety of external attacks such as computing cycles steal-
ing [23], inter-node communication snooping [17], and 
cluster services disruption [14]. Therefore, security 
mechanisms in the form of security services like authenti-
cation, integrity check, and confidentiality have been de-
ployed on clusters to thwart the attacks [17][23]. These 
security services not only protect cluster computing plat-
forms from being compromised by hackers [24], but also 
meet security requirements imposed by applications run-
ning on clusters [6][8]. 

Real-time parallel applications with security require-
ments running on clusters are emerging in many do-
mains, including on-line transaction processing systems 
[2], medical electronics [9], aircraft control [1], and scien-
tific parallel computing [6]. These applications propose 
various security requirements like data privacy [6], data 
integrity check [8], and software execution protection 

[24], and thus, are fundamentally distinguished by run-
time uncertainties that are caused by security needs. For 
example, in parallel computing, protection of computa-
tionally expensive or irreplaceable data as well as valu-
able application software is critical [13]. Especially, in the 
business world and government, where the data is con-
sidered sensitive, the potential data losses due to a secu-
rity incident could be catastrophic [13]. As a result, em-
ploying the security services provided by clusters is es-
sential for security-critical real-time parallel applications. 

Using security services to satisfy the applications’ se-
curity needs, however, incurs security overhead in terms 
of computation time, which might violate the applica-
tions’ deadlines. The conflicting requirements of good 
real-time performance and high quality of security protec-
tion imposed by security-critical real-time applications 
introduce a new challenge for resource allocation 
schemes, i.e., how to solve the real-time and security di-
lemma. Moreover, security heterogeneity (see Section 5.1) 
existed in heterogeneous clusters makes solving this di-
lemma more difficult as security overhead is node-
dependent, which means for the same level of security 
service different computing nodes incur distinct security 
overhead. Unfortunately, existing resource allocation 
schemes for real-time parallel applications on clusters 
[27][28] normally do not factor in applications’ security 
requirements when making resource allocation decisions, 
and thus, are inadequate for security-critical real-time 
parallel applications. Hence, security-aware resource allo-
cation schemes must be developed to bridge the gap be-
tween the incapability of existing schemes and the needs 
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of high quality of security demanded by security-critical 
real-time applications. Motivated by this discrepancy, in 
this paper, we design and evaluate two security-aware 
resource allocation schemes called TAPADS (Task Alloca-
tion for Parallel Applications with Deadline and Security 
constraints) and SHARP (Security- and Heterogeneity-
Aware Resource allocation for Parallel jobs) for real-time 
parallel applications running on homogeneous and het-
erogeneous clusters, respectively. While TAPADS is de-
veloped for parallel applications represented by DAGs 
(Directed Acyclic Graph) where precedence constraints 
and communications among tasks in an application exist, 
SHARP is dedicated for embarrassingly parallel applica-
tions with no such precedence constraints and communi-
cations [37]. To the best of our knowledge, TAPADS and 
SHARP are the first two security-aware resource alloca-
tion strategies for real-time parallel applications running 
on clusters. The fundamental contributions of this paper 
include the following three aspects: 

Design and evaluation of two resource allocation 
schemes for real-time parallel jobs with security con-
straints running on homogeneous and heterogeneous 
clusters. Extensive experiments using synthetic work-
loads, traces, and real-world applications validate the 
effectiveness of the two security-aware resource alloca-
tion strategies.  

Proposition of a security overhead model that can be 
used to quantitatively measure security overhead in 
terms of computation time introduced by security ser-
vices.

Investigation of the impacts of heterogeneities on 
real-time performance and quality of security.  

The rest of the paper is organized as follows. We 
summarize related work and our new approach in the 
next section. Section 3 describes the system architecture 
and security overhead model. In Section 4, we propose 
the security-aware allocation scheme for homogeneous 
clusters. Section 5 presents the resource allocation scheme 
for security sensitive and real-time applications on het-
erogeneous clusters. Section 6 concludes the paper with 
summary and future directions. 

2 RELATED WORK AND OUR NEW APPROACH 

In this section, first we discuss related work on parallel 
job scheduling, cluster security techniques, and trade-offs 
between real-time performance and security. Next, we 
introduce our new approach to solving the security and 
real-time dilemma for security-critical real-time parallel 
applications.

2.1 Related Work  
Since allocation and scheduling parallel jobs onto a set of 
processors generally fall into the class of NP-complete 
problems [11], the scheduling problem modelled in this 
paper is NP-complete as well because it is essentially a 
general problem of scheduling parallel jobs onto a set of 
processors plus one more constraint in satisfying security 
requirements of parallel jobs. Thus, heuristic scheduling 
algorithms become practical solutions to the problem. 

The issue of allocating and scheduling real-time appli-
cations using heuristic approaches has been thoroughly 
studied [1][19][26]. Normally, the goal of these heuristic 
algorithms is to improve real-time performance by de-
creasing the number of jobs whose deadlines are missed. 
Hou and Shin proposed a resource allocation scheme for 
periodic tasks with precedence constraints in distributed 
real-time systems [12]. He et al. studied the problem of 
dynamic scheduling of parallel real-time jobs executing 
on heterogeneous clusters [10]. These schemes provide 
high schedulability for real-time systems. However, they 
are not suitable for security-sensitive real-time parallel 
applications due to their oversight and ignorance of secu-
rity requirements imposed by the applications. 

Security concerns on clusters attracted attentions from 
researchers in recent years. A vast variety of security 
techniques have been developed for clusters 
[3][6][17][23]. Connelly and Chien addressed the issue of 
protecting tightly coupled, high-performance component 
communication [6]. Apvrille and Pourzandi proposed a 
new security policy language named distributed security 
policy, or DSP, for clusters [3]. Although the above secu-
rity techniques are not developed for solving the issue of 
scheduling real-time applications, the security services 
that they provided can be exploited by security-critical 
real-time parallel applications to satisfy their security 
needs.

Since the utilization of security services causes extra 
overhead in terms of computation time, a security over-
head model that quantitatively measures security over-
head for commonly used security services is essential for 
a security-aware resource allocation scheme. Unfortu-
nately, the only previous work on measuring security cost 
was a preliminary method for defining the costs associ-
ated with network security services proposed by Irvine 
and Levin [16]. Even so, they only illustrated three simple 
security cost examples without offering a feasible security 
overhead measurement model. 

The closest work to this research reported in the litera-
ture was accomplished by Song et al. very recently [25]. 
They developed three risk-resilient strategies and a ge-
netic algorithm based scheme STGA (Space-Time Genetic 
Algorithm) to provide security assurance in Grid job 
scheduling. However, their algorithms cannot be applied 
on clusters for real-time parallel applications with secu-
rity requirements. First, their algorithms are unable to 
support real-time applications as Grid jobs can hardly 
have real-time constraints. Next, their algorithms only 
consider batch scheduling where jobs are independent 
from each other, and thus, cannot schedule parallel jobs 
where precedence constraints and communications 
among tasks within one job exist.  

2.2 Our New Approach   
Our work is built upon the related work on cluster secu-
rity, security overhead measurement, and real-time paral-
lel job scheduling. Since snooping, alteration, and spoof-
ing are three common attacks in cluster environments 
[23], we considered three security services, authentication 
service, integrity service, and confidentiality service, to 
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guard clusters. For example, snooping, an unauthorized 
interception of information, can be countered by confi-
dentiality services, which encrypt data by using crypto-
graphic algorithms so that a hacker cannot correctly in-
terpret the data [4]. We assume that the three security 
services are available to security-critical real-time parallel 
jobs submitted to a cluster where a security-aware re-
source allocation scheme is applied. How the three secu-
rity services are provided to parallel jobs can be found in 
our previous work [35][36].  Security services usually 
consume multiple computing resources like computation 
time, memory, bandwidth, and storage capacities. How-
ever, in real-time job scheduling, computation time is the 
most important security overhead because it delays jobs’ 
completion times, which in turn could violate their dead-
lines. Hence, we only consider security overhead in terms 
of computation time in this work, and leave the investiga-
tion of the impacts of rest types of security overhead on 
security-aware resource management in our future work. 
Thereafter, security overhead means computation time 
caused by security services.  

Two formats of security requirement specification, a 
single security level for each required security service and 
a security range for each required security service, are 
used in this work.  A security level is the strength or 
safety degree of a particular security service. Normally, a 
security level of a security service corresponds to a par-
ticular security mechanism because different security 
mechanisms provide distinct security strengths. Basically, 
a security level is a normalized value when setting the 
strongest security mechanism as 1. A security range is a 
scope that contains multiple distinct security levels for a 
particular security service. The lowest value in a security 
range indicates the minimal security strength mandated 
by the user, while the highest value implies the maximal 
security strength necessary for the user and all the values 
above should not be considered. The single security level 
format is suitable for situations where each job only de-
mands a baseline (minimal) security level for each secu-
rity service required, whereas the security range format is 
adequate for scenarios where a security level higher than 
the maximal value in the security range is not necessary 
for a job due to the job’s relatively low importance or the 
user’s tight budget. 

Parallel applications generally fall into two camps, 
non-embarrassingly parallel applications represented by 
DAGs and embarrassingly parallel applications. We con-
sidered both in this work with TAPADS for DAGs and 
SHARP for embarrassingly parallel applications. Each 
parallel application consists of multiple tasks that share a 
common deadline, which is the deadline of the entire ap-
plication. Each task in an application demands an array of 
security services with different levels. For security re-
quirements in a security range format, TAPADS verifies 
whether the application’s deadline can be met with all its 
tasks’ minimal security levels for all required security 
services satisfied. If so, TAPADS further optimizes the 
tasks’ security levels within the security range under the 
condition that the security level enhancements will not 
result in the application’s deadline to be violated. Other-

wise, the job will be dropped because its execution is un-
safe. For each task, SHARP discovers all computing nodes 
that can meet its deadline. If no such node can be found 
for a task, the entire application will be aborted. If each 
task has one or multiple nodes that can meet the applica-
tion’s deadline, SHARP assigns the task onto a node that 
can minimize the degree of security deficiency. 

3 PRELIMINARIES   

We describe in this section mathematical models, which 
were built to represent a resource allocation framework 
and security overhead. For future reference, we summa-
rize notations used in this study in Table 1. 

3.1 Resource Allocation Architecture  
As depicted in Fig. 1, a cluster is comprised of m nodes 
connected via a high-performance network to process 
parallel applications submitted by users. Note that 
throughout this paper the terms application and job are 
used interchangeably. Let Y = {y1, y2, …, ym} denote the set 
of m nodes in a cluster. Each node communicates with 
other nodes through message passing, and the communi-
cation time between two tasks assigned to the same node 
is assumed to be negligible. Note that the communication 
subsystem, an underlying communication infrastructure 
of a cluster, supports messages with time constraints, 
meaning that the worst-case link delay is predictable and 
bounded. Examples of such real-time communication 
subsystems can be found in the literature [38]. Addition-
ally, the communication subsystem considered in our 
study provides full connectivity in a way that any two 
nodes are connected through either a physical link or a 
virtual link. This assumption is arguably reasonable for 
modern interconnection networks (e.g. Myrinet [29]) that 
are widely used in high-performance clusters. 

The resource allocation architecture consists of a secu-
rity-aware task allocator, an admission controller, and a 
real-time scheduler. The security-aware task allocator is 
intended to generate resource allocation decision for each 
task of a parallel application, satisfying both security and 
real-time requirements. The admission controller is de-
ployed to perform feasibility checks by determining if 
arriving parallel applications can be completed by a clus-
ter before their specified deadlines. An application will be 
admitted into the system if its deadline can be met. The 
scheduler is to satisfy timing requirements of parallel ap-
plications by assigning high priorities to jobs with early 
deadlines.

3.2 Security Overhead Model   
For each security service, we assume that there are sev-
eral alternative security methods or algorithms, which 
can be used to accomplish the service. More precisely, we 
assume that three authentication methods HMAC-MD5, 
HMAC-SHA-1, and CBC-MAC-AES are available for us-
ers to select to fulfil the authentication service. Similarly, 
we assume that seven hash functions (MD4, MD5, 
RIPEMD, RIPEMD-128, SHA-1, RIPEMD-160 and Tiger) 
and eight encryption algorithms (SEAL, RC4, Blowfish, 
Knufu/Khafre, RC5, Rijndael, DES and IDEA) are pro
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TABLE 1. DEFINITIONS OF NOTATIONS
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vided for users to realize the integrity service and the con 
fidentiality service, respectively. In what follows, we first 
give a general expression of our security overhead model. 
Next, we use the integrity service as an example to show 
how we assign security levels to different security 
mechanisms and how we calculate security overhead for 
each security service. Last, we justify the feasibility of our 
security overhead m 
odel.

We assume that task ti requires all of the three security 
services provided in a sequential order. Let  and 

ii be the security level and the overhead of the jth (j
{a, e, g}) security service, the security overhead ci ex-

perienced by ti, can be computed using (1). 
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The performance of the seven hash functions is listed 
in Table 2. For example, 23.90 KB/ms means for every 
millisecond the hash function MD4 can process 23.90 KB 
data. Based on its performance, each function is assigned 
a security level in the range from 0.18 to 1.0. We assign 
security level 1 to the strongest yet slowest hash function 
Tiger, and security levels for the other hash functions can 
be calculated by (2), where  is the performance of the 
ith (1 i  7) hash function. 

g
i

                     .71,36.4 is g
ii

For example, the security level of hash function RIPEMD 
is 0.36 because 4.36/12 is about 0.36. Let i  be the integ-
rity security level of task ti, and the overhead of the integ-
rity service can be calculated using (3), where li is the 
amount of data whose integrity must be achieved, and 

i is a function used to map a security level to its 
corresponding hash function’s performance. 
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KB/ms when the input i  is 1. Similarly, let i  be the confi-
dentiality security level of task ti, and the computation overhead 
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Notation Definition Notation Definition

T A set of n non-preemptable real-time tasks E A set of weighted and directed edges representing 
 communications among tasks in T

p Period, a constant time interval between two succes-
sive job instances of a parallel application J J A non-embarrassingly parallel application, J = (T, E, p)

ti The ith task in the task set T (1 i < n) ei The execution time of ti  without security overhead
li The amount of security-sensitive data (KB) of task ti Si The security requirement vector of task ti
j
iS

)jis

An element of Si, the security level range of the jth
security service required by ti

j
is

The security level of the jth (j {a, e, g}) security service 
required by task ti

(jic
The security overhead of the jth (j  {a, e, g}) security 
service imposed by task ti

)( g
i

g s A function mapping an integrity security level to its cor-
responding hash function’s performance

)eis(
e A function mapping a confidentiality security level to its 

corresponding encryption algorithm’s performance
)( a

i
a s A function mapping an authentication security level to its 

corresponding authentication method’s performance
a, e, g Authentication, Confidentiality, Integrity mk The kth computing node in a cluster

eij
The volume of data transmitted between task ti (on 
node mk) and task tj (on node ma)

bka The bandwidth between node mk and node ma

SL(si) The security benefit of task ti (see 5) SV(T,E) Security Value, the total security benefit gained by a 
parallel application J (see 12)

PSD(X) The probability that all tasks meet deadline constraints 
under an allocation scheme X (see 23) PSC(X) QSA, the quality of security of application J under an 

allocation scheme X (see 31)
PC(X) The probability that all tasks are free from being at-

tacked under an allocation scheme X (see 26) PL(X) The probability that messages are risk-free under an 
allocation scheme X (see 30)

HC The computational heterogeneity of an embarrassingly 
parallel application (see 33) HV The heterogeneity in security services of the cluster (see 

38)

DSD(T,X) The sum of security deficiency values of all tasks in an 
embarrassingly parallel application (see. 44) Prf Risk-free probability of a heterogeneous cluster (see 53) 

j
iw The weight of the jth security service for task ti (see 5) j

i
Risk rate caused by the jth security service required by 
task ti (see 24)
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                                                Fig. 1. Security-aware resource allocation architecture. 
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of a selected confidentiality service can be calculated using (4), 
where li is the amount of data whose confidentiality must be 
guaranteed, and i  is a function used to map a security 
level to its corresponding encryption method’s performance. 
The function i was defined in Table 1 Cryptographic Al-
gorithms for Confidentiality in our previous work [33], where 
the performance and the security levels of the eight encryption 
algorithms were summarized. 
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Since the security overhead of a particular authentica-
tion method is a constant value, the security overhead of 
authentication service is equal to its perform-
ance

i
. The function can be derived from 

the Table 3 in [33]. 
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TABLE 2. HASH FUNCTIONS FOR INTEGRITY 

Hash Functions s :Security Level  )( g
i

g s :KB/ms

MD4 0.18 23.90

MD5 0.26 17.09

RIPEMD 0.36 12.00

RIPEMD-128 0.45 9.73

SHA-1 0.63 6.88

RIPEMD-160 0.77 5.69

Tiger 1.00 4.36

In fact, how to quantitatively measure security is still 
an open question [5][16][18][22] and is out of the scope of 
this paper. The security model used in this paper is only a 
step towards finding a way to quantitatively approximate 
relative strength of some commonly used security 
mechanisms. We believe that our model is reasonable in 
this research due to the following three reasons. First, the 
fundamental assumption of our security overhead model 
is valid. Our assumption is that people only accept a 
slower security mechanism if and only if it can provide a 
higher level security compared with its faster peers. Al-
though the strength of some cryptographic schemes could 
be orthogonal to their processing overhead, this assump-
tion is generally safe because many security mechanisms 
can achieve a higher amount of security by doing more 
computations [5]. For example, the strength of encryption 
schemes depends on the size of the key and the number 
of encryption rounds [21]. Larger key sizes or number of 
rounds result in higher levels of security at the cost of 
additional computation time [5]. Therefore, the way we 
assign different security mechanisms with distinct secu-
rity levels based on their performance is reasonable. Sec-
ond, although the measurements of security requirements 
and security levels are not completely objective, the im-
provements of our TAPADS and SHARP algorithms 
compared with the existing approaches in terms of secu-
rity are still valid because all algorithms were evaluated 
by using the same set of security calculation criteria un-
der the same circumstance. Third, quantitatively model-
ing security requirements and security levels makes it 
possible for us to compare the security performance of 
different algorithms and perceive the differences among 
them. 

4 SECURITY-AWARE RESOURCE ALLOCATION 
SCHEME FOR HOMOGENEOUS CLUSTERS

4.1 Task Model  

4.1.1 Deadline and Precedence Constraints 
Applications with dependent real-time tasks can be mod-
elled by Directed Acyclic Graphs (DAGs) [15].  Through-
out this paper, a parallel application is defined as a vector
J = (T, E, p), where T = {t1, t2,...,tn} represents a set of non-
preemptable real-time tasks, E is a set of weighted and 
directed edges used to represent communication among 
tasks, e.g., (ti, tj) E is a message transmitted from task ti

to tj, and p is the period, a constant time interval between 
two successive job instances of the parallel application J.
Precedence constraints of the parallel application is repre-
sented by all the edges in E. Communication time for 
sending a message (ti, tj) E from task ti on node mk to 
task tj on node ma is determined by eij/bka, where eij is the 
volume of data and bka is the bandwidth between mk and 
ma. A task is characterized by three parameters, e.g., ti = 
(ei, li, Si), where ei is the execution time, li denotes the 
amount of data (measured in KB) to be protected, and Si

is a vector of security requirements (see section 4.1.2.). 
Note that ei can be estimated by code profiling techniques 
and it does not include security overhead. 

This study is focused on the issue of allocating peri-
odic jobs on clusters. A parallel application generates a 
sequence of job instances iii  where i must 
be finished before can start executing. Note that 
there is a constant interval between two consecutive job 
instances. The deadline of is the arrival time of the 
next task instance. Although the arrival time of a task 
instance is not explicitly specified in the model, the arri-
val time can be determined when the task instance is re-
leased dynamically during the system execution. It has 
been proved that there exists a feasible schedule for a set 
of periodic tasks if and only if there is a feasible schedule 
for the planning cycle of the tasks [12]. Note that the plan-
ning cycle is the least common multiple of all the tasks’ 
periods. Thus, the behaviour of the set of periodic tasks 
can be effectively analysed within the planning cycle. 

...,,, 210 JJJ jJ
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4.1.2 Security Constraints 
A collection of security services required by task ti is 
specified as Si = ( , , …, ), where i represents 
the required security level range of the jth security ser-
vice. Our allocation schemes aim at determining the most 
appropriate point si in space Si, e.g., si = ( i , i , …, i ), 
where  1 j q.  A real-world example of real-
time applications with various levels of security require-
ments was illustrated in [32]. 

1
iS
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In an effort to maximize quality of security, the re-
source allocation schemes have to measure security bene-
fits gained by a parallel application. We model the secu-
rity benefit of the ith task in T as a security level function 
denoted by SL: Si , where  is the summation of a set 
of positive real numbers: 

                             ,                            (5) 
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j
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Note that  is the weight of the jth security service for 
the task. Users specify in their requests the weights to 
reflect relative priorities given to the required security 
services. The security benefit of a task set is computed as 
the summation of the security levels of all the tasks. Thus, 
we have:

q
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We can obtain the following non-linear optimization 
problem formulation for a task set T:

                       maximize ,                     
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where and are the minimum and maxi-
mum security requirements of task ti.
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An array of security services required by message (ti,
tj) E is specified as , where denotes

the required security level range of the kth security ser-
vice. The most appropriate point  in space  has to be 

calculated, e.g.,  , where  1 j q

We model the security benefit of the message as the fol-
lowing function: 

ˆ,...,ˆ,ˆ(ˆ 21 p
ijijijij SSSS k

ijŜ
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Note that weight 
ij

reflects relative priorities of the 
kth required security service. The security benefit of a 
message set is calculated as the summation of the security 
levels of all the messages. 
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computed as follows:  
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mum security requirements of the message.  
)ˆmin( k

ijS )ˆmax( k
ijS

Now we can define an optimization problem formula-
tion to compute an optimal security benefit of a parallel 
application, subject to certain timing and security con-
straints:

                 maximize SV(T,E)=SL(T)+SL(E).                 (11) 
Substituting (7) and (10) into (11) yields the following 

security value objective function  
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4.2 The TAPADS Algorithm  
This section presents a resource allocation algorithm 
(TAPADS) for homogeneous clusters. Let X be an m by n
binary matrix corresponding to an allocation, in which n
tasks are assigned to m nodes in the cluster. Element xij

equals to 1 if and only if ti has been allocated to node mj;
otherwise xij = 0. 

The algorithm outlined in Fig. 2 aims at achieving high 
security under two conditions: (1) increasing security lev-
els will not result in missing deadlines; and (2) prece-
dence constraints are satisfied. To meet deadline and 
precedence constraints, TAPADS assigns tasks to nodes 
in a way to maximize security measured by PSC(X), which 
is the probability that all tasks are executed without any 
risk of being attacked and all messages are risk-free dur-
ing the course of transmissions. Further, TAPADS can 

1. Sort and renumber tasks so that if (ti, tj) E then i < j;
2. Compute the critical path of the task graph; 

3. Calculate the tentative finish time, , where ei is the computation time of task ti, and is the secu-
rity overhead of task ti when the minimal security requirements of ti are met. 

path critical

min )(
it

ii cef min
ic

4. Allocate and schedule all ti in the critical path subject to minimal security requirements; 
5. Allocate and schedule all ti critical path subject to precedence and minimal security constraints; 
6. Obtain slack time, slk = d – f, where d is the deadline;  
while (slack time  0) do
       7.1    select i' and j’ subject to         
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       7.5    update task allocation, e.g., start times of tasks and messages; 
       7.6    update slack time based on the increased security level; 
end while

Fig. 2. The TAPADS algorithm. 
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maintain a high schedulability measured by PSD(X),
which is the probability that all tasks are timely com-
pleted. Note that PSC(X) and PSD(X) will be derived in Sec-
tion 4.3. 

Before optimizing the security level of each task and 
message of a job, TAPADS makes the best effort to satisfy 
the deadline and precedence constraints. This can be ac-
complished by calculating the earliest start time and the 
minimal security overhead of each task and message in 
Steps 4 and 5. If the deadline can be guaranteed provided 
that the minimal security requirements are met, the slack 
time of the initial allocation can be obtained by Step 6. 

kˆ and

To efficiently improve the quality of security of the job, 
in Step 7 TAPADS chooses the most appropriate task or 
message in which the security level will be increased. 
Specifically, it is desirable to give higher priorities to se-
curity services with higher weights and lower security 
overhead. Hence, we define the following two benefit-
cost ratio functions, e.g., 

iji
, which measure the 

increase of security level by unit security overhead. 
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where the numerators represent the weighted increase in 
the security level, whereas the denominators indicate the 
corresponding increase in security overhead. 

After performing Steps 7.1 and 7.2, TAPADS identifies 
the best candidate in T E that has the highest benefit-cost 
ratio. Formally, the best candidate is chosen based on the 
following expression, 
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To yield a maximized security level of the job, Steps 7.3 
and 7.4 are responsible for increasing security levels of 
more important services at the minimal cost. Thus, the 
slack time is distributed on a task or message with the 
highest benefit-cost ratio. Step 7.5 updates the task alloca-
tion in accordance with the increased security level, be-
cause start times of other tasks and messages are depend-
ent of how the slack time is distributed. Finally, step 7.6 
updates the slack time. 
Theorem 1. The time complexity of TAPADS is 
O(k(q|T|+p|E|)), where k is the number of times Step 7 is 
repeated, q is the number of security services for computation, p 
is the number of security service for communication. |T| is the 
number of nodes (tasks) in a DAG and |E| is the number of 
directed edges in a DAG.
Proof. The time complexity of allocating and scheduling 
tasks subject to precedence and minimal security con-
straints is O(|T|+|E|) (Steps 1-6). To effectively boost 
security levels of tasks and messages under the con-
straints (Steps 7.3-7.4), it takes time O(|T|+|E|) to select 
the most appropriate task or message as a candidate 
whose quality of security will be improved. The time 
complexity of step 7 becomes O(k(q|T|+p|E|)). Thus, the 
time complexity of TAPADS is: O(|T|+|E|) + 
O(k(q|T|+p|E|)) = O(k(q|T|+p|E|)).                                

k cannot be very big number in practice, because k in 

many cases is much smaller than |T|+|E|. Therefore, the 
time complexity of TAPADS is reasonably low based on 
the expression above

4.3 Evaluation of Timeliness and Security Risks   
In this section, we first explain a way in which tasks are 
allocated to nodes subject to precedence constraints. 
Then, we derive the probability PSD(X) that all tasks meet 
their deadline constraints. Finally, we calculate the prob-
ability PSC(X) that all tasks and messages are risk-free 
during the execution of the job. It is to be noted that 
PSD(X) and PSC(X) help in evaluating the performance of 
our algorithm in Section 4.4. 

4.3.1 Task and Message Scheduling  
The proposed allocation scheme relies on the way of 
scheduling tasks and messages, which in turn depend on 
the values of two important parameters: (1) est(t), the ear-
liest start time for task t, and (2) eat(t), the earliest avail-
able time for t. Although both est(t) and eat(t) indicate a 
time when task t's precedence constraints have been met 
(i.e. all messages from t’s predecessors have arrived), 
est(t) additionally signifies that node m(t) (to which t is 
allocated) is now available for t to start execution. Thus, 
est (t) eat(t), and at time eat(t) node m(t) may not be 
ready for t to execute.  In what follows, we derive the ex-
pressions of eat(t) and est(t) needed for scheduling tasks 
and messages. 

If task ti had only one predecessor task tj, then the ear-
liest available time eatk(tj, ti) on the kth node is given by 
the following expression, where f(tj) is the finish time of tj,
mstuv(tj, ti) is the earliest start time of message (tj, ti), dji is
the data volume, Buv is the network bandwidth, and dji/Buv

is the transmission time for the message. Note that tj and 
ti are allocated to the uth and vth nodes. 

otherwise            ),(
)() if                           )(

),(
uvjiijuv

jij
ijk Bdttmst

tmm(ttf
tteat (16)

mstuv(tj, ti) depends on how the message is scheduled 
on the links. A message is allocated to a link if the link has 
an idle time slot that is later than the sender’s finish time 
and is large enough to accommodate the message. Task ti

must wait until the last message from all its predecessors 
has arrived. Hence, the earliest available time of ti is the 
maximum of eatk(tj, ti) over all its predecessors.

                      )}.,({max)(
),( ijkEttik tteatteat
ij

              (17)

With (17) in place, we can obtain the earliest start time 
estj(ti) on the jth node by checking if the node has an idle 
time slot that starts later than task’s eatj(ti) and is large 
enough to accommodate the task. estj(ti) is a parameter 
used to derive est(ti), the earliest start time for the task on 
any node. Expression for est(ti) is given below. 

                        )}.({min)( ijMMi testtest
j

                (18) 

4.3.2 Calculation of PSD(X)
We now calculate the probability that all tasks meet dead-
line constraints under allocation X. It is worth noting that 
the initial allocation of X must satisfy the following tim-
ing constraint property: 
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where est(ti) is the time obtained from expression (18), d is 
the deadline, i is the computation time, and is the 
security overhead when the minimal security require-
ments are met.  can be calculated by the following 
equation:  
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Based on an initial task allocation, the scheme judi-
ciously raises security levels of tasks and messages pro-
vided that the following property is satisfied. 
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The allocation X is feasible if all tasks can be com-
pleted before the deadline. Therefore, the probability 
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Under allocation X, the probability that all tasks are 
timely completed can be computed as: 

ksall
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where the security level vector is represented as 
),,...,,( 21 knkkk ssss and pk is the probability that the se-

curity level vector is k

je

s .

4.3.3 Calculation of PSC(X)
The quality of security of a task ti with respect to the jth
security service is calculated as ii , where  is a 
risk rate (see 24) and ei is the execution time. 

)exp( j
i

                        )1(exp1 j
ii

Note that this risk rate model assumes that a risk rate 
is a function of security levels, and the distribution of 
risk-count for any fixed time interval is approximated 
using a Poisson probability distribution. The risk rate 
model is for illustration purpose only, and the model can 
be replaced by any risk rate model with a reasonable pa-
rameter  (  is set to 0.002 in our experiments).  
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The quality of security of ti can be obtained below by 
considering all security services. Thus, 
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Given an allocation X, the probability that all tasks are 
free from being attacked during the execution of the tasks 
is computed based on (25). Consequently, we have: 
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Likewise, for the kth security service available for a 
link between Mi and Mj, the quality of security of the link 

during the time interval t is , where  de-

notes the risk rate. Without loss of generality, the risk rate 
is expressed as the following function of the correspond-
ing security level. 

)ˆexp( tkij
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The quality of security of a message Etb ),(  is cal-
culated by taking all security services provided to the 
message into account. Thus, 
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where xai=1, xbj=1.
Given an allocation X, the probability that all messages 

allocated to the link between Mi and Mj are risk-free is 
computed as the product of the quality of security of all 
the messages. Then, we have: 
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Let PL(X) be the quality of security of all links under al-
location X, and PL(X) can be written as: 
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Finally, the probability PSC(X) can be calculated as fol-
lows, where PC(X) and PL(X) are obtained from (26) and 
(30).

                             )()()( XPXPXP LCSC                    (31) 

4.4 Performance Evaluation    
To demonstrate the strength of TAPADS, we compare it 
with the LIST algorithm, a well-known scheduler for par-
allel applications. To make the comparisons fair, we 
slightly modified LIST into three variants: LISTMIN, 
LISTMAX, and LISTRND, in a way that these schemes 
can meet parallel applications’ security requirements in a 
heuristic manner. However, these three algorithms make 
no effort to optimize quality of security. We believe that 
comparing TAPADS with the three non-security-aware 
scheduling policies is meaningful because this way the 
security improvements brought by a security-aware 
scheduler can be clearly noticed. The three baseline algo-
rithms are follows. 
(1) LISTMIN:  The scheduler intentionally selects the low-
est security level of each security services required by 
each task of a parallel job.  
(2) LISTMAX: The scheduler chooses the highest security 
level for each security requirement posed by each task 
within a parallel job.  
(3) LISTRND: Unlike the above two baseline algorithms, 
LISTRND randomly picks a value within the security 
level range of each service required by a task.  

4.4.1 Simulator and Simulation Parameters  
Some preliminary results of this part of the study have 
been presented in [34]. A simulator was designed and 
implemented based on the model and the algorithm de-
scribed in the previous sections. Table 3 summarizes the 
key configuration parameters of the simulated clusters. 
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The parameters of nodes are chosen to resemble real-
world workstations like Sun SPARC-20 and Sun Ultra 10. 

TABLE 3. CHARACTERISTICS OF SYSTEM PARAMETERS 

Parameter Value (Fixed) - (Varied) 

CPU Speed 100 million instructions/second  

Network bandwidth  100 Mbps 

Number of nodes (32, 64,128, 256), (8, 12, 16, 20) 

Required security services Confidentiality, Integrity, and  
Authentication

Weight of security services 0.2 (authentication), 0.5 (confi- 
dentiality), 0.3 (integrity)

Since there is no widely accepted benchmark graph for 
the scheduling of parallel jobs represented by DAGs [15], 
we use random graphs with diverse parameters to test the 
performance of the TAPADS algorithm. The synthetic 
parallel job used for Sections 4.4.2 was created by TGFF 
[7], a randomized task graph generator. We believe that 
random graphs with different parameters can approxi-
mate various types of real-world parallel applications. 
Section 4.4.3 validates the experimental results from syn-
thetic task graphs by using a real-world application – 
digital signal processing system (DSP) [31]. In a random 
task graph, the computational time (security overhead is 
not included) of each node (task) was randomly selected 
from a triangular distribution. Similarly, the size of secu-
rity-required data generated by a task was arbitrarily 
chosen from a triangular distribution. Based on our ob-
servations on practical parallel jobs, the majority of tasks 
in a parallel job have a very similar execution time, while 
only a few tasks have either a very short execution time 
or a quite long execution time. The maximal number of 
out degrees in a task graph was set to 25. The number of 
in degrees is randomly selected from a uniform distribu-
tion in the range [1, 10]. 

The performance metrics by which we evaluate system 
performance include: Security Value (see 12); QSA: the 
quality of security for applications (see 31); Guarantee fac-
tor: it is zero if a job’s deadline cannot be met. Otherwise, 
it is one; and Job completion time: earliest time that a job 
can finish its execution. 

4.4.2 Scalability   
This experiment is intended to investigate the scalability 
of our algorithm. We scale the number of nodes, or PEs, 
in the cluster from 32 to 256. Note that PE (Processing 
Element) and node are interchangeable throughout this 

paper. We used a task graph with 520 tasks, and the 
deadline is set to 400 seconds. Fig. 3 plots the perform-
ances as functions of the number of nodes in the cluster. 

(c) (b)(a)

                                           Fig. 3. Performance impact of number of nodes. 

The results show that TAPADS exhibits good scalabil-
ity. It is observed from Fig. 3a that the amount of im-
provement over LISTMIN becomes more prominent with 
the increasing value of node number. This result can be 
explained by the conservative nature of LISTMIN, which 
merely meets the minimal security requirements for jobs. 
Conversely, LISTMAX can only achieve the same per-
formance as TAPADS when there are 256 nodes. This is 
because LISTMAX only guarantees the maximal security 
requirements of jobs when more nodes are available. We 
observe from Fig. 3c that all four algorithms can finish the 
job in a shorter time period when more nodes are avail-
able.

4.4.3 Evaluation in Real Application    
To validate the results from the synthetic task graphs, we 
evaluated the TAPADS scheme using a real system – digi-
tal signal processing system (DSP) [31]. Fig. 4 shows the 
impact of deadlines on these schemes, and Fig. 5 reveals 
the scalability of the four algorithms. Figures 4 and 5 

(c) 

                                       Fig. 4. Performance impact of deadline for DSP. 

(b)(a)
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(c) (b)(a)

                                                Fig. 5. Performance impact of number of nodes for DSP. 
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demonstrate that TAPADS can gain performance im-
provements in a real system. The strength of TAPADS 
can be fully exhibited when the application has a rela-
tively tight deadline. When the deadline is loose, 
TAPADS reduces to LISTMAX. It is suggested that 
TAPADS can significantly improve security value and 
QSA without increasing hardware cost when applications 
have tight deadline requirements. 

5 SECURITY-AWARE RESOURCE ALLOCATION FOR 
HETEROGENEOUS CLUSTERS

TAPADS presented in the previous section can signifi-
cantly improve the performance of homogeneous clusters 
in terms of security and schedulability. However, the 
TAPADS scheme has no inherent capability of supporting 
heterogeneous clusters because it assumes that all nodes 
in a cluster are identical in terms of computation capacity. 
This assumption is not always valid in reality. Still, there 
are many heterogeneous clusters [10][20] on which paral-
lel jobs with real-time and security requirements are run-
ning. In a heterogeneous cluster, the computation capaci-
ties of computing nodes are diverse. As a result, the exe-
cution time of a task ti in a heterogeneous cluster is a vec-
tor of values rather than one fixed value. Similarly, the 
security overhead of task ti is also decided by which com-
puting node it is assigned. These two new challenges in 
the forms of computational heterogeneity and security 
heterogeneity prevent TAPADS from being applied in 
heterogeneous clusters. In this regard, we are motivated 
to introduce the concept of security heterogeneity, and to 
propose a heterogeneity-aware resource allocation algo-
rithm to improve security of real-time parallel applica-
tions running on heterogeneous clusters. 

5.1 Modeling Computational Heterogeneity and 
Security Heterogeneity   

We consider a class of embarrassingly parallel applica-
tions (see [30] for some examples) each of which can be 
envisioned as a set of tasks without any interaction be-
tween one another. An application is modeled as a tuple 
(T, a, f, d, l), where T = {t1, t2, ..., tn} represents a set of n
tasks, a and f are the arrival and finish times, d is the 
specified deadline, and l denotes the amount of data 
(measured in MB) to be protected. Each task ti T is la-
beled with a pair, e.g., ti = (Ei, Si), where Ei and Si are vec-
tors of execution times and security requirements for task 
ti. The execution time vector denoted by Ei = ( , , …, 

i ) represents the execution time of ti on each node in the 
cluster. Each task of a parallel application requires a set of 
security services providing various security levels, which 
are normalized in the range from 0.1 to 1.0. Suppose ti  T
requires q security services, Si = ( is , i ,…, i ), a vector of 
security levels, characterizes the security requirements of 
the task. The impacts of these two heterogeneities on sys-
tem performance and security will be investigated in Sec-
tion 5.4.3. 

1
ie 2

ie
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Let i  denote the computational weight of task ti on 
node mj. i  is computed as a ratio between its execution 
time on mj and that on the fastest node in the cluster. The 
computational heterogeneity level of ti, referred to as i ,
is quantitatively measured by the standard deviation of 
the computational weights. That is,  is expressed as: 
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The computational heterogeneity of a parallel applica-
tion with task set T is calculated as: 
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Besides computation heterogeneity, a cluster may ex-
hibit security heterogeneity. Each node provides an array 
of security services measured by security levels normal-
ized in the range from 0.1 to 1.0. Security services pro-
vided by node mj is characterized as a vector of security 
levels, Pj = (

j
,

j
, …, 

j
), where

j
 (1  k  q) is the 

security level of the kth security service provided by mj.
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Given a task ti and its security requirement Si = 
( is , i ,…, i ), the heterogeneity of security requirement 
for ti is represented by the standard deviation of the secu-
rity levels in the vector. Thus, 

1 2 q

                      q

j

j
i

avg
i

S
i ss

q
H

1

21 ,                   (34) 

where nss
q

j

j
i

avg
i

1

.

The security requirement heterogeneity of a parallel 
application with task set T is computed by: 
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The heterogeneity of the kth security service in a het-
erogeneous cluster is expressed as: 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



XIE AND QIN:  SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND HETEROGENEOUS CLUS-
TERS 11

                       n

i

k
i

k
avg

V
k pp

n
H

1

21 ,              (36) 

where npp
n

i

k
i

k
avg

1

.

Similarly, the heterogeneity of security services in 
node mj is expressed as: 
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Using (36), the heterogeneity in security services of the 
cluster can be computed as: 
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Now we consider heterogeneity in security overhead. 
As before, the following model account for three security 
services, including confidentiality, integrity, and authen-
tication [33]. Let i  and 

iij
 be the security level and 

overhead of the kth security service, the security overhead 
ij  experienced by ti on node mj can be computed using 

(39) and (40). 
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where , , and  are overheads caused 

by the authentication, confidentiality, and integrity ser-
vices. Finally, the security overhead of a task set T is cal-
culated by: 
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5.2 The SHARP Algorithm    

5.2.1 Problem Formulation     
We introduce a closed form expression for the security 
benefit of task ti. Thus, the security benefit of ti is meas-
ured by Security Deficiency (SD), which is quantified as the 
discrepancy between requested security levels and of-
fered security levels. The SD value of the kth service is 
defined as: 
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where ti is allocated to mj.
For the kth security service, a small SD value indicates 

a high degree of service satisfaction. A zero SD value im-
plies that ti’s requirement placed on the kth security ser-
vice can be perfectly met. The SD value of ti on mj can be 
derived from (43). Thus, the SD value of ti is computed as 
a weighted sum of the SD values of q required security 
services. Formally, we have: 
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Likewise, the security benefit of a parallel application 
with task set T is measured by Degree of Security Deficiency 
(DSD), which is defined as the sum of the security defi-
ciency values of all the tasks in the task set. Consequently, 
the DSD value of task set T under allocation X can be 
written as: 
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Let X be the schedule for all the tasks in task set T. The 
following objective function needs to be minimized, 
meaning that the degree of security deficiency of T is op-
timized.
    minimize  (45) ,,),(
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subject to fi d and  if ti is allo-

cated to node mj, where fi is the finish time of the ith task 
in the task set. 
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Given a heterogeneous cluster and a sequence of sub-
mitted parallel applications, the SHARP algorithm is in-
tended to minimize the cluster’s overall DSD value de-
fined as the sum of the degree of security deficiency of all 
the submitted applications. Finally, we can obtain the 
following non-linear optimization problem formulation 
for the heterogeneous cluster, subject to the timing con-
straints:

                         minimize                (46) .),(
T all

XTDSD

Thus, SHARP is designed to minimize the average de-
gree of security deficiency. 
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where Psd(T) is a step function, 
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The earliest start time  can be computed as: j
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where  is the current time, and 
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the overall execution time (security overhead is factored 
in) of all tasks with earlier deadlines than d. If task ti is 
running on node mj, the start time  is the earliest avail-
able time of ti on mj.

j
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5.2.2 Algorithm Description 
The SHARP algorithm is outlined in Fig. 6. The goal of 
the algorithm is to deliver high quality of security under 
two conditions: (1) deadlines of submitted parallel appli-
cations are met; and (2) the degree of security deficiency 
(see 44) of each admitted parallel application is mini-
mized.

l
ijc

Before reducing the security deficiency value of each 
task of a parallel application, SHARP makes an effort to 
meet the timing constraint of the application. This can be 
accomplished by calculating the earliest start time and the 
security overhead of each task (see 39) in Steps 5 and 6, 
followed by checking if all the tasks of the application can 
be completed before its deadline d (see Step 7). If the 
deadline of a task in the application can not be met, the 
application is rejected by Step 16. 

The security deficiency value of each task in the appli-
cation is minimized in the following way. Step 7 is in-
tended to identify a set of candidate nodes satisfying the 
timing constraint. Steps 9-11 are used to choose a node 
with the minimal security deficiency among the candidate 
nodes. Thus, SHARP eventually allocates each task to a 
node that can reduce security deficiency while meeting 
the real-time requirement of parallel applications. 
Theorem 2. The time complexity of SHARP is O(mnq), where 
m is the number of nodes in a cluster, n is the number of tasks 
in a parallel application, and q is the number of security ser-

vices.
Proof. Selecting a parallel application with the earliest 
deadline takes constant time O(1). The time complexity of 
finding the security overhead of each task on a node is 
O(q) (Step 6), since SHARP considers q security services. 
The time complexity of feasibility checking is a constant 
O(1) (Step 7). Since there exist m nodes and n tasks, Steps 
5-13 are executed for mn times. Therefore, the time com-
plexity of Steps 2-17 is bounded by O(mnq). Steps 18-22 
take O(n) time to allocate n task to m nodes in the cluster. 
Thus, the time complexity of SHARP is O(1+nmq+n) = 
O(nmq).                                                                                      

1. Select a parallel application, which has the earliest deadline
    among applications in the arrival queue; 
2. for each task ti of the application chosen in step 1 do
3.       Initialize the security deficiency of task ti, SDi ;
4. for each node mj in the heterogeneous cluster do
5.           Use (48) to compute j

i
5.3 Evaluation of Security Risks 

6.        Calculate ti’s security overhead 
Now we derive the probability Prf(ti,mj) that ti remains 
risk-free during the course of its execution on node mj. It 
is to be noted that the risk-free probability can be used as 
a complementary means of quantifying the quality of se-
curity. The risk-free probability of task ti with respect to 
the kth service is: 
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)(exp                        SD(si, Pj) of task ti on node mj;

9.                  if SD(si, Pj) < SDi then
where i  is the risk rate (see 24), and  is the 
security overhead. 

k )( l
is10.                          SDi SD(si, Pj);

11.                           xij  1; k  j: xik  0;
12.         end if 
13.     end if     The risk-free probability of task ti on node mj can be 

written as (50), where all security services provided to the 
task are considered. Thus, we have: 

14.   end for
15.   if no feasible schedule is available for ti then
16.          Reject the parallel application;  
17.  else
18.          Record the start time and the finish time of task ti on
                node mj where xij=1; 
19.          Update the schedule on node mj where xij=1;
20.  end if 
21. end for
22. if all the tasks  of the parallel application can be finished    
      before deadline d then 
23. for each task ti of the parallel application do
24.           allocate task ti to node mj , subject to 1  j  n, xij = 1; 
25. end for
26. end if

Fig. 6. The SHARP algorithm. 
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Using (50), we can write the overall risk-free probabil-
ity of task ti in the cluster as: 
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where pij is the probability that ti is allocated to node mj,

and . Given a parallel 

application with task set T, the probability that all tasks 
are free from being attacked during their executions is 
computed based on (51). Consequently, the risk-free 
probability of the task set can be computed as below: 
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Finally, we can calculate the average risk-free probabil-
ity of all schedulable parallel applications on a heteroge-
neous cluster using (53), where Psd(T) is a step function, 

and . It is 
otherwise,0

completed timely becan  if,1
)(
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worth noting that the SHARP approach is conducive to 
maximizing the risk-free probabilities of heterogeneous 
clusters. As we explained in Section 5.2.2, for each task ti,
Steps 9-11 of SHARP (see Fig. 9) choose a node with the 
minimal security deficiency among the candidate nodes. 
Therefore, a node who can best meet ti’s security level 
requirements will be selected by SHARP as the destina-
tion node for ti (see 42). Consequently, ti will be executed 
with its required security levels or with higher security 
levels close to its requirements. In other words, the ob-
tained security levels of ti will be maximized. Based on 
(24), a higher security level for the jth security service 
implies a lower risk rate . A lower risk rate indicates a 
higher risk-free probability (see 49, 50, and 51), which in 
turn results in a higher risk-free probability of a hetero-
geneous cluster (see 53). Thus, SHARP maximizes Prf.

j
i

T allfor T allfor 

TPTPTPP sdrfsdrf

        
T allfor T allfor 

TPTPTP sd
TT

irfsd
i

     (53) 

The risk-free probability computed by (53) is used in 
concert with the degree of security deficiency (see 47) to 
measure the quality of security provided by a heteroge-
neous cluster. In the subsequent section, we quantita-
tively evaluate the risk-free probability and degree of se-
curity deficiency for heterogeneous cluster under a wide 
range of workload conditions. 

TABLE 4. SYSTEM PARAMETERS 

5.4 Performance Results and Comparisons    
In purpose of revealing the strength of SHARP, we com-
pared it with two well-known algorithms, namely, EDF 
(Earliest Deadline First) and LLF (Least Laxity First). 

These algorithms briefly described below are representa-
tive dynamic scheduling algorithms for clusters. 
(1) EDF:  An algorithm that schedules a ready job with the ear-
liest deadline.  
(2) LLF:  A heuristic that assigns priority based on laxity of 
jobs. Job with minimum laxity is assigned highest priority. Lax-
ity = Deadline – Worst case computation time. 

Table 4 summarizes the key configuration parameters 
of the simulated heterogeneous cluster. 

5.4.1 Simulation Parameters  
The parameters of nodes in the simulated cluster are cho-
sen to resemble real-world workstations like IBM SP2 
nodes. We made use of a real world trace (e.g., San Diego 
Supercomputer Center SP2 log sampled on a 128-node 
cluster) to conduct simulations. We modified the trace by 
adding a block of security-sensitive data for each task. 
“job number”, “submit time”, “execution time” and 
“number of requested processors” of jobs submitted to 
the system are taken directly from the trace. “deadlines”, 
“security requirements of jobs”, and “security-sensitive 
data size” are synthetically generated, since these pa-
rameters are not available in the trace. The performance 
metrics we used include: Average risk-free probability
(ARFP, see 53), Average degree of security deficiency (ADSD, 
see 47), and Guarantee ratio (GR, measured as a fraction of 
total submitted parallel applications that are found to be 
schedulable). While ADSD gives users a quantitative way 
to compare different scheduling algorithms in terms of 
their security service satisfaction abilities, ARFP provides 
us a means of measuring probabilities of risk-free task 
executions supplied by distinct scheduling schemes. Al-
though both ADSD and ARFP are security-related per-
formance metrics, they complement each other by offer-
ing two different angles to evaluate the quality of security 
delivered by scheduling algorithms. GR is a traditional 
performance metric to evaluate scheduling algorithms. A 
high performance scheduling algorithm can result in a 
high value of GR, which means the majority of submitted 
jobs can be scheduled so that their deadlines are met. 

5.4.2 Impact of the Size of Security-Sensitive Data  
In this set of experiments we evaluated the performance impact 
of security-sensitive data size. We tested six configurations of 
size of data to be secured (see Table 4). 

The experimental results are shown in Fig. 7 When the 
security-sensitive data size increases, the degree of secu-
rity deficiency of SHARP slightly increases. This observa-
tion can be explained as follows. When SHARP is de-

Parameter Value (Fixed) - (Varied) 
Nnnumber of tasks (6400) – The first three  

month trace data from  
SDSC SP2 log 

Number of nodes (64) – (32, 64, 128, 192,  
256)

CPU Speedup (1) – (2, 3, 4, 5, 6, 7, 8, 9, 
10)

Size of security-sensitive data  (1–100) – (0.01–1,0.1– 
10,1–100,10–1000,100– 
10000,1000–100000) MB

Computational heterogeneity (1.08) – (0, 0.43, 1.08,  
1.68, 2.27) (see 33)

Security heterogeneity (0.22) – (0, 0.14, 0.22,  
0.34, 0.56) (see 38)

                                                Fig. 7. Performance impact of size of data to be secured. 
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ployed in the cluster, security overhead becomes moder-
ately dominant with the growing data size and, therefore, 
tasks of a parallel application are more likely to be allo-
cated to nodes providing lower security levels. The nodes 
with small total execution time have low security over-
head, meaning that security levels offered by these nodes 
are lower. Thus, the degree of security deficiency for 
SHARP enlarges with increasing data size. Unlike 
SHARP, the degrees of security deficiency of EDF and 
LLF marginally reduce with the increasing value of data 
size. This result is reasonable because EDF and LLF only 
admit applications with low security demands when se-
curity-sensitive data size is large, thereby being able to 
meet the security constraints of most admitted applica-
tions.

5.4.3 Heterogeneities in Security and Computation  
In this experiment, we investigate the performance im-
pacts of heterogeneities in security and computation. The 
five heterogeneity configurations are detailed in Table 4. 

Fig. 8 shows that SHARP fully exhibits its strength 
when the heterogeneities increase, e.g., SHARP substan-
tially performs better than the alternatives. Additionally, 
the risk-free probabilities and degrees of security defi-
ciency of EDF and LLF marginally change when the secu-
rity and computational heterogeneities increase. When 
deadlines are tight, SHARP is significantly superior to 

EDF and LLF in terms of guarantee ratio. The implication 
behind this result is that SHARP is the most appropriate 
algorithm for scenarios where parallel applications on 
heterogeneous clusters have tight deadlines. 

5.4.4 Scalability  
This group of experiments is intended to investigate the 
scalability of SHARP. We scale the number of nodes in a 
heterogeneous cluster from 32 up to 256. It is observed 
from Fig. 9 that SHARP makes more prominent im-
provement in degree of security deficiency and risk-free 
probability when the heterogeneous cluster size scales up. 
Importantly, SHARP can achieve high performance pro-
vided that there exist a large number of nodes in the clus-
ter, because there is a strong likelihood that SHARP can 
meet applications’ security demands while minimizing 
the execution times. 

5.4.5 CPU Capacity   
In this set of experiments we examine security and per-
formance sensitivities of the three algorithms to CPU ca-
pacities. We varied the CPU capacity (measured as 
speedup over the baseline computational node) from 2 to 
10. The CPU speed of the IBM SP2 66MHz nodes is nor-
malized to 1. We normalized the CPU capacity of the 
nodes to the values from 2 to 10. The laxity is set to 10000 
seconds, and the number of nodes is fixed to 32. 

                                                Fig. 8. Performance impact of security and computational heterogeneities. 

                                                Fig. 9. Performance impact of number of nodes. 

                                                Fig. 10. Performance impact of CPU speedup. 
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As before, Fig. 10 reveals that SHARP is superior to the 
other two competitors in all the three performance met-
rics. In addition, the improvements of SHARP in degree 
of security deficiency and risk-free probability become 
more prominent when the CPU capacity increases. These 
results as well as those presented in Section 5.4.4 indicate 
that SHARP exhibits good scalability, and SHARP can 
improve both security and performance of large-scale 
heterogeneous clusters with powerful CPUs. 

6 CONCLUSIONS

This paper aims at presenting security-aware resource 
allocation schemes for real-time parallel applications run-
ning on clusters. The schemes consider two parallel appli-
cation models where timeliness and security require-
ments are factored in. For the first part of this study, we 
propose TAPADS, an allocation scheme makes use of 
critical path analysis as well as security level refinement 
to maximize security and schedulability. In the second 
part of the study, we develop SHARP, a security-aware 
resource allocation algorithm for real-time jobs on hetero-
geneous clusters. SHARP is applied to maximize the 
probability that parallel applications are timely executed 
without any risk of being attacked. 

Future studies can be performed in the following di-
rections. First, we will extend the heuristic schemes to 
accommodate data transmissions among disk I/O nodes. 
Second, we will propose a security-aware resource alloca-
tion scheme where multi-dimensional computing re-
sources are considered. For now we only consider CPU 
time, which is one of the computing resources consumed 
by security services. Still, security services require other 
resources like memory, network bandwidth and storage 
capacities. They might compete with submitted parallel 
jobs for these resources. As a result, the resource competi-
tion could noticeably affect the computation time of both 
submitted jobs and their required security services. We 
will investigate the impact of resource competition on 
computation time in our future work. Finally, we intend 
to incorporate more security services (e.g., authorization 
and auditing services) into our resource allocation 
schemes.
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