Final Exam Review

Dr. Tao Xie

These slides are adapted from notes by Dr. David Patterson (UCB)

Final Exam Review

Focus on materials after the midterm,
Including

e |nstruction Level Parallelism
— Scoreboard
— Tomasula Method

» (Cache & Memory Design
« Cache & Memory Performance

Forms of Parallelism

Process-level Coarse grain
— How do we exploit it? What are the
challenges?
— Examples? a.
<
R
Thread-level £
— How do we exploit it? What are the o
challenges? >
— Examples? o
k=
Loop-level -
— What is really loop level parallelism? What g
ercentage of a program’s time 1s spent inside S
oops? X1

Instruction-level

— Focus of Chapter 2 Fine Grain

3

Increasing Instruction-Level Parallelism (ILP)

« A common way to increase parallelism among instructions is to
exploit parallelism among iterations of a loop

— (i.e Loop Level Parallelism, LLP).

 This is accomplished by unrolling the loop either statically by
the compiler, or dynamically by hardware, which increases the
size of the basic block present. This resulting larger basic block
provides more instructions that can be scheduled or re-ordered
by the compiler to eliminate more stall cycles.

* In this loop every iteration can overlap with any other iteration.
Overlap within each iteration is minimal.

4 vector instructions:

PR S, Load Vector X
for (1=1; 1<=1000; i=1+1;) Uood Vector v

i1 = xIlil + vlil: Add Vector X, X, Y
X[I] X[I] y[l]’ Store\e/zc(igrx

| (Write)

True Data Dependence

J (Read)

/

Shared
Operand

\

Read after Write (RAW)

if data dependence is violated

| (Write)

A name dependence:
output dependence

J (Write)

Write after Write (WAW)

/

Shared
Operand

\

if output dependence is violated

Data Hazard/
Dependence

| (Read)

A name dependence:

antidependence

/

Shared
Operand

J (Write)

\

Write after

Read (WAR)

if antidependence is violated

\] v

Program
Order

| (Read)

No dependence

]

Shared
Operand

J (Read)

it

Read after
not a hazard

Read (RAR)

Control Dependencies

» Determines the ordering of an instruction with respect to a
branch instruction.

« Example of control dependence in the then part of an if
statement:

if pl{
S1; S1 is control dependent on pl
1 S2 is control dependent on p2 but not on pl
If p2 {
S2;
}

 Branch predictions
» Branch delay slot

Dynamic Pipeline Scheduling

Dynamic instruction scheduling is accomplished by:

— Dividing the Instruction Decode ID stage into two stages:

Always
donein
program
order

| » « Issue: Decode instructions, check for structural hazards.
— Arrecord of data dependencies is constructed as instructions are issued

— This creates a dynamically-constructed dependency graph for the window of instructions in-
flight (being processed) in the CPU.

» Read operands: Wait until data hazard conditions, if any, are resolved, then read operands

Can be
done
out of
program
order

when available (then start execution)

(All instructions pass through the issue stage in order but can be stalled or pass each other in the
read operands stage).

— In the instruction fetch stage IF, fetch an additional instruction every cycle into a latch or several
instructions into an instruction queue.

— Increase the number of functional units to meet the demands of the additional instructions in their
EX stage.

« Two approaches to dynamic scheduling:

— Dynamic scheduling with the Scoreboard used first in CDC6600
(1963)

— The Tomasulo approach pioneered by the IBM 360/91 (1966)

Tomasulo Algorithm Vs. Scoreboard

« Control & buffers distributed with Functional Units (FUs) Vs. centralized in
Scoreboard:

— FU buffers are called “reservation stations” which have pending instructions and
operands and other instruction status info (including data dependencies).

— Reservations stations are sometimes referred to as “physical registers” or “renaming
registers” as opposed to architecture registers specified by the ISA.

ISA Registers in instructions are replaced by either values (if available) or
pointers (renamed) to reservation stations (RS) that will supply the value later:

— This process is called register renaming.
« Reaqister renaming eliminates WAR, WAW hazards.

— Allows for a hardware-based version of loop unrolling.

— More reservation stations than ISA registers are possible, leading to optimizations that

compilers can’t achieve and prevents the number of ISA registers from becoming a
bottleneck.

Instruction results go (forwarded) from RSs to RSs , not through registers,
over Common Data Bus (CDB) that broadcasts results to all waiting RSs
(dependant instructions).

LLoads and Stores are treated as FUs with RSs as well.

(In Chapter 2) 8

Tomasulo Organization
d

eqisters
From Mem Queue .
1 Load Buffers I
Load1
Load?2
Load3
Load4
Loadb
Load6 Store
Buffers
Add1
Add2 Mult1
Add3 Mult2

Reservation
Stations

To Mem

Common Data Bus (CDB)
Normal data bus: data + destination

Memory Hierarchy - the Big Picture

* Problem: memory is too slow and too small
 Solution: memory hierarchy

ruvuvem— R
Control
Secondary
- .| Main St
(:E 8 8 OffLéhip Memory (3;:136
Q o i :] (DRAM
Datapath o =5 Cache | ()
D - o
% S
Speed (ns): 0.25-0.5 0.5-25 80-250 5,000,000 (5ms)

Size (bytes): <1K <16M <16G >100G
10

Fundamental Cache Questions

Q1: Where can a block be placed in the upper level?
(Block placement)

Q2: How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss?
(Block replacement)

Q4: What happens on a write?
(Write strategy)

11

What happens on a cache hit

= When the CPU tries to read from memory, the address will be sent to a
cache controller.

— The lowest k bits of the address will index a block in the cache.

— If the block is valid and the tag matches the upper (m - k) bits of the
m-bit address, then that data will be sent to the CPU.

= Here is a diagram of a 32-bit memory address and a 2'°-byte cache.

Address (32 bits) Index Valid Tag Data
0
1
22;____ 1[}-____)
Index X 3 To CPU
1022
1023
Tag /'= ﬁ Hit

Locating a set associative block

We can determine where a memory address belongs in an associative

cache in a similar way as before.

If a cache has 2° sets and each block has 2" bytes, the memory address

can be partitioned as follows.

Address (m bits)

(m-s-n)

Tag

Index

. Block

offset

Our arithmetic computations now compute a set index, to select a set
within the cache instead of an individual block.

Block Offset

= Memory Address mod 2"

Block Address = Memory Address / 2"

Set Index

= Block Address mod 2°

Example placement in set-associative caches

= Where would data from memory byte address 6195 be placed, assuming
the eight-block cache designs below, with 16 bytes per block?

= 6195 in binary is 00...0110000 011 0011.
= Each block has 16 bytes, so the lowest 4 bits are the block offset.

= For the 1-way cache, the next three bits (011) are the set index.
For the 2-way cache, the next two bits (11) are the set index.
For the 4-way cache, the next one bit (1) is the set index.

= The data may go in any block, shown in green, within the correct set.

1-way associativity 2-way associativity 4-way associativity
8 sets, 1 block each 4 sets, 2 blocks each 2 sets, 4 blocks each
Set Set

~N o AW N = OO0

What happens on a cache miss

» The delays that we’ve been assuming for memories (e.g., 2ns) are really
assuming cache hits.

— If our CPU implementations accessed main memory directly, their
cycle times would have to be much larger.

— Instead we assume that most memory accesses will be cache hits,
which allows us to use a shorter cycle time.

» However, a much slower main memory access is needed on a cache miss.
The simplest thing to do is to stall the pipeline until the data from main
memory can be fetched (and also copied into the cache).

15

Loading a block into the cache

= After data is read from main memory, putting a copy of that data into the
cache is straightforward.

— The lowest k bits of the address specify a cache block.

— The upper (m - k) address bits are stored in the block’s tag field.
— The data from main memory is stored in the block’s data field.

— The valid bit is set to 1.

Address (32 bits) Index Valid Tag Data
0
1
22 | 10 9
Index . 3
Tag e
Data

Summary

» Basic ideas of caches.

— By taking advantage of spatial and temporal locality, we can use a
small amount of fast but expensive memory to dramatically speed up
the average memory access time.

— A cache is divided into many blocks, each of which contains a valid
bit, a tag for matching memory addresses to cache contents, and the
data itself.

= Next we’ll look at some more advanced cache organizations and see how
to measure the performance of memory systems.

Set Assoclative Cache Design

« Key idea:
— Divide cache into sets
— Allow block anywhere

3130---12111098--:-3210

22

In a set

« Advantages:
— Better hit rate
 Disadvantage:
— More tag bits

— More hardware
— Higher access time

48

Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
——
253
254
255
\\22 \\32
I—

y

Hit

4-to-1 multiplexor

Data

A Four-Way Set-Associative Cache

18

Cache Performance Measures

Hit rate: fraction found in the cache
— So high that we usually talk about Miss rate = 1 - Hit Rate
Hit time: time to access the cache

Miss penalty: time to replace a block from lower level, including
time to replace in CPU

— access time: time to acccess lower level
— transfer time: time to transfer block
Average memory-access time (AMAT)
= Hit time + Miss rate x Miss penalty (ns or clocks)

19

Cache Performance

« Miss-oriented Approach to Memory Access:

.
CPUtime = IC x| CPI .+ MemAccessx MissRate x MissPenalty |x CycleTime
\ Execution Inst
. :
CPUtime = IC x| CPI .+ MemMisses x MissPenalty [x CycleTime
\ Execution Inst

— CPI Includes ALU and Memory instructions

Execution

 Separating out Memory component entirely
— AMAT = Average Memory Access Time

— CPl uopsdaes not include memory instructions

CPUtime = IC xs(A'Iuotps «CPI__ 4 MemAccess AMAT)nycIeTime
ns

AluOps I nSt

AMAT = HitTime + MissRate x MissPenalty
= (HitTime,, + MissRate,,, x MissPenalty,,q)+

(HitTimep,,, + MissRate,,, x MissPenalty ..)
20

Impact on Performance

« SUPpPOSe a processor executes at
— Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI =1.1
— 50% arith/logic, 30% ld/st, 20% control
 Suppose that 10% of memory operations get 50 cycle miss penalty

 Suppose that 1% of instructions get same miss penalty

« CPI =ideal CPI + average stalls per instruction
=1.1(cycles/ins) +
[0.30 (DataMops/ins) x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins) x 0.01 (miss/InstMop) x 50 (cycle/miss)]
=(1.1+ 1.5+ .5)cycle/ins=3.1

« AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54
AMAT = HitTime + MissRate x MissPenalty
= (HitTime,, + MissRate,,, x MissPenalty,,q)+

(HitTimep,,, + MissRate,,, x MissPenalty ..)
21

Unified vs Split Caches

« Unified vs Separate 1&D

Proc
Proc
Unified I-Cache-1 D-Cache-1
Cache-1 Unified
Unified Cache-2
Cache-2

« Example:
— 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%
— 32KB unified: Aggregate miss rate=1.99%

» Which is better (ignore L2 cache)?
— Assume 33% data ops = 75% accesses from instructions (1.0/1.33)
— hit time=1, miss time=50
— Note that data hit has 1 stall for unified cache (only one port)

Unified vs Split Caches

« Unified vs Separate 1&D

Proc
Proc
Unified I-Cache-1 D-Cache-1
Cache-1 Unified
Unified Cache-2
Cache-2
« Example:

— 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%
— 32KB unified: Aggregate miss rate=1.99%

» Which is better (ignore L2 cache)?
— Assume 33% data ops = 75% accesses from instructions (1.0/1.33)
— hit time=1, miss time=50
— Note that data hit has 1 stall for unified cache (only one port)
AMAT . varg=75%x(1+0.64%x50)+25%x(1+6.47%x50) = 2.05
AMAT | ifieg= 5%0X(1+1.99%x50)+25%x (1+1+1.99%x50)= 2.24

Email Support

Provide online email support Until noon on
Dec. 18.

24

