
1

Dr. Tao Xie

These slides are adapted from notes by Dr. David Patterson (UCB)

Final Exam Review

2

Final Exam Review

Focus on materials after the midterm,

including

• Instruction Level Parallelism

– Scoreboard

– Tomasula Method

• Cache & Memory Design

• Cache & Memory Performance

3

Forms of Parallelism
• Process-level

– How do we exploit it? What are the
challenges?

– Examples?

• Thread-level

– How do we exploit it? What are the
challenges?

– Examples?

• Loop-level

– What is really loop level parallelism? What
percentage of a program’s time is spent inside
loops?

• Instruction-level

– Focus of Chapter 2

Coarse grain

Fine Grain

4

Increasing Instruction-Level Parallelism (ILP)
• A common way to increase parallelism among instructions is to

exploit parallelism among iterations of a loop

– (i.e Loop Level Parallelism, LLP).

• This is accomplished by unrolling the loop either statically by
the compiler, or dynamically by hardware, which increases the
size of the basic block present. This resulting larger basic block
provides more instructions that can be scheduled or re-ordered
by the compiler to eliminate more stall cycles.

• In this loop every iteration can overlap with any other iteration.
Overlap within each iteration is minimal.

for (i=1; i<=1000; i=i+1;)

x[i] = x[i] + y[i];

4 vector instructions:

Load Vector X

Load Vector Y

Add Vector X, X, Y

Store Vector X

5

Data Hazard/

Dependence

I (Write)

Shared

Operand

J (Read)

Read after Write (RAW)
if data dependence is violated

I (Read)

Shared

Operand

J (Write)

Write after Read (WAR)
if antidependence is violated

I (Write)

Shared

Operand

J (Write)

Write after Write (WAW)
if output dependence is violated

I (Read)

Shared

Operand

J (Read)

Read after Read (RAR)
not a hazard

A name dependence:

output dependence

A name dependence:

antidependence

I

..

..

J

Program

Order

No dependence

True Data Dependence

6

Control Dependencies

• Determines the ordering of an instruction with respect to a

branch instruction.

• Example of control dependence in the then part of an if

statement:

if p1 {

S1;

};

If p2 {

S2;

}

S1 is control dependent on p1

S2 is control dependent on p2 but not on p1

• Branch predictions

• Branch delay slot

7

Dynamic Pipeline Scheduling
• Dynamic instruction scheduling is accomplished by:

– Dividing the Instruction Decode ID stage into two stages:

• Issue: Decode instructions, check for structural hazards.

– A record of data dependencies is constructed as instructions are issued

– This creates a dynamically-constructed dependency graph for the window of instructions in-
flight (being processed) in the CPU.

• Read operands: Wait until data hazard conditions, if any, are resolved, then read operands
when available (then start execution)

(All instructions pass through the issue stage in order but can be stalled or pass each other in the
read operands stage).

– In the instruction fetch stage IF, fetch an additional instruction every cycle into a latch or several
instructions into an instruction queue.

– Increase the number of functional units to meet the demands of the additional instructions in their
EX stage.

• Two approaches to dynamic scheduling:

– Dynamic scheduling with the Scoreboard used first in CDC6600
(1963)

– The Tomasulo approach pioneered by the IBM 360/91 (1966)

Always

done in

program

order

Can be

done

out of

program

order

8

Tomasulo Algorithm Vs. Scoreboard

• Control & buffers distributed with Functional Units (FUs) Vs. centralized in
Scoreboard:

– FU buffers are called “reservation stations” which have pending instructions and
operands and other instruction status info (including data dependencies).

– Reservations stations are sometimes referred to as “physical registers” or “renaming
registers” as opposed to architecture registers specified by the ISA.

• ISA Registers in instructions are replaced by either values (if available) or
pointers (renamed) to reservation stations (RS) that will supply the value later:

– This process is called register renaming.

• Register renaming eliminates WAR, WAW hazards.

– Allows for a hardware-based version of loop unrolling.

– More reservation stations than ISA registers are possible, leading to optimizations that
compilers can’t achieve and prevents the number of ISA registers from becoming a
bottleneck.

• Instruction results go (forwarded) from RSs to RSs , not through registers,
over Common Data Bus (CDB) that broadcasts results to all waiting RSs
(dependant instructions).

• Loads and Stores are treated as FUs with RSs as well.

(In Chapter 2)

9

Tomasulo Organization

FP adders

Add1
Add2
Add3

FP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

Normal data bus: data + destination

Common data bus: data + source

10

Memory Hierarchy - the Big Picture

• Problem: memory is too slow and too small

• Solution: memory hierarchy

Control

Datapath

Secondary

Storage

(Disk)

Processor

R
eg

isters

L2

Off-Chip

Cache

Main

Memory

(DRAM)

L
1

 O
n

-C
h

ip

C
a

ch
e

0.5-25 5,000,000 (5ms)Speed (ns): 80-250

<1KSize (bytes): >100G<16G<16M

0.25-0.5

11

Fundamental Cache Questions

• Q1: Where can a block be placed in the upper level?

(Block placement)

• Q2: How is a block found if it is in the upper level?

(Block identification)

• Q3: Which block should be replaced on a miss?

(Block replacement)

• Q4: What happens on a write?

(Write strategy)

12

13

14

15

16

17

18

Set Associative Cache Design

• Key idea:

– Divide cache into sets

– Allow block anywhere
in a set

• Advantages:

– Better hit rate

• Disadvantage:

– More tag bits

– More hardware

– Higher access time

Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

A Four-Way Set-Associative Cache

19

Cache Performance Measures

• Hit rate: fraction found in the cache

– So high that we usually talk about Miss rate = 1 - Hit Rate

• Hit time: time to access the cache

• Miss penalty: time to replace a block from lower level, including

time to replace in CPU

– access time: time to acccess lower level

– transfer time: time to transfer block

• Average memory-access time (AMAT)

= Hit time + Miss rate x Miss penalty (ns or clocks)

20

• Miss-oriented Approach to Memory Access:

– CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess

Execution
CPIICCPUtime 










CycleTimeyMissPenalt
Inst

MemMisses

Execution
CPIICCPUtime 










Cache Performance

• Separating out Memory component entirely

– AMAT = Average Memory Access Time

– CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccess
CPI

Inst

AluOps
ICCPUtime

AluOps










yMissPenaltMissRateHitTimeAMAT 

 

 DataDataData

InstInstInst

yMissPenaltMissRateHitTime

yMissPenaltMissRateHitTime





21

Impact on Performance
• Suppose a processor executes at

– Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1

– 50% arith/logic, 30% ld/st, 20% control

• Suppose that 10% of memory operations get 50 cycle miss penalty

• Suppose that 1% of instructions get same miss penalty

• CPI = ideal CPI + average stalls per instruction
=1.1(cycles/ins) +

[0.30 (DataMops/ins) x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins) x 0.01 (miss/InstMop) x 50 (cycle/miss)]

= (1.1 + 1.5 + .5) cycle/ins = 3.1

• AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

yMissPenaltMissRateHitTimeAMAT 

 

 DataDataData

InstInstInst

yMissPenaltMissRateHitTime

yMissPenaltMissRateHitTime





22

Unified vs Split Caches
• Unified vs Separate I&D

• Example:

– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%

– 32KB unified: Aggregate miss rate=1.99%

• Which is better (ignore L2 cache)?

– Assume 33% data ops  75% accesses from instructions (1.0/1.33)

– hit time=1, miss time=50

– Note that data hit has 1 stall for unified cache (only one port)

Proc

I-Cache-1
Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1
Proc

Unified
Cache-2

23

Unified vs Split Caches
• Unified vs Separate I&D

• Example:

– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%

– 32KB unified: Aggregate miss rate=1.99%

• Which is better (ignore L2 cache)?

– Assume 33% data ops  75% accesses from instructions (1.0/1.33)

– hit time=1, miss time=50

– Note that data hit has 1 stall for unified cache (only one port)

AMATHarvard=75%x(1+0.64%x50)+25%x(1+6.47%x50) = 2.05

AMATUnified=75%x(1+1.99%x50)+25%x(1+1+1.99%x50)= 2.24

Proc

I-Cache-1
Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1
Proc

Unified
Cache-2

24

Provide online email support Until noon on

Dec. 18.

Email Support

