
1

Dr. Tao Xie

These slides are adapted from notes by Dr. David Patterson (UCB)

Memory Hierarchy:

Cache Performance

22

Q2: Block Identification

• Tag on each block

– No need to check index or block offset

• Increasing associativity shrinks index, expands

tag

Fully Associative: No index

Direct Mapped: Large index

Block Address

Tag Index

Block

Offset

An address is divided into two parts. The block address can be

further divided into the tag field and the index field. The block

offset field selects the desired data from the block, the index field

selects the set, and the tag field is compared against it for a hit.

33

Direct-Mapped Cache Design

CACHE SRAM

ADDR

DATA[31:0]

0x00001C0 0xff083c2d

0
1 0x0000000 0x00000021

1 0x0000000 0x00000103

0
0
1
0 0x23F0210 0x00000009

1

TagV Data

=

030x0000000

DATA[59:32]DATA[60]

DATA HITADDRESS =1Tag
Cache
Index

Byte Offset

4

Set Associative Cache Design

• Key idea:

– Divide cache into sets

– Allow block anywhere
in a set

• Advantages:

– Better hit rate

• Disadvantage:

– More tag bits

– More hardware

– Higher access time

Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

A Four-Way Set-Associative Cache

5

tag 11110111 data 1111000011110000101011=

Fully Associative Cache Design

• Key idea: m-way set associative

– 1 comparator required for each block

– No address decoding

– Practical only for small caches due to hardware demands

tag 00011100 data 0000111100001111111101=

=

=

=

=

tag 11111110

tag 00000011

tag 11100110

tag 11110111 data 1111000011110000101011

data 0000000000001111111100

data 1110111100001110000001

data 1111111111111111111111

tag in 11110111 data out 1111000011110000101011

6

Calculating Bits in Cache

• How many total bits are needed for a direct- mapped cache with
64 KBytes of data and one word blocks, assuming a 32-bit
address and one word equal to 4 bytes?

• How many total bits would be needed for a 4-way set associative
cache to store the same amount of data

• How many total bits are needed for a direct- mapped cache with
64 KBytes of data and 8 word blocks, assuming a 32-bit
address?

•

7

Calculating Bits in Cache
• How many total bits are needed for a direct- mapped cache with

64 KBytes of data and one word blocks, assuming a 32-bit
address?

– 64 Kbytes = 16 K words = 2^14 words = 2^14 blocks

– block size = 4 bytes => offset size = 2 bits,

– #sets = #blocks = 2^14 => index size = 14 bits

– tag size = address size - index size - offset size = 32 - 14 - 2 = 16 bits

– bits/block = data bits + tag bits + valid bit = 32 + 16 + 1 = 49

– bits in cache = #blocks x bits/block = 2^14 x 49 = 98 Kbytes

• How many total bits would be needed for a 4-way set associative
cache to store the same amount of data

– block size and #blocks does not change

– #sets = #blocks/4 = (2^14)/4 = 2^12 => index size = 12 bits

– tag size = address size - index size - offset = 32 - 12 - 2 = 18 bits

– bits/block = data bits + tag bits + valid bit = 32 + 18 + 1 = 51

– bits in cache = #blocks x bits/block = 2^14 x 51 = 102 Kbytes

• Increase associativity => increase bits in cache

8

Calculating Bits in Cache

• How many total bits are needed for a direct- mapped

cache with 64 KBytes of data and 8-word blocks,

assuming a 32-bit address (one word=4bytes)?

• Increase block size => decrease bits in cache

–64 Kbytes = 2^14 words = (2^14)/8 = 2^11 blocks

–block size = 32 bytes => offset size = 5 bits,

–#sets = #blocks = 2^11 => index size = 11 bits

–tag size = address size - index size - offset size = 32 - 11 - 5 = 16 bits

–bits/block = data bits + tag bits + valid bit = 8x32 + 16 + 1 = 273 bits

–bits in cache = #blocks x bits/block = 2^11 x 273 = 68.25 Kbytes

9

Q3: Block Replacement

• On a miss, data must be read from memory.

• So, where do we put the new data?

– Direct-mapped cache: must place in fixed

location

– Set-associative, fully-associative - can pick

within set

10

Replacement Algorithms
• When a block is fetched, which block in the target set should be replaced?

• Optimal algorithm:

• replace the block that will not be used for the longest time (must
know the future)

• Usage based algorithms:

– Least recently used (LRU)

• replace the block that has been referenced least recently

• hard to implement

• Non-usage based algorithms:

– First-in First-out (FIFO)

• treat the set as a circular queue, replace head of queue.

• easy to implement

– Random (RAND)

• replace a random block in the set

• even easier to implement

11

Q4: Write Strategy

• What happens on a write?

– Write through - write to memory, stall

processor until done

– Write buffer - place in buffer (allows pipeline to

continue*)

– Write back - delay write to memory until block

is replaced in cache

12

Write Through

• Store by processor updates cache and memory

• Memory always consistent with cache

• WT always combined with write buffers so that don’t wait

for lower level memory

Processor

Cache

Memory

Store

Load
Cache

Load

13

Write Back
• Store by processor only updates cache line

• Modified line written to memory only when it is

evicted

– Requires “dirty bit” for each line

• Set when line in cache is modified

• Indicates that line in memory is stale

• Memory not always consistent with cache

• No writes of repeated writes

Processor

Cache
Memory

Store

Load Cache

Load

Write

Back

14

Cache Basics
• Cache: level of temporary memory storage between CPU and

main memory. Improves overall memory speed by taking
advantage of the principle of locality

• Cache is divided into sets; each set holds from a particular
group of main memory locations

• Cache parameters

– Cache size, block size, associativity

• 3 types of Cache (n total blocks):

– Direct-mapped: n sets, each holds 1 block

– Fully-associative: 1 set, holds n blocks

– Set-associative: n/m sets, each holds m blocks

15

– Compulsory—The first access to a block is not in the cache, so the

block must be brought into the cache. Also called cold start misses or

first reference misses.

(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed during

execution of a program, capacity misses will occur due to blocks

being discarded and later retrieved.

(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or direct

mapped, conflict misses (in addition to compulsory & capacity

misses) will occur because a block can be discarded and later

retrieved if too many blocks map to its set. Also called collision

misses or interference misses.

(Misses in N-way Associative, Size X Cache)

Classifying Misses: 3C

16

Cache Size (KB)

M
is

s
R

at
e

p
er

 T
yp

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate (SPEC92)

Conflict

Compulsory vanishingly

small

Classifying Misses: 3C

17

Cache Size (KB)

M
is

s
R

at
e

p
er

 T
yp

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2

2:1 Cache Rule

18

Cache Size (KB)

M
is

s
R

a
te

 p
er

 T
y
p

e

0%

20%

40%

60%

80%

100%

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size

Good: insight => invention

3C Relative Miss Rate

19

improve cache and memory access times: (Page 290)

)***(* TimeClockCycleyMissPenaltMissRateCPIICCPUtime
nInstructio

ssMemoryAcce

Execution

Average Memory Access Time = Hit Time + Miss Rate * Miss Penalty

Section 5.2 Section 5.2Section 5.2

Improve Cache Performance

• Improve performance by:

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

20

Increasing Block Size

• One way to reduce the miss rate is to increase the
block size

– Take advantage of spatial locality

– Decreases compulsory misses

• However, larger blocks have disadvantages

– May increase the miss penalty (need to get more data)

– May increase hit time (need to read more data from
cache and larger mux)

– May increase miss rate, since conflict misses

• Increasing the block size can help, but don’t
overdo it.

21

Block Size vs. Cache Measures

• Increasing Block Size generally increases Miss

Penalty and decreases Miss Rate

• As the block size increases the AMAT starts to

decrease, but eventually increases

Block Size Block Size Block Size

Miss

Rate

Miss

Penalty
Avg.

Memory

Access

Time

X =

22

Block Size (bytes)

Miss

Rate

0%

5%

10%

15%

20%

25%
1

6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K

Reducing Cache Misses: 1. Larger Block Size

Size of Cache

Using the principle of locality. The larger the block, the greater the

chance parts of it will be used again.

23

• Increasing associativity helps reduce conflict
misses

• 2:1 Cache Rule:

– The miss rate of a direct mapped cache of size N is
about equal to the miss rate of a 2-way set associative
cache of size N/2

– For example, the miss rate of a 32 Kbyte direct mapped
cache is about equal to the miss rate of a 16 Kbyte 2-
way set associative cache

• Disadvantages of higher associativity

– Need to do large number of comparisons

– Need n-to-1 multiplexor for n-way set associative

– Could increase hit time

Reducing Cache Misses: 2. Higher Associativity

24

AMAT vs. Associativity

Cache Size Associativity

(KB) 1-way 2-way 4-way 8-way

1 7.65 6.60 6.22 5.44

2 5.90 4.90 4.62 4.09

4 4.60 3.95 3.57 3.19

8 3.30 3.00 2.87 2.59

16 2.45 2.20 2.12 2.04

32 2.00 1.80 1.77 1.79

64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

Red means A.M.A.T. not improved by more associativity

25

Tag

CPU

Address

In

Out

Data

Cache

Write

Buffer

Victim Cache

=?

Lower Level Memory

=?

Address

• Data discarded from cache is placed in an added small buffer (victim cache).

• On a cache miss check victim cache for data before going to main memory

• Jouppi [1990]: A 4-entry victim cache removed 20% to 95% of conflicts for a 4 KB direct

mapped data cache

• Used in Alpha, HP PA-RISC CPUs.

Reducing Cache Misses: 3. Victim Cache

26

Cache Performance Measures
• Hit rate: fraction found in the cache

– So high that we usually talk about Miss rate = 1 - Hit

Rate

• Hit time: time to access the cache

• Miss penalty: time to replace a block from lower level,

including time to replace in CPU

– access time: time to access lower level

– transfer time: time to transfer block

• Average memory-access time (AMAT)

= Hit time + Miss rate x Miss penalty (ns or clocks)

27

• Miss-oriented Approach to Memory Access:

– CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess

Execution
CPIICCPUtime

CycleTimeyMissPenalt
Inst

MemMisses

Execution
CPIICCPUtime

Cache Performance

• Separating out Memory component entirely

– AMAT = Average Memory Access Time

– CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccess
CPI

Inst

AluOps
ICCPUtime

AluOps

yMissPenaltMissRateHitTimeAMAT

 DataDataData

InstInstInst

yMissPenaltMissRateHitTime

yMissPenaltMissRateHitTime

28

Calculating AMAT

• If a direct mapped cache has a hit rate of 95%, a hit

time of 4 ns, and a miss penalty of 100 ns, what is the

AMAT?

• If replacing the cache with a 2-way set associative

increases the hit rate to 97%, but increases the hit

time to 5 ns, what is the new AMAT?

29

Calculating AMAT

• If a direct mapped cache has a hit rate of 95%,

a hit time of 4 ns, and a miss penalty of 100 ns,

what is the AMAT?
AMAT = Hit time + Miss rate x Miss penalty = 4 + 0.05 x

100 = 9 ns

• If replacing the cache with a 2-way set

associative increases the hit rate to 97%, but

increases the hit time to 5 ns, what is the new

AMAT?
AMAT = Hit time + Miss rate x Miss penalty = 5 + 0.03 x

100 = 8 ns

30

Impact on Performance

• Suppose a processor executes at

–Clock Rate = 200 MHz (5 ns per cycle), Ideal (no

misses) CPI = 1.1

–50% arith/logic, 30% ld/st, 20% control

• Suppose that 10% of memory operations get 50 cycle
miss penalty

• Suppose that 1% of instructions get same miss penalty

• Calculate AMAT?

Hint: (1) First calculate CPI = ideal CPI + average stalls per instruction

(2) Next calculate AMAT

31

Impact on Performance
• Suppose a processor executes at

– Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1

– 50% arith/logic, 30% ld/st, 20% control

• Suppose that 10% of memory operations get 50 cycle miss penalty

• Suppose that 1% of instructions get same miss penalty

• CPI = ideal CPI + average stalls per instruction
=1.1(cycles/ins) +

[0.30 (DataMops/ins) x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins) x 0.01 (miss/InstMop) x 50 (cycle/miss)]

= (1.1 + 1.5 + .5) cycle/ins = 3.1

• AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

yMissPenaltMissRateHitTimeAMAT

 DataDataData

InstInstInst

yMissPenaltMissRateHitTime

yMissPenaltMissRateHitTime

32

Unified vs Split Caches
• Unified vs Separate I&D

• Example:

– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%

– 32KB unified: Aggregate miss rate=1.99%

• Which is better (ignore L2 cache)?

– Assume 33% data ops 75% accesses from instructions (1.0/1.33)

– hit time=1, miss time=50

– Note that data hit has 1 stall for unified cache (only one port)

Proc

I-Cache-1
Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1
Proc

Unified
Cache-2

33

Unified vs Split Caches
• Unified vs Separate I&D

• Example:

– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%

– 32KB unified: Aggregate miss rate=1.99%

• Which is better (ignore L2 cache)?

– Assume 33% data ops 75% accesses from instructions (1.0/1.33)

– hit time=1, miss time=50

– Note that data hit has 1 stall for unified cache (only one port)

AMATHarvard=75%x(1+0.64%x50)+25%x(1+6.47%x50) = 2.05

AMATUnified=75%x(1+1.99%x50)+25%x(1+1+1.99%x50)= 2.24

Proc

I-Cache-1
Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1
Proc

Unified
Cache-2

34

Using a 2nd Level Cache

• A second level (L2) cache reduces the miss penalty by

providing a large cache between the first level (L1) cahe

and main memory

• L2 Equations

AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 x

Miss PenaltyL2)

35

Adding an L2 Cache

• If a direct mapped cache has a hit rate of 95%, a hit

time of 4 ns, and a miss penalty of 100 ns, what is

the AMAT?

• If an L2 cache is added with a hit time of 20 ns and

a hit rate of 50%, what is the new AMAT?

36

Adding an L2 Cache

• If a direct mapped cache has a hit rate of 95%, a hit

time of 4 ns, and a miss penalty of 100 ns, what is

the AMAT?
AMAT = Hit time + Miss rate x Miss penalty = 4 + 0.05 x 100 = 9 ns

• If an L2 cache is added with a hit time of 20 ns and

a hit rate of 50%, what is the new AMAT?
AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 x

Miss PenaltyL2)

=4 + 0.05 x (20 + 0.5x100) = 7.5 ns

37

Cache Performance Summary

• AMAT = Hit time + Miss rate x Miss penalty

• Split vs. Unified Cache

• 3C’s of misses

– compulsory

– capacity

– conflict

• Methods for improving performance

– increase (change) cache size

– increase (change) block size

– increase (change) associativity

– add a 2nd level cache

