
1

Dr. Tao Xie

These slides are adapted from notes by Dr. David Patterson (UCB)

Instruction-level parallelism:
Tomasulo - Reorder Buffer

2

Why can Tomasulo overlap
iterations of loops?

• Register renaming
– Multiple iterations use different physical destinations for

registers

• Reservation stations
– Permit instruction issue to advance past integer control flow

operations
– Also buffer old values of registers - totally avoiding the

WAR stall that we saw in the scoreboard.

• Other perspective: Tomasulo building data flow
dependency graph on the fly.

3

What about Precise Interrupts?
• Interrupts would be imprecise in Tomasulo.

• Tomasulo had:

In-order issue, out-of-order execution, and out-of-
order completion

• Need to “fix” the out-of-order completion aspect
so that we can find precise breakpoint in
instruction stream.

4

Speculating with Tomasulo
• Modern processors such as PowerPC 603/604, MIPS

R10000, Intel Pentium II/III/4, Alpha 21264 extend
Tomasulo’s approach to support speculation

• Key ideas:
– separate execution from completion: allow instructions to

execute speculatively but do not let instructions update
registers or memory until they are no longer speculative

– therefore, add a final step – after an instruction is no longer
speculative – when it is allowed to make register and
memory updates, called instruction commit

– allow instructions to execute and complete out of order but
force them to commit in order

– add a hardware buffer, called the reorder buffer (ROB), with
registers to hold the result of an instruction between
completion and commit

5

HW support for precise interrupts
• Need HW buffer for results of

uncommitted instructions: reorder
buffer
– Use reorder buffer number instead of

reservation station when execution
completes

– Supplies operands between execution
complete & commit

– (Reorder buffer can be operand
source => more registers like RS)

– Instructions commit
– Once instruction commits,

result is put into register
– As a result, easy to undo speculated

instructions
on mispredicted branches
or exceptions

Reorder
Buffer

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

6

ROB Data Structure
ROB entry fields
• Instruction type: branch, store, register operation (i.e.,

ALU or load)
• State: indicates if instruction has completed and value is

ready
• Destination: where result is to be written – register number

for register operation (i.e. ALU or load), memory address
for store

– branch has no destination result

• Value: holds the value of instruction result till time to
commit

Additional reservation station field
• Destination: Corresponding ROB entry number

7

Four Steps of Speculative
Tomasulo Algorithm

• Issue—get instruction from FP Op Queue
– If reservation station and reorder buffer slot free, issue instr & send

operands & reorder buffer no. for destination (this stage sometimes called
“dispatch”)

• Execution—operate on operands (EX)
– When both operands ready then execute; if not ready, watch CDB for result;

when both in reservation station, execute; checks RAW (sometimes called
“issue”)

• Write result—finish execution (WB)
– Write on Common Data Bus to all awaiting FUs & reorder buffer; mark

reservation station available.

• Commit—update register with reorder result
– When instr. at head of reorder buffer & result present, update register with

result (or store to memory) and remove instr from reorder buffer. Mispredicted
branch flushes reorder buffer (sometimes called “graduation”)

8

Speculative Tomasulo Example

 LD F0 10 R2
 ADDD F10 F4 F0
 DIVD F2 F10 F6
 BNEZ F2 Exit

 LD F4 0 R3
 ADDD F0 F4 F9
 SD F4 0 R3
 …

Exit:

9

Tomasulo with Reorder buffer

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1 F0 LD F0,10(R2) N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

Instruction Dest. Value

10

2 ADDD R(F4),ROB1

Tomasulo with Reorder buffer

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F10

F0

ADDD F10,F4,F0

LD F0,10(R2)

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

Instruction Dest. Value

11

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo with Reorder buffer

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

Instruction Dest. Value

12

• Skip some cycles

13

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Tomasulo with Reorder buffer

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0 ADDD F0,F4,F6 N

F4 LD F4,0(R3) N

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

5 0+R3

Instruction Dest. Value

14

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Tomasulo with Reorder buffer

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--

F0

ROB5

SD 0(R3),F4

ADDD F0,F4,F6

N

N

F4 LD F4,0(R3) N

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

1 10+R2
5 0+R3

Instruction Dest. Value

15

3 DIVD ROB2,R(F6)

Tomasulo with Reorder buffer

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--

F0

M[10]

SD 0(R3),F4

ADDD F0,F4,F6

Y

N

F4 M[10] LD F4,0(R3) Y

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)

Instruction Dest. Value

16

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

-

Tomasulo with Reorder buffer

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--

F0

M[10]

SD 0(R3),F4

ADDD F0,F4,F6

Y

Ex

F4 M[10] LD F4,0(R3) Y

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

Instruction Dest. Value

17

Notes
• If a branch is mispredicted, recovery is done by

flushing the ROB of all entries that appear after
the mispredicted branch
– entries before the branch are allowed to continue
– restart the fetch at the correct branch successor

• When an instruction commits or is flushed from
the ROB then the corresponding slots become
available for subsequent instructions

18

Tomasulo Algorithm vs. Scoreboard
• Control & buffers distributed with Function Units (FU) vs.

centralized in scoreboard;
– FU buffers called “reservation stations”; have pending

operands
• Registers in instructions replaced by values or pointers to

reservation stations(RS); called register renaming ;
– avoids WAR, WAW hazards
– More reservation stations than registers, so can do

optimizations compilers can’t
• Results to FU from RS, not through registers, over Common

Data Bus that broadcasts results to all FUs
• Load and Stores treated as FUs with RSs as well
• Integer instructions can go past branches, allowing

FP ops beyond basic block in FP queue

19

Summary
• Reservations stations: implicit register renaming to larger set of

registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards of Scoreboard
– Allows loop unrolling in HW

• Not limited to basic blocks
(integer units gets ahead, beyond branches)

• Today, helps cache misses as well
– Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?)

• Lasting Contributions
– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Pentium III; PowerPC 604; MIPS
R10000; HP-PA 8000; Alpha 21264

20

Memory Hierarchy: Introduction

21

Memory Systems - the Big Picture
• Memory provides processor with

– Instructions
– Data

• Problem: memory is too slow and too small

Control

Datapath

Memory

Processor
Input

Output Instructions

Data

“Five Classics Components” Picture

22

 DRAM
Year Size Cycle Time
1980 64 Kb 250 ns
1983 256 Kb 220 ns
1986 1 Mb 190 ns
1989 4 Mb 165 ns
1992 16 Mb 145 ns
1995 64 Mb 120 ns

 Capacity Speed (latency)
Logic: 2x in 3 years 2x in 3 years
DRAM: 4x in 3 years 2x in 10 years
Disk: 4x in 3 years 2x in 10 years

1000:1! 2:1!

Technology Trends

23

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs) 1

10

100

1000
19

80

19
81

19
83

19

84

19
85

19

86

19
87

19

88

19
89

19

90

19
91

19

92

19
93

19

94

19
95

19

96

19
97

19

98

19
99

20

00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

Why Cares About Memory Hierarchy?

24

• Rely on caches to bridge gap
• Microprocessor-DRAM performance gap

– time of a full cache miss in instructions executed

1st Alpha (7000): 340 ns/5.0 ns = 68 clks x 2 or 136 instructions
2nd Alpha (8400): 266 ns/3.3 ns = 80 clks x 4 or 320 instructions
3rd Alpha (t.b.d.): 180 ns/1.7 ns =108 clks x 6 or 648 instructions

– 1/2X latency x 3X clock rate x 3X Instr/clock ⇒ 5X

Today’s Microprocessor

25

Memory Hierarchy - the Big Picture
• Problem: memory is too slow and too small
• Solution: memory hierarchy

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

L2
Off-Chip

Cache

Main
Memory
(DRAM)

L
1 O

n-C
hip

C
ache

0.5-25 5,000,000 (5ms) Speed (ns): 80-250

<1K Size (bytes): >100G <16G <16M

0.25-0.5

26

CPU Registers
100s Bytes
1s ns

Cache
K Bytes
4 ns
1-0.1 cents/bit

Main Memory
M Bytes
100ns- 300ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit

-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Levels of Memory Hierarchy

27

Memory Configuration in Current PCs

Processor

System
Controller

L1 Cache

Main
Memory
(DRAM)

L2/L3
Cache

(SRAM)

(I/O Bus)

• Static RAM (SRAM) - used for L1,
L2 cache
– Fast - 0.5-25ns access time (less for on-

chip)
– Smaller, More Expensive
– Higher power consumption

• Dynamic RAM (DRAM) - used for
PC main memory
– Slower - 80-250ns access time*
– Larger, Cheaper
– Lower power consumption

28

System Components

SDRAM
PC100/PC133
100-133MHz
64-128 bits wide
2-way inteleaved
~ 900 MBYTES/SEC)64bit)

Double Date Rate (DDR)
SDRAM
PC3200
200 MHz DDR
64-128 bits wide
4-way interleaved
~3.2 GBYTES/SEC (64bit)

DDR2 SDRAM
667MHZ
8~16 bit wide

CPU

Caches
 System Bus

I/O Devices

Memory
 I/O Controllers

Bus Adapter

Disks
Displays
Keyboards

Networks

NICs

Main I/O Bus Memory
Controller Example:

PCI, 33-66MHz
 32-64 bits wide
 133-528 MB/s
PCI-X 133MHz 64-bits wide
 1066 MB/s

CPU Core
1 GHz - 3.6 GHz
4-way Superscaler
RISC or RISC-core (x86):
 Deep Instruction Pipelines
 Dynamic scheduling
 Multiple FP, integer FUs
 Dynamic branch prediction
 Hardware speculation

L1

L2

L3

Memory Bus

All Non-blocking caches
L1 16-128K 1-2 way set associative (on chip), separate or unified
L2 256K- 2M 4-32 way set associative (on chip) unified
L3 2-16M 8-32 way set associative (on or off chip) unified

Examples: Alpha, AMD K7: EV6, 200-400 MHz
 Intel PII, PIII: GTL+ 133 MHz
 Intel P4 800 MHz

North
Bridge

South
Bridge

Chipset

I/O Subsystem

(FSB)

Important issue: Which component creates a system performance bottleneck?

(possibly
on-chip)

Chipset

29

Intel Pentium 4 System Architecture
 (Using The Intel 925 Chipset, 2004)

Source: http://www.anandtech.com/showdoc.aspx?i=2088&p=4

 CPU
(Including cache) System Bus (Front Side Bus, FSB)

Bandwidth usually should match or exceed
that of main memory

 I/O Controller Hub
(Chipset South Bridge)

System
Memory
Two 8-byte DDR2 Channels

Main
I/O Bus
(PCI)

Graphics I/O Bus (PCI Express)

Memory Controller Hub
(Chipset North Bridge)

Misc.
I/O
Interfaces

Misc.
I/O
Interfaces

Storage I/O (Serial ATA)

I/O Subsystem
Current System Architecture:
Isolated I/O: Separate memory and I/O buses.

30

• The Principle of Locality:
– Program access a relatively small portion of the address

space at any instant of time.
• Two Different Types of Locality:

– Temporal Locality (Locality in Time): If an item is
referenced, it will tend to be referenced again soon (e.g.,
loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced,
items whose addresses are close by tend to be referenced
soon
(e.g., straightline code, array access)

• Last 15 years, HW relied on locality for speed

The Principle of Locality

31

Why Hierarchy Works
• The principle of locality

– Programs access a relatively small portion of the
address space at any instant of time.

– Temporal locality: recently accessed data is likely to be
used again

– Spatial locality: data near recently accessed data is
likely to be used soon

• Result: the illusion of large, fast memory

Address Space 0 2n - 1

Probability
of reference

32

CPU

Hit: Data in Cache (no penalty)

Miss: Data not in Cache (miss penalty)

Cache
Memory

DRAM
Memory

Processor

addr data

addr data

Cache Operation
• Insert between CPU, Main

Mem.
• Implement with fast Static

RAM
• Holds some of a program’s

– data
– instructions

• Operation:

33

Cache Performance Measures
• Hit rate: fraction found in the cache

– So high that we usually talk about Miss rate = 1 - Hit Rate
• Hit time: time to access the cache
• Miss penalty: time to replace a block from lower level,

including time to replace in CPU
– access time: time to acccess lower level
– transfer time: time to transfer block

• Average memory-access time (AMAT)
 = Hit time + Miss rate x Miss penalty (ns or clocks)

34

Fundamental Questions
• Q1: Where can a block be placed in the upper level?
 (Block placement)

• Q2: How is a block found if it is in the upper level?
 (Block identification)

• Q3: Which block should be replaced on a miss?
 (Block replacement)

• Q4: What happens on a write?
 (Write strategy)

	Instruction-level parallelism: �Tomasulo - Reorder Buffer
	Why can Tomasulo overlap iterations of loops?
	What about Precise Interrupts?
	Speculating with Tomasulo
	HW support for precise interrupts
	ROB Data Structure
	Four Steps of Speculative Tomasulo Algorithm
	Speculative Tomasulo Example
	Tomasulo with Reorder buffer
	Tomasulo with Reorder buffer
	Tomasulo with Reorder buffer
	Slide Number 12
	Tomasulo with Reorder buffer
	Tomasulo with Reorder buffer
	Tomasulo with Reorder buffer
	Tomasulo with Reorder buffer
	Notes
	Tomasulo Algorithm vs. Scoreboard
	Summary
	Memory Hierarchy: Introduction
	Memory Systems - the Big Picture
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Memory Hierarchy - the Big Picture
	Slide Number 26
	Memory Configuration in Current PCs
	System Components
	Intel Pentium 4 System Architecture � (Using The Intel 925 Chipset, 2004)
	Slide Number 30
	Why Hierarchy Works
	Cache Operation
	Slide Number 33
	Fundamental Questions

