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Dr. Tao Xie 

These slides are adapted from notes by Dr. David Patterson (UCB) 

Instruction-level parallelism:  
Tomasulo - Reorder Buffer 
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Why can Tomasulo overlap 
iterations of loops? 

• Register renaming 
– Multiple iterations use different physical destinations for 

registers 
 

• Reservation stations  
– Permit instruction issue to advance past integer control flow 

operations 
– Also buffer old values of registers - totally avoiding the 

WAR stall that we saw in the scoreboard. 
 

• Other perspective: Tomasulo building data flow 
dependency graph on the fly. 
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What about Precise Interrupts? 
• Interrupts would be imprecise in Tomasulo. 

 
• Tomasulo had: 

 
In-order issue, out-of-order execution, and out-of-
order completion 
 

• Need to “fix” the out-of-order completion aspect 
so that we can find precise breakpoint in 
instruction stream. 
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Speculating with Tomasulo 
• Modern processors such as PowerPC 603/604, MIPS 

R10000, Intel Pentium II/III/4, Alpha 21264 extend 
Tomasulo’s approach to support speculation 

• Key ideas: 
– separate execution from completion: allow instructions to 

execute speculatively but do not let instructions update 
registers or memory until they are no longer speculative 

– therefore, add a final step – after an instruction is no longer 
speculative – when it is allowed to make register and 
memory updates, called instruction commit 

– allow instructions to execute and complete out of order but 
force them to commit in order 

– add a hardware buffer, called the reorder buffer (ROB), with 
registers to hold the result of an instruction between 
completion and commit 
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HW support for precise interrupts 
• Need HW buffer for results of 

uncommitted instructions: reorder 
buffer 
– Use reorder buffer number instead of 

reservation station when execution 
completes 

– Supplies operands between execution 
complete & commit 

– (Reorder buffer can be operand 
source => more registers like RS) 

– Instructions commit 
– Once instruction commits,  

result is put into register 
– As a result, easy to undo speculated 

instructions  
on mispredicted branches  
or exceptions 

Reorder 
Buffer 

FP 
Op 

Queue 

FP Adder FP Adder 

Res Stations Res Stations 

FP Regs 
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ROB Data Structure 
ROB entry fields 
• Instruction type: branch, store, register operation (i.e., 

ALU or load) 
• State: indicates if instruction has completed and value is 

ready 
• Destination: where result is to be written – register number 

for register operation (i.e. ALU or load), memory address 
for store 

– branch has no destination result 

• Value: holds the value of instruction result till time to 
commit 

Additional reservation station field 
• Destination: Corresponding ROB entry number 
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Four Steps of Speculative 
Tomasulo Algorithm 

• Issue—get instruction from FP Op Queue 
–   If reservation station and reorder buffer slot free, issue instr & send 

operands & reorder buffer no. for destination (this stage sometimes called 
“dispatch”) 

• Execution—operate on operands (EX) 
–   When both operands ready then execute; if not ready, watch CDB for result; 

when both in reservation station, execute; checks RAW (sometimes called 
“issue”) 

• Write result—finish execution (WB) 
–   Write on Common Data Bus to all awaiting FUs & reorder buffer; mark 

reservation station available. 

• Commit—update register with reorder result 
–   When instr. at head of reorder buffer & result present, update register with 

result (or store to memory) and remove instr from reorder buffer. Mispredicted 
branch flushes reorder buffer (sometimes called “graduation”) 
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Speculative Tomasulo Example 

  LD  F0 10 R2 
 ADDD  F10 F4 F0 
 DIVD  F2 F10  F6 
 BNEZ  F2  Exit 

  LD  F4 0 R3 
 ADDD  F0 F4 F9 
 SD  F4 0 R3 
 … 

Exit: 
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Tomasulo with Reorder buffer 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 F0 LD F0,10(R2) N 

Done? 

Dest 
Dest 

Oldest 

Newest 

from  
Memory 

1  10+R2 
Dest 

Reorder Buffer 

Registers 

Instruction Dest. Value 
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2  ADDD  R(F4),ROB1 

Tomasulo with Reorder buffer 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

F10 

F0 

ADDD F10,F4,F0 

LD F0,10(R2) 

N 

N 

Done? 

Dest 
Dest 

Oldest 

Newest 

from  
Memory 

1  10+R2 
Dest 

Reorder Buffer 

Registers 

Instruction Dest. Value 
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3  DIVD  ROB2,R(F6) 
2  ADDD  R(F4),ROB1 

Tomasulo with Reorder buffer 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

F2 

F10 

F0 

DIVD F2,F10,F6 

ADDD F10,F4,F0 

LD F0,10(R2) 

N 

N 

N 

Done? 

Dest 
Dest 

Oldest 

Newest 

from  
Memory 

1  10+R2 
Dest 

Reorder Buffer 

Registers 

Instruction Dest. Value 
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• Skip some cycles 
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3  DIVD  ROB2,R(F6) 
2  ADDD  R(F4),ROB1 
6  ADDD  ROB5, R(F6) 

Tomasulo with Reorder buffer 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

F0 ADDD F0,F4,F6 N 

F4 LD F4,0(R3) N 

-- BNE F2,<…> N 

F2 

F10 

F0 

DIVD F2,F10,F6 

ADDD F10,F4,F0 

LD F0,10(R2) 

N 

N 

N 

Done? 

Dest 
Dest 

Oldest 

Newest 

from  
Memory 

1  10+R2 
Dest 

Reorder Buffer 

Registers 

5  0+R3 

Instruction Dest. Value 
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3  DIVD  ROB2,R(F6) 
2  ADDD  R(F4),ROB1 
6  ADDD  ROB5, R(F6) 

Tomasulo with Reorder buffer 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

-- 

F0 

ROB5 

  

SD 0(R3),F4 

ADDD F0,F4,F6 

N 

N 

F4 LD F4,0(R3) N 

-- BNE F2,<…> N 

F2 

F10 

F0 

DIVD F2,F10,F6 

ADDD F10,F4,F0 

LD F0,10(R2) 

N 

N 

N 

Done? 

Dest 
Dest 

Oldest 

Newest 

from  
Memory 

Dest 

Reorder Buffer 

Registers 

1  10+R2 
5  0+R3 

Instruction Dest. Value 
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3  DIVD  ROB2,R(F6) 

Tomasulo with Reorder buffer 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

-- 

F0 

M[10] 

  

SD 0(R3),F4 

ADDD F0,F4,F6 

Y 

N 

F4 M[10] LD F4,0(R3) Y 

-- BNE F2,<…> N 

F2 

F10 

F0 

DIVD F2,F10,F6 

ADDD F10,F4,F0 

LD F0,10(R2) 

N 

N 

N 

Done? 

Dest 
Dest 

Oldest 

Newest 

from  
Memory 

1  10+R2 
Dest 

Reorder Buffer 

Registers 

2  ADDD  R(F4),ROB1 
6  ADDD  M[10],R(F6) 

Instruction Dest. Value 
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3  DIVD  ROB2,R(F6) 
2  ADDD  R(F4),ROB1 

- 

Tomasulo with Reorder buffer 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

-- 

F0 

M[10] 

--- 

SD 0(R3),F4 

ADDD F0,F4,F6 

Y 

Ex 

F4 M[10] LD F4,0(R3) Y 

-- BNE F2,<…> N 

F2 

F10 

F0 

DIVD F2,F10,F6 

ADDD F10,F4,F0 

LD F0,10(R2) 

N 

N 

N 

Done? 

Dest 
Dest 

Oldest 

Newest 

from  
Memory 

1  10+R2 
Dest 

Reorder Buffer 

Registers 

Instruction Dest. Value 
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Notes 
• If a branch is mispredicted, recovery is done by 

flushing the ROB of all entries that appear after 
the mispredicted branch 
– entries before the branch are allowed to continue 
– restart the fetch at the correct branch successor 

• When an instruction commits or is flushed from 
the ROB then the corresponding slots become 
available for subsequent instructions 
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Tomasulo Algorithm vs. Scoreboard 
• Control & buffers distributed with Function Units (FU) vs. 

centralized in scoreboard;  
– FU buffers called “reservation stations”; have pending 

operands 
• Registers in instructions replaced by values or pointers to 

reservation stations(RS); called  register renaming ;  
– avoids WAR, WAW hazards 
– More reservation stations than registers, so can do 

optimizations compilers can’t 
• Results to FU from RS, not through registers, over Common 

Data Bus that broadcasts results to all FUs 
•  Load and Stores treated as FUs with RSs as well 
• Integer instructions can go past branches, allowing  

FP ops beyond basic block in FP queue 
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Summary 
• Reservations stations: implicit register renaming to larger set of 

registers + buffering source operands 
– Prevents registers as bottleneck 
– Avoids WAR, WAW hazards of Scoreboard 
– Allows loop unrolling in HW 

• Not limited to basic blocks  
(integer units gets ahead, beyond branches) 

• Today, helps cache misses as well 
– Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?) 

• Lasting Contributions 
– Dynamic scheduling 
– Register renaming 
– Load/store disambiguation 

• 360/91 descendants are Pentium III; PowerPC 604; MIPS 
R10000; HP-PA 8000; Alpha 21264 
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Memory Hierarchy: Introduction 
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Memory Systems - the Big Picture 
• Memory provides processor with 

– Instructions 
– Data  

• Problem: memory is too slow and too small 

Control 

Datapath 

Memory 

Processor 
Input 

Output Instructions 

Data 

“Five Classics Components” Picture 
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                     DRAM 
Year Size Cycle Time 
1980 64 Kb 250 ns 
1983 256 Kb 220 ns 
1986 1 Mb 190 ns 
1989 4 Mb 165 ns 
1992 16 Mb 145 ns 
1995 64 Mb 120 ns 

          Capacity Speed (latency) 
Logic:  2x  in  3 years 2x  in 3 years 
DRAM:  4x  in  3 years 2x  in 10 years 
Disk:  4x  in  3 years 2x  in 10 years 

1000:1! 2:1! 

Technology Trends 
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µProc 
60%/yr. 
(2X/1.5yr) 

DRAM 
9%/yr. 
(2X/10 yrs) 1 
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Processor-Memory 
Performance Gap: 
(grows 50% / year) 

Pe
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Time 

“Moore’s Law” 

Processor-DRAM Memory Gap (latency) 

Why Cares About Memory Hierarchy? 
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• Rely on caches to bridge gap 
• Microprocessor-DRAM performance gap 

– time of a full cache miss in instructions executed 
 

1st  Alpha (7000):  340 ns/5.0 ns =  68 clks x 2 or 136 instructions 
2nd Alpha (8400): 266 ns/3.3 ns =  80 clks x 4 or 320 instructions 
3rd Alpha (t.b.d.): 180 ns/1.7 ns =108 clks x 6 or 648 instructions 
 

– 1/2X latency x 3X clock rate x 3X Instr/clock ⇒ 5X 

Today’s Microprocessor 
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Memory Hierarchy - the Big Picture 
• Problem: memory is too slow and too small 
• Solution: memory hierarchy 

Control 

Datapath 

Secondary 
Storage 
(Disk) 

Processor 

R
egisters 

L2 
Off-Chip 

Cache 

Main 
Memory 
(DRAM) 

L
1 O

n-C
hip 

C
ache 

0.5-25 5,000,000 (5ms) Speed (ns): 80-250 

<1K Size (bytes): >100G <16G <16M 

0.25-0.5 
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CPU Registers 
100s Bytes 
1s ns 

Cache 
K Bytes 
4 ns 
1-0.1 cents/bit 

Main Memory 
M Bytes 
100ns- 300ns 
$.0001-.00001 cents /bit 
Disk 
G Bytes, 10 ms  
(10,000,000 ns) 
 
10   - 10  cents/bit 

-5 -6 

Capacity 
Access Time 
Cost 

Tape 
infinite 
sec-min 
10 -8 

Registers 

Cache 

Memory 

Disk 

Tape 

Instr. Operands 

Blocks 

Pages 

Files 

Staging 
Xfer Unit 

prog./compiler 
1-8 bytes 

cache cntl 
8-128 bytes 

OS 
512-4K bytes 

user/operator 
Mbytes 

Upper Level 

Lower Level 

faster 

Larger 

Levels of Memory Hierarchy 
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Memory Configuration in Current PCs 

Processor 

System 
Controller 

L1 Cache 

Main  
Memory 
(DRAM) 

L2/L3  
Cache 

(SRAM) 

(I/O Bus) 

• Static RAM (SRAM) - used for L1, 
L2 cache 
– Fast - 0.5-25ns access time (less for on-

chip) 
– Smaller, More Expensive 
– Higher power consumption 

 
 
 
 

• Dynamic RAM (DRAM) - used for 
PC main memory 
– Slower - 80-250ns access time* 
– Larger, Cheaper 
– Lower power consumption 
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System Components 

SDRAM 
PC100/PC133 
100-133MHz 
64-128 bits wide 
2-way inteleaved 
~ 900 MBYTES/SEC )64bit) 
 
 
Double Date Rate  (DDR)  
SDRAM 
PC3200 
200 MHz  DDR 
64-128 bits wide 
4-way interleaved 
~3.2 GBYTES/SEC (64bit) 
 
 
DDR2 SDRAM 
667MHZ 
8~16 bit wide 
 

CPU 

Caches 
   System Bus 

I/O Devices 

Memory 
 I/O Controllers 

Bus Adapter 

Disks 
Displays 
Keyboards 

Networks 

NICs 

Main I/O Bus Memory 
Controller Example:   

PCI,  33-66MHz 
         32-64 bits wide 
         133-528 MB/s 
PCI-X  133MHz  64-bits wide 
            1066 MB/s 

CPU Core 
1 GHz - 3.6 GHz 
4-way Superscaler 
RISC or RISC-core (x86): 
    Deep Instruction Pipelines  
    Dynamic scheduling 
    Multiple FP, integer FUs 
    Dynamic branch prediction 
    Hardware speculation 

L1 
 
L2 
   
L3 

Memory Bus 

All   Non-blocking caches 
L1     16-128K      1-2 way set associative (on chip), separate or unified 
L2    256K- 2M   4-32 way set associative  (on chip) unified 
L3    2-16M         8-32  way set associative  (on or off chip) unified 

Examples:  Alpha, AMD K7:  EV6,  200-400 MHz 
                    Intel  PII, PIII:  GTL+    133 MHz 
                    Intel P4                         800 MHz 

North 
Bridge 

South 
Bridge 

Chipset 

I/O Subsystem 

(FSB) 

Important issue: Which component creates a system performance bottleneck? 

(possibly 
on-chip) 

Chipset 
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Intel Pentium 4 System Architecture  
  (Using The Intel 925 Chipset, 2004)  

Source: http://www.anandtech.com/showdoc.aspx?i=2088&p=4 

         CPU 
(Including cache) System Bus (Front Side Bus, FSB) 

Bandwidth usually should match or exceed 
that of main memory 

  I/O Controller Hub 
(Chipset South Bridge) 

System 
Memory 
Two 8-byte DDR2 Channels 

Main  
I/O Bus 
(PCI) 

Graphics I/O Bus (PCI Express) 

Memory Controller Hub 
(Chipset North Bridge) 

Misc. 
I/O 
Interfaces 

Misc. 
I/O 
Interfaces 

Storage I/O (Serial ATA) 

I/O Subsystem 
Current System Architecture: 
Isolated I/O:   Separate memory and I/O buses. 
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• The Principle of Locality: 
– Program access a relatively small portion of the address 

space at any instant of time. 
• Two Different Types of Locality: 

– Temporal Locality (Locality in Time): If an item is 
referenced, it will tend to be referenced again soon (e.g., 
loops, reuse) 

– Spatial Locality (Locality in Space): If an item is referenced, 
items whose addresses are close by tend to be referenced 
soon  
(e.g., straightline code, array access) 

• Last 15 years, HW relied on locality for speed 

The Principle of Locality 
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Why Hierarchy Works 
• The principle of locality 

– Programs access a relatively small portion of the 
address space at any instant of time. 
 
 
 
 
 
 

– Temporal locality: recently accessed data is likely to be 
used again 

– Spatial locality: data near recently accessed data is 
likely to be used soon 

• Result: the illusion of large, fast memory 

Address Space 0 2n - 1 

Probability 
of reference 
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CPU 

Hit: Data in Cache (no penalty) 

Miss: Data not in Cache (miss penalty) 

Cache 
Memory 

DRAM 
Memory 

Processor 

addr data 

addr data 

Cache Operation 
• Insert between CPU, Main 

Mem. 
• Implement with fast Static 

RAM 
• Holds some of a program’s  

– data 
– instructions 

• Operation: 
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Cache Performance Measures 
• Hit rate: fraction found in the cache 

– So high that we usually talk about Miss rate = 1 - Hit Rate 
• Hit time: time to access the cache 
• Miss penalty: time to replace a block from lower level, 

including time to replace in CPU 
– access time: time to acccess lower level  
– transfer time: time to transfer block 

• Average memory-access time (AMAT) 
  = Hit time + Miss rate x Miss penalty (ns or clocks) 
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Fundamental Questions 
• Q1: Where can a block be placed in the upper level?  
 (Block placement) 
 
• Q2: How is a block found if it is in the upper level?     
 (Block identification) 
 
• Q3: Which block should be replaced on a miss?     
 (Block replacement) 
 
• Q4: What happens on a write?   
 (Write strategy) 
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