
1

Pipeline: Exceptions

Dr. Tao Xie

Fall, 2017

These slides are adapted from notes by Dr. David Patterson (UCB) and Dr. Xiao Qin (Auburn)

2

Exceptions - “Stuff Happens”
• Exceptions definition: “unexpected

change in control flow”
• Another form of control hazard.

For example:
 add $1, $2, $1; causing an arithmetic overflow
 sw $3, 400($1);
 add $5, $1, $2;

 Invalid $1 contaminates other registers or memory locations!

3

Two Types of Exceptions: Interrupts and Traps
• Interrupts

– Caused by external events:
• Network, Keyboard, Disk I/O, Timer
• Page fault - virtual memory
• System call - user request for OS action

– Asynchronous to program execution
– May be handled between instructions
– Simply suspend and resume user program

• Traps
– Caused by internal events

• Exceptional conditions (overflow)
• Undefined Instruction
• Hardware malfunction

– Usually Synchronous to program execution
– Condition must be remedied by the handler
– Instruction may be retried or simulated and program continued or program

may be aborted

4

5

6

7

Synchronous vs Asynchronous
• Definition: If the event occurs at the same place

every time the program is executed with the same
data and memory allocation, the event is
synchronous. Otherwise asynchronous.

• Except for hardware malfunctions, asynchronous
events are caused by devices external to the CPU
and memory.

•Asynchronous events usually are easier to
handled because asynchronous events can be
handled after the completion of the current
instruction.

8

Exceptions in Simple five-stage pipeline
• Instruction Fetch, & Memory stages

– Page fault on instruction/data fetch
– Misaligned memory access
– Memory-protection violation

• Instruction Decode stage
– Undefined/illegal opcode

• Execution stage
– Arithmetic exception

• Write-Back stage
– No exceptions!

9

What happens during an exception?
The Hardware Part
• The pipeline has to

1) stop executing the offending instruction in midstream,
2) let all prior instructions complete,
3) flush all following instructions,
4) set a register to show the cause of the exception,
5) save the address of the offending instruction, and
6) then jump to a prearranged address (the address of the exception

handler code)

The Software Part
• The software (OS) looks at the cause of the exception and “deals” with it
• Normally OS kills the program

10

Exceptions

Exception = unprogrammed control transfer
– system takes action to handle the exception

• must record the address of the offending instruction
• record any other information necessary to return afterwards

– returns control to user
– must save & restore user state

user program

normal control flow:
 sequential, jumps, branches, calls, returns

System
Exception
Handler Exception:

return from
exception

11

12

13

Additions to MIPS ISA to support Exceptions
• EPC (Exceptional Program Counter)

–A 32-bit register
–Hold the address of the offending instruction

• Cause
–A 32-bit register in MIPS (some bits are unused currently.)
–Record the cause of the exception

• Status - interrupt mask and enable bits and determines what
exceptions can occur.

• Control signals to write EPC , Cause, and Status
• Be able to write exception address into PC, increase mux set PC

to exception address (MIPS uses 8000 00180hex).
• May have to undo PC = PC + 4, since want EPC to point to

offending instruction (not its successor); PC = PC – 4
• What else? flush all following instructions

14

Flush instructions in Branch Hazard
36 sub $10, $4, $8
40 beq $1, $3, 7 # taget = 40 + 4 + 7*4 = 72
44 and $12, $2, $5
48 or $13, $2, $6
52 ….
….
72 lw $4, 50($7)

15

Flush instructions at IF stage in Branch Hazard

Turn the instructions at IF stage into nop.

16

Flush instructions at IF stage in Branch Hazard

Turn the instructions at IF stage into nop.

2

zero control signals

17

Additions to MIPS ISA to support Exceptions

18

Exceptions Example

40hex sub $11, $2, $4
44hex and $12, $2, $5
48hex or $13, $2, $6
4Chex add $1, $2, $1; // arithmetic overflow
50hex slt $15, $6, $7
54hex lw $16, 50($7)

40000040hex sw $25, 1000($0)
40000044hex sw $12, 1000($0)

Exception handling program:

19

Exceptions Example

20

Exceptions Example

21

22

Summary
• Exceptions

– Interrupts
– Traps

• Exceptions in five-stage pipeline
• Exception detection (not covered)
• Exception handling

– Stop the offending instruction
– Flush instructions following the offending instructions
– Save the address of the offending instruction, and
– Jump to a prearranged exception handler code

23

Pipelining in MIPS
• MIPS architecture was designed to be pipelined

– Simple instruction format (makes IF, ID easy)
• Single-word instructions
• Small number of instruction formats
• Common fields in same place (e.g., rs, rt) in different formats

– Memory operations only in lw, sw instructions
(simplifies EX)

– Memory operands aligned in memory (simplifies
MEM)

– Single value for writeback (limits forwarding)
• Pipelining is harder in CISC architectures

24

Pipelined Datapath with Control Signals

25

Next Step: Adding Control

• Basic approach: build on single-cycle
control
– Place control unit in ID stage
– Pass control signals to following stages

• Later: extra features to deal with:
– Data forwarding
– Stalls
– Exceptions

26

Control for Pipelined Datapath

RegDst
ALUOp[1:0]
ALUSrc

MemRead
MemWrite
Branch

RegWrite
MemtoReg

27

Control for Pipelined Datapath
Execution/Address Calculation

stage control lines
Memory access stage

control lines
Write-back stage

control lines

Instruction Reg Dst
ALU
Op1

ALU
Op0 ALU Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

28

Datapath and Control Unit

29

Tracking Control Signals - Cycle 1

LW

30

Tracking Control Signals - Cycle 2

SW LW

31

Tracking Control Signals - Cycle 3

ADD SW LW

0
01

1

32

Tracking Control Signals - Cycle 4

SUB ADD SW LW

1

0

0

33

1

1

ADD

Tracking Control Signals - Cycle 5

SUB SW LW

34

Class Exercise
Consider the following code segment
1. LW R1, 0(R4)
2. LW R2, 0(R5)
3. ADD R3, R1, R2
4. BNZ R3, L
5. LW R4, 100(R1)
6. LW R5, 100(R2)
7. SUB R3, R4, R5
8. L: SW R3, 50(R1)

Assuming that
• there is no forwarding,
• zero testing is being resolved during ID, and
• registers can be written in the first of the WB cycle and
also be read in the send half of the same WB cycle,

Question: identify the resources of various hazards in the
above code sequence.

35

Class Exercise
Consider the following code segment
1. LW R1, 0(R4)
2. LW R2, 0(R5)
3. ADD R3, R1, R2
4. BNZ R3, L
5. LW R4, 100(R1)
6. LW R5, 100(R2)
7. SUB R3, R4, R5
8. L: SW R3, 50(R1)

Assuming that
• there is no forwarding,
• zero testing is being resolved during ID, and
• registers can be written in the first of the WB cycle and
also be read in the send half of the same WB cycle,

Question: identify the resources of various hazards in the
above code sequence.

36

Class Exercise
Consider the following code segment
1. LW R1, 0(R4)
2. LW R2, 0(R5)
3. ADD R3, R1, R2
4. BNZ R3, L
5. LW R4, 100(R1)
6. LW R5, 200(R2)
7. SUB R3, R4, R5
8. L: SW R3, 50(R1)

Use compiler techniques to reshuffle/rewrite the code
(without changing the meaning of the program) as to
minimize data hazards as far as possible. Assume that no
other general purpose registers other than those used in the
code, are available.

37

Class Exercise
Consider the following code segment
1. LW R1, 0(R4)
2. LW R2, 0(R5)
3. ADD R3, R1, R2
4. BNZ R3, L
5. LW R4, 100(R6)
6. LW R5, 200(R6)
7. SUB R3, R4, R5
8. L: SW R3, 50(R1)

Use compiler techniques to reshuffle/rewrite the code
(without changing the meaning of the program) as to
minimize data hazards as far as possible. Assume that no
other general purpose registers other than those used in the
code, are available.

1. LW R1, 0(R4)
2. LW R2, 0(R5)
3. LW R4, 100(R6)
4. LW R5, 200(R6)
5. ADD R3, R1, R2
6. BNZ R3, L
7. SUB R3, R4, R5
8. L: SW R3, 50(R1)

38

Sample Question
Use the following code fragment:
loop: LD R1,0(R2) ; load R1 from address 0+R2
DADDI R1,R1,1 ;R1=R1+1
SD 0(R2),R1 ;store R1 at address 0+R2
DADDI R2,R2,4 ;R2=R2+4
DSUB R4,R3,R2 ;R4=R3-R2
BNEZ R4,loop ;branch to loop is R4!=0
Assume that the initial value of R3 is R2+396. Let us use the

classic RISC five-stage integer pipeline (see Figure A.1)
and assume all memory accesses take 1 clock cycle.

39

 Show the timing of this instruction sequence for the
RISC pipeline without any forwarding or bypassing
hardware but assuming a register read and a write
in the same clock cycle “forwards” through the
register file. Please fill up the following pipeline
timing chart like Figure A.5. Assume that the
branch is handled by flushing the pipeline. If all
memory references take 1 cycle, how many cycles
does this loop take to execute? (hints: branch
outcomes and targets are not known until the end of
the execute stage. All instructions introduced to the
pipeline prior to this point are flushed.)

40

41

	Pipeline: Exceptions
	Exceptions - “Stuff Happens”
	Two Types of Exceptions: Interrupts and Traps
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Synchronous vs Asynchronous
	Exceptions in Simple five-stage pipeline
	What happens during an exception?
	Exceptions
	Slide Number 11
	Slide Number 12
	Additions to MIPS ISA to support Exceptions
	Flush instructions in Branch Hazard
	Flush instructions at IF stage in Branch Hazard
	Flush instructions at IF stage in Branch Hazard
	Additions to MIPS ISA to support Exceptions
	Exceptions Example
	Exceptions Example
	Exceptions Example
	Slide Number 21
	Summary
	Pipelining in MIPS
	Pipelined Datapath with Control Signals
	Next Step: Adding Control
	Control for Pipelined Datapath
	Control for Pipelined Datapath
	Datapath and Control Unit
	Tracking Control Signals - Cycle 1
	Tracking Control Signals - Cycle 2
	Tracking Control Signals - Cycle 3
	Tracking Control Signals - Cycle 4
	Tracking Control Signals - Cycle 5
	Class Exercise
	Class Exercise
	Class Exercise
	Class Exercise
	Sample Question
	Slide Number 39
	Slide Number 40
	Slide Number 41

