
1

CS572 Micro Architecture
Midterm Review

Dr. Tao Xie

Fall, 2017

These slides are adapted from notes by Dr. David Patterson (UCB) and Dr. Xiao Qin (Auburn)

2

Amazing Underlying Technology Change

• In 1965, Gordon Moore
sketched out his prediction of
the pace of silicon technology.

• Moore's Law: The number
of transistors incorporated in
a chip will approximately
double every 24 months.

• Decades later, Moore's Law
remains true.

From Intel

3

 Based on SPEED, the CPU has increased dramatically,
but memory and disk have increased only a little. This
has led to dramatic changed in architecture, Operating
Systems, and programming practices.

Why Study Computer Architecture

Answer: Technology playing field is always changing

Understand hardware for software tuning

4

What is Computer Architecture ?
• The science and art of selecting and

interconnecting hardware components to
create computers that meet functional,
performance and cost goals.

• An analogy to architecture of
buildings…

SOFTWARE

5

Two notions of performance
Plane

Boeing 747

BAD/Sud
Concodre

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

• Which has higher performance?
1. Time to deliver 1 passenger?
2. Time to deliver 400 passengers?

How to Measure Time?
• User ⇒ actual elapsed time to complete particular task

is only true basis for comparison

– sum of I/O time, User + System CPU, time spent on
other tasks, boot time, etc.

– alternatives may mislead!

• CPU designer ⇒ want measure relating to how fast
processor hardware can perform basic functions (CPU
execution time)

“Iron Triangle” of CPU Performance
–CPU execution time for program

= Clock Cycles for program x Clock Cycle Time

– Substituting for clock cycles:

CPU execution time for program
 = (Instruction Count x CPI)
 x Clock Cycle Time
 = Instruction Count x CPI x Clock Cycle Time

CPI

Instruction Count Clock Cycle Time

8

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

 Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

 Final thoughts: Performance Equation

9

Quantitative Design: Amdahl's Law

This fraction enhanced

ExTimeold ExTimenew

ExTimenew = ExTimeold x (1 - Fractionenhanced) + Fractionenhanced

Speedupoverall =
ExTimeold

ExTimenew

Speedupenhanced

=
1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

10

• Floating point (FP) instructions improved to run
2X; but only 10% of actual instructions are FP.
Suppose the old execution time is ExTimeold,
What are the current execution time and speedup?

Quantitative Design: Amdahl's Law

Speedupoverall = 1
0.95

= 1.053

ExTimenew = ExTimeold x (0.9 + 0.1/2) = ExTimeold x 0.95

 Speedup =
ExTimeold

ExTimenew

 =
1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

 Speedup =
1

(1 - 0.1) + 0.1/2
= 1.053

11

Multiple Enhancements

12

I/O system Processor

Compiler
Operating System

(Unix;
Windows 9x)

Application (Netscape)

Digital Design
Circuit Design

Instruction Set
 Architecture

Datapath & Control

transistors, IC layout

Memory Hardware

Software Assembler

Instruction Set Architecture (ISA)

• Serve as an interface between software and hardware.
• Provides a mechanism by which the software tells the

hardware what should be done.

13

Operand Locations in Four ISA Classes
GPR

14

General Purpose Registers (GPR)
• Why GPRs Dominate?

– Registers are much faster than memory (even
cache)
• Register values are available immediately
• When memory isn’t ready, processor must wait (“stall”)

– Registers are convenient for variable storage
• Compiler assigns some variables just to registers
• More compact code since small fields specify registers

(compared to memory addresses)

Registers Cache

Memory Processor Disk

15

• Memory is byte addressed and
provides access for bytes (8
bits), half words (16 bits),
words (32 bits), and double
words(64 bits).

• Addresses Specify Byte
Locations
– Address of the first byte in

word
– Successive word addresses

differ by 4 (32-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Memory Addressing

16

Addressing Objects: Endianess and Alignment
• Big Endian: address of most significant byte = word address

(xx00 = Big End of word)
– IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: address of least significant byte = word address
(xx00 = Little End of word)
– Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

Alignment: require that objects fall on address
 that is multiple of their size.

0 1 2 3

Aligned

Not
Aligned

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

17

Types of Addressing Modes (VAX)
 Addressing Mode Example Action
1. Register direct Add R4, R3 R4 <- R4 + R3
2. Immediate Add R4, #3 R4 <- R4 + 3
3. Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]
4. Register indirect Add R4, (R1) R4 <- R4 + M[R1]
5. Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]
6. Direct Add R4, (1000) R4 <- R4 + M[1000]
7. Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]
8. Autoincrement Add R4, (R2)+ R4 <- R4 + M[R2]
 R2 <- R2 + d
9. Autodecrement Add R4, (R2)- R4 <- R4 + M[R2]
 R2 <- R2 - d
10. Scaled Add R4, 100(R2)[R3] R4 <- R4 +
 M[100 + R2 + R3*d]
• Studies by [Clark and Emer] indicate that modes 1-4 account for 93% of all

operands on the VAX.

18

Generic Examples of Instruction Formats

Variable:

Fixed:

Hybrid:

…
…

19

Instruction Formats
• If code size is most important, use variable length instructions:
 (1)Difficult control design to compute next address
 (2) complex operations, so use microprogramming
 (3) Slow due to several memory accesses

• If performance is most important, use fixed length instructions
 (1) Simple to decode, so use hardware
 (2) Works well with pipelining
 (3) Wastes code space because of simple operations

• Hybrid: Recent embedded machines (ARM 32-bit, MIPS)
added an optional mode to execute subset of 16-bit wide
 instructions (Thumb, MIPS16); per procedure decide
 performance or density

20

MIPS Design Principles
1. Simplicity Favors Regularity

• Keep all instructions a single size
• Always require three register operands in arithmetic

instructions
2. Smaller is Faster

• Has only 32 registers rater than many more
3. Good Design Makes Good Compromises

• Comprise between providing larger addresses and
constants instruction and keeping instruction the same
length

4. Make the Common Case Fast
• PC-relative addressing for conditional branches
• Immediate addressing for constant operands

21

MIPS Instructions
• All instructions exactly 32 bits wide
• Different formats for different purposes
• Similarities in formats ease implementation

op rs rt offset

6 bits 5 bits 5 bits 16 bits

op rs rt rd funct shamt

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format

I-Format

op address

6 bits 26 bits

J-Format

31 0

31 0

31 0

Why 5 bits?

22

MIPS Data Transfer Instructions

• Transfer data between registers and memory
• Instruction format (assembly)

 lw $dest, offset($addr) load word
 sw $src, offset($addr) store word

• Uses:
– Accessing a variable in main memory
– Accessing an array element

23

Example - Loading a Simple Variable

lw R5,8(R2) Memory

0x00

Variable Z = 692310

Variable X
Variable Y

0x04
0x08
0x0c
0x10
0x14
0x18
0x1c

8

+

Registers

R0=0 (constant)
R1

R2=0x10

R30
R31

R3
R4
R5 R5

R2=0x10

R5 = 629310
Variable Z = 692310

24

Critical Path for sw
sw R1, -100(R2)

P
C

address Inst.

R1

R2

-100

sw

ReadRegister#1

ReadRegister#2

WriteRegister

Data
Port#1

Port#2

ALU

REGISTERS
ROM

Instruction
Memory

Data Memory
RAM

DataIn

Address

DataOut

16

SIGN-EXTEND
16 32

25

Datapath Connections for MIPS add and lw

add R1, R2, R3
P
C address Inst.

R1
R2
R3
add

ReadRegister#1
ReadRegister#2

WriteRegister
Data

Port#1

Port#2
ALU

CLK

lw R1, -100(R2)

P
C address Inst.

R1
R2
-100
lw

ReadRegister#1
ReadRegister#2

WriteRegister
Data

Port#1

Port#2
ALU

Instruction
Memory

Data Memory
RAM

DataIn

Addres
s

DataOut

16

SIGN-EXTEND 16 32

26

Datapath Connections for MIPS add and lw

P
C address Inst.

R1
R2
-100
lw

ReadRegister#1
ReadRegister#2

WriteRegister
Data

Port#1

Port#2
ALU

Instruction
Memory

Data Memory
RAM

DataIn

Addres
s

DataOut

16

SIGN-EXTEND 16 32

NEED MUX

27

Complete Single-Cycle Datapath

Control signals
shown in blue

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD
Instruction

Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

rd
I[15:11]

rt
I[20:16]

rs
I[25:21]

immediate/
offset
I[15:0]

0

1

0

1
1

0

10

28

Control Unit Design
• Desired function:

– Given an instruction word….
– Generate control signals needed to execute

instruction
• Implemented as a combinational logic

function:
– Inputs

• Instruction word - op and funct fields
• ALU status output - Zero

– Outputs - processor control points
• ALU control signals
• Multiplexer control signals
• Register File & memory control signal

rd funct shamt
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format op rs rt

29

Control Unit Structure

• Control unit as shown: one huge logic block
• Idea: decompose into smaller logic blocks

– Smaller blocks can be faster
– Smaller blocks are easier to work with

• Observation (rephrased):
– The only control signal that depends on the
funct field is the ALU Operation signal

– Idea?: separate logic for ALU control

30

ALU Control: Truth Table
• Use don’t care values to minimize length

– Ignore F5, F4 (they are always “10”)
– Assume ALUOp never equals “11”

Operation
010
110
010
110
000
001
111

ALUOp1
0
X
1
1
1
1
1

ALUOp0
0
1
X
X
X
X
X

F5
X
X

F4

X

F3

X
0
0
0
0
1

F2

X
0
0
1
1
0

F1

X
0
1
0
0
1

F0

X
0
0
0
1
0

X X X X X

X X
X X
X X
X X
X X

Operation Desired Action
lw add
sw add
beq subtract
add add
sub subtract
and
or
slt

and
or

set on less than

ALU Ctl.
010
010
110
010
110
000
001
111

funct
XXXXXX
XXXXXX
XXXXXX
100000
100010
100100
100101
101010

Instr. type
data transfer
data transfer

branch
r-type
r-type
r-type
r-type
r-type

ALUOp
00
00
01
10
10
10
10
10

31

Alternatives to Single-Cycle

• Multicycle Processor Implementation
– Shorter clock cycle
– Multiple clock cycles per instruction
– Some instructions take more cycles then others
– Less hardware required

• Pipelined Implementation
– Overlap execution of instructions
– Try to get short cycle times and low CPI
– More hardware required … but also more

performance!

32

• We will be reusing functional units
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• Our control signals will not be determined
directly by instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

Multicycle Approach

33

Idea behind multicycle approach
• We define each instruction from the ISA perspective (do this!)

• Break it down into steps following our rule that data flows

through at most one major functional unit (e.g., balance work
across steps)

• Introduce new registers as needed (e.g, A, B, ALUOut, MDR,
etc.)

• Finally try and pack as much work into each step
 (avoid unnecessary cycles)
while also trying to share steps where possible
 (minimizes control, helps to simplify solution)

34

Summary:

35

Full Multicycle Datapath

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero
RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB
<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1
2
3

M
U
X

1

0

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

36

Full Multicycle Implementation

37

What is Pipelining?

• A way of speeding up execution of
instructions

• Key idea:

overlap execution of multiple instructions

38

The Basic Pipeline For MIPS

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

I
n
s
t
r.

O
r
d
e
r

What do we need to add to actually split the datapath into stages?

39

Basic Pipelined Processor

40

Single-Cycle vs. Pipelined Execution

Non-Pipelined
0 200 400 600 800 1000 1200 1400 1600 1800

lw $1, 100($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $2, 200($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $3, 300($0) Instruction
Fetch

Time
Instruction
Order

800ps

800ps

800ps

Pipelined
0 200 400 600 800 1000 1200 1400 1600

lw $1, 100($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $2, 200($0)

lw $3, 300($0)

Time
Instruction
Order

200ps
Instruction

Fetch
REG
RD

ALU REG
WR

MEM

Instruction
Fetch

REG
RD

ALU REG
WR

MEM
200ps

200ps 200ps 200ps 200ps 200ps

41

Pipeline Hazards
• Limits to pipelining: Hazards prevent next

instruction from executing during its
designated clock cycle
– Structural hazards: two different instructions use

same h/w in same cycle
– Data hazards: Instruction depends on result of

prior instruction still in the pipeline
– Control hazards: Pipelining of branches & other

instructions that change the PC

42

Example
 Consider the following MIPS code fragments, each

containing two instructions. For each code fragment
identify the type of hazard that exists between the two
instructions and the registers involved.

LW R4, 0(R2)
ADD R3, R4, R2

RAW: add requires the value of R4 returned by lw

43

Structural Hazards
• Attempt to use same resource twice at same time
• Example: Single Memory for instructions, data

– Accessed by IF stage
– Accessed at same time by MEM stage

• Solutions ?
– Delay second access by one clock cycle

– Provide separate memories for instructions, data
•This is what the book does

•This is called a “Harvard Architecture”

•Real pipelined processors have separate caches

44

Dealing with Structural Hazards
Stall

– low cost, simple
– Increases CPI
– use for rare case since stalling has performance effect

Pipeline hardware resource
– useful for multi-cycle resources
– good performance
– sometimes complex e.g., RAM

Replicate resource
– good performance
– increases cost (+ maybe interconnect delay)
– useful for cheap or divisible resources

45

Data Hazards
• Data hazards occur when data is used

before it is stored

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program

execution

order

(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of

register $2:

DM Reg

Reg

Reg

Reg

DM

The use of the result of the SUB instruction in the next three instructions causes a
data hazard, since the register is not written until after those instructions read it.

46

Data Hazards

• Solutions for Data Hazards
– Stalling
– Forwarding:

• connect new value directly to next stage
– Reordering

47

Sample Question
For each code fragment identify the type of hazard that exists

between the two instructions and the registers involved.

LW R1, 0(R2)
ADD R3, R1, R2

RAW: add requires the value of R1 returned by lw

48

Control Hazards
A control hazard is when we need to find
the destination of a branch, and can’t fetch
any new instructions until we know that
destination.

A branch is either

– Taken: PC <= PC + 4 + Imm
– Not Taken: PC <= PC + 4

49

Control Hazard Solutions
• Stall

– stop loading instructions until result is available
• Predict

– assume an outcome and continue fetching (undo if
prediction is wrong)

– lose cycles only on mis-predict
• Delayed branch

– specify in architecture that following instruction is
always executed

50

Example

51

Sample Question

• True or False

1. Moore's Law gives a quick way to find the
speedup from some enhancement.

2. Hazards prevent next instruction from
executing during its designated clock cycle.

52

Multiple Choices

• Which statement about pipelining is false?
– Multiple instructions are being processed at

same time
– Best case speedup of N, which is the number of

stages
– Instructions never interfere with each other
– Stages are isolated by registers

C

53

Amdahl’s Law
• Suppose a program runs in 100 seconds on

a computer, with multiply operations
responsible for 80 seconds of this time.
How much do you have to improve the
speed of multiplication if you want your
program to run 2 times faster?

N = 8/3

	CS572 Micro Architecture�Midterm Review
	Amazing Underlying Technology Change
	Why Study Computer Architecture
	What is Computer Architecture ?
	Two notions of performance
	How to Measure Time?
	“Iron Triangle” of CPU Performance
	 Final thoughts: Performance Equation
	Slide Number 9
	Slide Number 10
	Multiple Enhancements
	Instruction Set Architecture (ISA)
	Operand Locations in Four ISA Classes
	General Purpose Registers (GPR)
	Memory Addressing
	Addressing Objects: Endianess and Alignment
	Types of Addressing Modes (VAX)
	Generic Examples of Instruction Formats
	Instruction Formats
	MIPS Design Principles
	MIPS Instructions
	MIPS Data Transfer Instructions
	Example - Loading a Simple Variable
	Critical Path for sw
	Datapath Connections for MIPS add and lw
	Datapath Connections for MIPS add and lw
	Complete Single-Cycle Datapath
	Control Unit Design
	Control Unit Structure
	ALU Control: Truth Table
	Alternatives to Single-Cycle
	Multicycle Approach
	Idea behind multicycle approach
	Summary:
	Full Multicycle Datapath
	Full Multicycle Implementation
	What is Pipelining?
	The Basic Pipeline For MIPS
	Basic Pipelined Processor
	Single-Cycle vs. Pipelined Execution
	Pipeline Hazards
	Example
	Structural Hazards
	Dealing with Structural Hazards
	Data Hazards
	Data Hazards
	Sample Question
	Control Hazards
	Control Hazard Solutions
	Example
	Sample Question
	Multiple Choices
	Amdahl’s Law

