Pipeline: Hazards

Fall, 2017

These slides are adapted from notes by Dr. David Patterson (UCB)

Annhouncements

e Midterm Exam is on 10/23/2017 In class.

 Midterm Review iIs on 10/18/2017.

Data Hazards

e Data hazards occur when data Is used
before it Is stored

Time (in clock cycles)

valueof 7 CC1 CC2 CC3 CcC4 CC5 CC6 CC7 cCcs8 CCo9
register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Program]
execution

order!

(in instructions)]] o
sub $2,$1,$3 | IM Reg| | E |— —|:DM
and $12, $2, $5 IM {— JI[n %— —|:DM '~ Reg
or $13, $6, M {— J:[] % -|:DM— —{ Reg
add $14, $2, M L % I oM [1Reg
sw $15, 100 M H J:[] % —[DMF‘ }>Reg
v

The use of the result of the SUB instruction in the next three instructions causes a
data hazard, since the register is not written until after those instructions read it.

Execution Order is:
Instr,
Instr,

Data Hazards
Read After Write (RAW)

Instr, tries to read operand before Instr, writes it

I1: add r1,r2,r3
J: sub r4,r1,r3

» Caused by a “Dependence” (in compiler nomenclature). This
hazard results from an actual need for communication.

Execution Order is:
Instr,
Instr,

Data Hazards
Write After Read (WAR)

Instr, tries to write operand before Instr, reads i
— Gets wrong operand

l: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,rl,r7

— Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

« Can’t happen in MIPS 5 stage pipeline because:
—All instructions take 5 stages, and

— Reads are always in stage 2, and

— Writes are always in stage 5

Execution Order is:
Instr,
Instr,

Data Hazards
Write After Write (WAW)

Instr, tries to write operand pefore Instr, writes it
— Leaves wrong result (Instr, not Instr;)

I: sub r1,r4,r3
J: add rl1,r2,r3
K: mul r6,rl,r7

o Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.
o Can’t happen in MIPS 5 stage pipeline because:

—All instructions take 5 stages, and
— Writes are always in stage 5

*Will see WAR and WAW in later more
complicated pipes

Data Hazard Detection in MIPS

Time (in clock cycles) >

Read af.rer Wr‘i.re valueof 17 CC1 CC2 CC3 CC4 CC5 CCo6 CC7 CC8 CC9

register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Progra_m O
execution IF/ID ID/EX EX/MEM MEM/WB

order(’
(in instructions)

sub $2,$1,$3 | IM Reg| | DM [|— g9
}E//

and $12, $2, $5 IM +— Regl | /—I—_Dﬁ — Reg

or $13, $6, $2 M Reg|| Ej— -|: DM{— —{Reg

add $14, $2, $2 IM —

|

-
|
|

Reg

Reg|_| —|: DM |

sw $15, 100($2) M H HReq] DM Reg

o
|

Data Hazards

e Solutions for Data Hazards
— Stalling

— Forwarding:
« connect new value directly to next stage

— Reordering

add $s0,%t0,$t1

STALL

STALL

sub $t2,$s0,$t3

Data Hazard - Stalling

2 ¢

©

8

10

12

16

18

‘\\\r/]vgrtéen
OO OO
BUBBLE | BUBBLE | BUBBLE | BUBBLE | BUBBLE
OO0 0 0|0
BUBBLE | BUBBLE | BUBBLE | BUBBLE | BUBBLE
$10read

Data Hazards - Stalling

Simple Solution to RAW

Hardware detects RAW and stalls

Assumes register written then read each cycle
+ low cost to implement, simple
-- reduces IPC

Try to minimize stalls

Minimizing RAW stalls

Bypass/forward/shortcircuit (We will use the word “forward”)
Use data before it is in the register

+ reduces/avoids stalls

-- complex
Crucial for common RAW hazards

10

Data Hazards - Forwarding

» Key idea: connect new value directly to next stage
o Still read s0, but ignore in favor of new result

0 2 1 6 8 10 12 16
add $s0,$t0,$t1 IF | ID MEM z\(’,
new value
of s0
sub $t2, §s0,$t3 IF - MEM WB

Problem: what about load instructions?

11

Data Hazards - Forwarding

o STALL still required for load - data avail. after MEM

« MIPS architecture calls this delayed load, initial
Implementations required compiler to deal with this

0 2 : 6 ; 10 1

<_
STALL O O

BUBBLE | BUBBLE

sub $t2,$s0,$t3

Data Hazards

This is another
representation

of the stall.
LW R1, 0(R2) IF ID EX MEM WB
SUB R4, R1,R5 IF ID EX MEM WB
AND R6, R1, R7 IF ID EX MEM WB
OR RS8, R1, R9 IF ID EX MEM WB
LW R1, 0(R2) IF ID EX MEM WB
SUB R4,R1,R5 IF ID stall EX MEM WB
AND R6, R1, R7 IF stall ID EX MEM | WB
OR R8,RL,R9 @ IF ID | EX | MEM | WB

13

Time (in clock cycles)

Value of [J
register $2:

Program[]
execution
order(}

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Forwarding

Key idea: connect data internally before it's stored

CC9
-20

cc1 cc2 cc3 CC4 ccs cce cc7 ccs

10 10 10 10 10/-20 -20 -20 -20

IF/ID ID/EX EX/MEM MEM/WB
IM Reg[| DM | Reg
|+
— - 7 —
M — Hregl_ %*/T—Dﬁ —Reg
IM Reg|| %j— -|:DM— —{ Reg

Mt HRreg | —|:DM— L {Reg

T PHIER

How would you design the forwarding?

Reg

14

No Forwarding

ID/EX EX/MEM MEM/WB

AR,

Registers

|
Data
‘ / memory

Data Hazard Solution: Forwarding

Key idea: connect data internally before it's stored

Time (in clock cycles) >

CC1 CcC2 CC3 CC4 CC5 CCé6 CcCc7 CC8 CC9

Value of register $2 : 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EXIMEM : X X X -20 X X X X X
Value of MEM/WB : X X X X -20 X X X X

Program
execution order(]

(in instructions)]
sub $2,$1,$3 | IM Reg[| DM | Reg

and $12, $2, $5 IM H FHReg[] DM H HReg
—
or $13, $6, 52 M Reo] j— -[DM | Reg

add $14, $2, $2 IM H HHReg[| %— —[DM— 1 Reg
sw $15, 100(32) M e Reg] % ~|ﬂT_|:|>Reg
A

Assumption:
e The register file forwards values that are read
and written during the same cycle.

16

Data Hazard Summary

* Three types of data hazards
- RAW (MIPS)
— WAW (not in MIPS)
— WAR (not in MIPS)

e Solution to RAW In MIPS
— Stall

— Forwarding
e Detection & Control

o Astall is needed if read a register after a load
Instruction that writes the same register.

— Reordering

17

Control Hazards

A control hazard 1s when we need to find
the destination of a branch, and can’t fetch

any new Instructions until we know that
destination.

A branch Is either
— Taken: PC<=PC +4 + Imm
— Not Taken: PC<=PC + 4

18

Control Hazards

10: beq r1,|r3,36 I

14: and r2,r3,r5
18: or ro,r1,r7

22: add r8,r1,r9

}
36: xorrl0,r1,r11

fetch

fetch

Control Hazard on Branches

fetch

oloile

fetch

i |r2

The penalty when branch take is 3 cyclesl Three Stage Stall

19

Branch Hazards

 Just stalling for each branch is not practical
Common assumption: branch not taken

e When assumption fails: flush three instructions

Programt] Time (in clock cycles)
si‘g:r“j“onm cc1 ccz2 ccs cc4 ccs cce ccv ccs cco
(in instructions)

smasesar [H W)

wanis12,52,5 @_Hﬂeg #}

2514525 FH A

[

| r2wrsi 5o DA e

Basic Pipelined Processor

IF/ID

PC

—Hx c Z

Instruction
memoryl

ID/EX

IRs..10

IR11.15

IR, _I

MEM/WB.IR

Registers

al

-

16_@ 32

— 4

Branch
taken
Zero?
(w)
u
X
>i > ALU L >
M
u _—
o

extend

Y

Data
memory

MEM/WB

Y

In our original Design, branches have a penalty of 3 cycles

21

Reducing Branch Delay

PC

4 >

>ADD
IF/ID -
/‘
(M
ADD u
X
IRG..10 -
IR11..15
Instruction | IR | _
memory g MEM/WB.IR| Registers
16 [Sign- \ 32
™ extend

N

=]

Zero?

ID/EX

Move following to ID stage
a) Branch-target address calculation
b) Branch condition decision

EX/MEM MEM/WB
M Data
u memory —» L .| M
X u
- - X

Reduced penalty (1 cycle) when branch take!

22

Branches

.~—/- "
= Most of the work for a branch computation is done in the EX stage.
— The branch target address is computed.

— The source registers are compared by the ALU, and the Zero flag is set
or cleared accordingly.

= Thus, the branch decision cannot be made until the end of the EX stage.
— But we need to know which instruction to fetch next, in order to keep
the pipeline running!
— This leads to what’s called a control hazard.

Clock cycle
t 2 3 4 5 6 7 8
beq $2, $3, Label | ™ E Reg_g ’E DM E Reg

299 M |-

Stalling is one solution

= Again, stalling is always one possible solution.

Clock cycle
1 2 3 4 5 6 7 8

beq $2, $3, Label 'M——RQ_BIDM__RQ

]
|
|
|

I |M_ Q IM—E—Reg BIDM__R&Q

» Here we just stall until cycle 4, after we do make the branch decision.

Branch prediction

|
= Another approach is to guess whether or not the branch is taken.
— In terms of hardware, it’s easier to assume the branch is not taken.

— This way we just increment the PC and continue execution, as for
normal instructions.

= |f we’re correct, then there is no problem and the pipeline keeps going at
full speed.

Clock cycle
1 2 3 4 5 6 7

beq $2, $3, Label | ™ Reg: :% I DM | || Reg

next instruction 1 M™ME R _5‘ I M e

. . IM — —Reg_é_ DM Reg
next instruction 2 || _5‘

Branch misprediction

= |f our guess is wrong, then we would have already started executing two
instructions incorrectly. We’ll have to discard, or flush, those instructions
and begin executing the right ones from the branch target address, Label.

Clock cycle

beq $2, $3, Label IM

Performance gains and losses

|
» QOverall, branch prediction is worth it.
— Mispredicting a branch means that two clock cycles are wasted.

— But if our predictions are even just occasionally correct, then this is
preferable to stalling and wasting two cycles for every branch.

» All modern CPUs use branch prediction.
— Accurate predictions are important for optimal performance.

— Most CPUs predict branches dynamically—statistics are kept at run-
time to determine the likelihood of a branch being taken.

» The pipeline structure also has a big impact on branch prediction.

— A longer pipeline may require more instructions to be flushed for a
misprediction, resulting in more wasted time and lower performance.

— We must also be careful that instructions do not modify registers or
memory before they get flushed.

Implementing branches

= We can actually decide the branch a little earlier, in ID instead of EX.
— Our sample instruction set has only a BEQ.
— We can add a small comparison circuit to the ID stage, after the

source registers are read.

= Then we would only need to flush one instruction on a misprediction.

beq $2, $3, Label

next in

Label:

jon 1

Reg

Clock cycle

3

4

DM

Reg

DM

Reg

Implementing flushes

= We must flush one instruction (in its IF stage) if the previous instruction is
BEQ and its two source registers are equal.

= We can flush an instruction from the IF stage by replacing it in the IF/ID
pipeline register with a harmless nop instruction.

— MIPS uses sll $0, S0, 0 as the nop instruction.
— This happens to have a binary encoding of all 0s: 0000 0000.

» Flushing introduces a bubble into the pipeline, which represents the one-
cycle delay in taking the branch.

= The IF.Flush control signal shown on the next page implements this idea,
but no details are shown in the diagram.

v
‘:" v":
Q
X
Y,
i\\ 0

Branching without forwarding and load stalls

N
— [ID/EX
0 /\ > EX/MEM
W/ IF/ID > Control M W MEM/WB
PEZSrc > EX M >TWH
4= N N |] [
BN S The other
P P SN o hdd— stuff just
“i1v lﬂ_ itf]t'fzt | / won’t fit!
______/f /
[» Read Read
register 1 data 1 I
Addr Instr N ALU
N Ry EES R »| Read f \ > Zero|—y)
register 2 __/ ALUSrc Result—,|
. Write Read | 0 ——p Address
Instruction " register data 2 Data
memory . .
Write Registers 1 memory
data
A ol Write Read |mp|
IF Flush **(Extend RegDst data _data
\._______/’;
T Rd > »
’ "\

30

Branch Behavior in Programs

e Based on SPEC benchmarks on DLX

— Branches occur with a frequency of 14% to 16% in integer
programs and 3% to 12% in floating point programs.

— About 75% of the branches are forward branches
— 60% of forward branches are taken

— 80% of backward branches are taken

— 67% of all branches are taken

« Why are branches (especially backward branches)
more likely to be taken than not taken?

31

Summary

= Three kinds of hazards conspire to make pipelining difficult.

= Structural hazards result from not having enough hardware available to
execute multiple instructions simultaneously.

— These are avoided by adding more functional units (e.g., more adders
or memories) or by redesigning the pipeline stages.

= Data hazards can occur when instructions need to access registers that
haven’t been updated yet.

— Hazards from R-type instructions can be avoided with forwarding.
— Loads can result in a “true” hazard, which must stall the pipeline.

» Control hazards arise when the CPU cannot determine which instruction
to fetch next.

— We can minimize delays by doing branch tests earlier in the pipeline.

— We can also take a chance and predict the branch direction, to make
the most of a bad situation.

Written Assignment 2 (1)

When designing memory systems it becomes useful to know the frequency of
memory reads versus writes and also accesses for instructions versus data.

We assume the following notation:
|C = number of dynamically executed instructions

f F =frequency of instruction fetch = 100% by definition
f_L = frequency of load instructions = 26% from given information
f S = frequency of store instructions = 10% from given information. Please find

the percentage of all memory accesses for data

Number of data accesses

Percentage of all memory accesses for data = ---------------=---=--mmmommmcme--
Number of memory accesses
(fL+fS)*A*IC 26+10

----------------------------- = - = 26.5

(f F+f L+f S)* A* IC 100+26+10

33

Written Assignment 2 (2)

What are the economic arguments (i.e., more computers sold)
for and against changing instruction set architecture in
desktop and server markets?

What about embedded markets?

Desktop: if change provide support for new functions, such as multimedia, then change may
enable growth in market share for that segment.

Server: if the new ISA provides better performance, then the trend towards using open source
software for servers reduces the cost of change because re-compilation is possible,

Embedded: new ISA allows more and different I/O in the base chip, reducing the need for
support chips, and thus, system cost.

34

« For the following code Identify all data
dependence between Instructions. Please use the
format “instruction X depends on instruction Y
over register Z”.

1 LD FO, 0 (R1)
2 ADDD F4, FO, F2
3 SD F4, O(R1)
4 LD FO, -8(R1)
5 ADDD F4, FO, F2
6 SD F4, -8(R1)

Instruction 2 depends on instruction 1 (instruction 1 result in FO
used by instruction 2), Similarly, instructions (4,5)
Instruction 3 depends on instruction 2 (instruction 2 result in F4

used by instruction 3), Similarly, instructions (5,6)
35

	Pipeline: Hazards
	Announcements
	Data Hazards
	Data Hazards
	Data Hazards
	Data Hazards
	Data Hazard Detection in MIPS
	Data Hazards
	Data Hazard - Stalling
	Data Hazards - Stalling
	Data Hazards - Forwarding
	Data Hazards - Forwarding
	Data Hazards
	Forwarding
	No Forwarding
	Data Hazard Solution: Forwarding
	Data Hazard Summary
	Control Hazards
	Control Hazard on Branches�
	Branch Hazards
	Basic Pipelined Processor
	Reducing Branch Delay	
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Written Assignment 2 (1)
	Written Assignment 2 (2)
	Sample Question

