
1

Pipeline: Hazards

Fall, 2017

These slides are adapted from notes by Dr. David Patterson (UCB)

2

Announcements

• Midterm Exam is on 10/23/2017 in class.

• Midterm Review is on 10/18/2017.

3

Data Hazards
• Data hazards occur when data is used

before it is stored

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution
order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of
register $2:

DM Reg

Reg

Reg

Reg

DM

The use of the result of the SUB instruction in the next three instructions causes a
data hazard, since the register is not written until after those instructions read it.

4

Data Hazards
Read After Write (RAW)

InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler nomenclature). This
hazard results from an actual need for communication.

Execution Order is:
InstrI
InstrJ

I: add r1,r2,r3
J: sub r4,r1,r3

5

Data Hazards
Write After Read (WAR)

InstrJ tries to write operand before InstrI reads i

– Gets wrong operand

– Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

Execution Order is:
InstrI
InstrJ

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

–All instructions take 5 stages, and

– Reads are always in stage 2, and

– Writes are always in stage 5

6

Data Hazards
Write After Write (WAW)

InstrJ tries to write operand before InstrI writes it
– Leaves wrong result (InstrI not InstrJ)

• Called an “output dependence” by compiler writers

This also results from the reuse of name “r1”.
• Can’t happen in MIPS 5 stage pipeline because:

Execution Order is:
InstrI
InstrJ

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

–All instructions take 5 stages, and
– Writes are always in stage 5

•Will see WAR and WAW in later more
complicated pipes

7

Data Hazard Detection in MIPS

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution
order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of
register $2:

DM Reg

Reg

Reg

Reg

DM

IF/ID ID/EX EX/MEM MEM/WB

Read after Write

8

Data Hazards

• Solutions for Data Hazards
– Stalling
– Forwarding:

• connect new value directly to next stage
– Reordering

9

Data Hazard - Stalling
0 2 4 6 8 10 12

IF ID EX MEM

16

add $s0,$t0,$t1

STALL

18

sub $t2,$s0,$t3 IF EX MEM

STALL
BUBBLE BUBBLE BUBBLE BUBBLE

BUBBLEBUBBLE BUBBLE BUBBLE BUBBLE

$s0
written
here

W
s0

WB

$s0 read
here

R
s0

BUBBLE

10

Data Hazards - Stalling
Simple Solution to RAW

• Hardware detects RAW and stalls
• Assumes register written then read each cycle

+ low cost to implement, simple
-- reduces IPC

• Try to minimize stalls

Minimizing RAW stalls

• Bypass/forward/shortcircuit (We will use the word “forward”)
• Use data before it is in the register

+ reduces/avoids stalls
-- complex

• Crucial for common RAW hazards

11

Data Hazards - Forwarding
• Key idea: connect new value directly to next stage
• Still read s0, but ignore in favor of new result

•

Problem: what about load instructions?

12

Data Hazards - Forwarding
• STALL still required for load - data avail. after MEM
• MIPS architecture calls this delayed load, initial

implementations required compiler to deal with this

ID

0 2 4 6 8 10 12

IF ID EX MEM

16

lw $s0,20($t1)

18

sub $t2,$s0,$t3 IF EX MEM

W
s0

WBR
s0

new value
of s0

STALL
BUBBLE BUBBLE BUBBLE BUBBLE BUBBLE

13

Data Hazards This is another
representation

of the stall.

LW R1, 0(R2) IF ID EX MEM WB

SUB R4, R1, R5 IF ID EX MEM WB

AND R6, R1, R7 IF ID EX MEM WB

OR R8, R1, R9 IF ID EX MEM WB

LW R1, 0(R2) IF ID EX MEM WB

SUB R4, R1, R5 IF ID stall EX MEM WB

AND R6, R1, R7 IF stall ID EX MEM WB

OR R8, R1, R9 stall IF ID EX MEM WB ?

14

Forwarding

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution
order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of
register $2:

DM Reg

Reg

Reg

Reg

DM

IF/ID ID/EX EX/MEM MEM/WB

How would you design the forwarding?

Key idea: connect data internally before it's stored

15

No Forwarding

16

Data Hazard Solution: Forwarding
• Key idea: connect data internally before it's stored

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

DM

Assumption:
• The register file forwards values that are read
and written during the same cycle.

17

Data Hazard Summary
• Three types of data hazards

– RAW (MIPS)
– WAW (not in MIPS)
– WAR (not in MIPS)

• Solution to RAW in MIPS
– Stall
– Forwarding

• Detection & Control
• A stall is needed if read a register after a load

instruction that writes the same register.
– Reordering

18

Control Hazards
A control hazard is when we need to find
the destination of a branch, and can’t fetch
any new instructions until we know that
destination.

A branch is either

– Taken: PC <= PC + 4 + Imm
– Not Taken: PC <= PC + 4

19

Control Hazard on Branches

Control Hazards

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg AL
U

DMem Ifetch Reg

Reg AL
U

DMem Ifetch Reg

Reg AL
U

DMem Ifetch Reg

Reg AL
U

DMem Ifetch Reg

Reg AL
U

DMem Ifetch Reg

The penalty when branch take is _________ 3 cycles! Three Stage Stall

20

Branch Hazards
• Just stalling for each branch is not practical

Common assumption: branch not taken
• When assumption fails: flush three instructions

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program
execution
order
(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

21

Basic Pipelined Processor

In our original Design, branches have a penalty of 3 cycles

22

Reducing Branch Delay
Move following to ID stage
 a) Branch-target address calculation
 b) Branch condition decision

Reduced penalty (1 cycle) when branch take!

23

24

25

26

27

28

29

30

31

Branch Behavior in Programs
• Based on SPEC benchmarks on DLX

– Branches occur with a frequency of 14% to 16% in integer
programs and 3% to 12% in floating point programs.

– About 75% of the branches are forward branches
– 60% of forward branches are taken
– 80% of backward branches are taken
– 67% of all branches are taken

• Why are branches (especially backward branches)
more likely to be taken than not taken?

32

33

Written Assignment 2 (1)
When designing memory systems it becomes useful to know the frequency of

memory reads versus writes and also accesses for instructions versus data.
We assume the following notation:

IC = number of dynamically executed instructions
f_F = frequency of instruction fetch = 100% by definition
f_L = frequency of load instructions = 26% from given information
f_S = frequency of store instructions = 10% from given information. Please find
the percentage of all memory accesses for data

 Number of data accesses
Percentage of all memory accesses for data = -----------------------------------
 Number of memory accesses
 (f_L + f_S) * A * IC 26+10
 = ----------------------------- = ------------- = 26.5
 (f_F+f_L+f_S) * A * IC 100+26+10

34

Written Assignment 2 (2)

What are the economic arguments (i.e., more computers sold)
for and against changing instruction set architecture in
desktop and server markets?
What about embedded markets?

Desktop: if change provide support for new functions, such as multimedia, then change may

enable growth in market share for that segment.
Server: if the new ISA provides better performance, then the trend towards using open source

software for servers reduces the cost of change because re-compilation is possible.
Embedded: new ISA allows more and different I/O in the base chip, reducing the need for

support chips, and thus, system cost.

35

Sample Question
• For the following code identify all data

dependence between instructions. Please use the
format “instruction X depends on instruction Y
over register Z”.

L.D F0, 0 (R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F0, -8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)

1
2
3
4
5
6

Instruction 2 depends on instruction 1 (instruction 1 result in F0
used by instruction 2), Similarly, instructions (4,5)
Instruction 3 depends on instruction 2 (instruction 2 result in F4
used by instruction 3), Similarly, instructions (5,6)

	Pipeline: Hazards
	Announcements
	Data Hazards
	Data Hazards
	Data Hazards
	Data Hazards
	Data Hazard Detection in MIPS
	Data Hazards
	Data Hazard - Stalling
	Data Hazards - Stalling
	Data Hazards - Forwarding
	Data Hazards - Forwarding
	Data Hazards
	Forwarding
	No Forwarding
	Data Hazard Solution: Forwarding
	Data Hazard Summary
	Control Hazards
	Control Hazard on Branches�
	Branch Hazards
	Basic Pipelined Processor
	Reducing Branch Delay	
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Written Assignment 2 (1)
	Written Assignment 2 (2)
	Sample Question

