
1

Processor: Multicycle Implementation

Dr. Tao Xie

Fall, 2017

These slides are adapted from notes by Dr. David Patterson (UCB)

2

The slowest instruction...
• If all instructions must complete within one clock cycle, then the cycle time has

to be large enough to accommodate the slowest instruction.
• Assuming the delays shown here:

0
M
u
x
1

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

1
M
u
x
0

Sign
extend

0
M
u
x
1

Result

Zero
ALU

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers 2 ns

2 ns

2 ns

1 ns 0 ns

0 ns

0 ns

0 ns

Instruction Time
Arithmetic 2+1+2+1 = 6

Loads 2+1+2+2+1 = 8
Stores 2+1+2+2 = 7

Branches 2+1+2 = 5

3

• With these same component delays, a sw instruction would need 7ns, and
beq would need just 5ns.

• Let’s consider the gcc benchmark.

• With a single-cycle datapath, each instruction would require 8ns.
• But if we could execute instructions as fast as possible, the average time

per instruction for gcc would be:

 (48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns
• The single-cycle datapath is about 1.26 times slower!

How bad is this?

Instruction Frequency
Arithmetic 48%

Loads 22%
Stores 11%

Branches 19%

4

It gets worse...
• We’ve made very optimistic assumptions about

memory latency:
– Main memory accesses on modern machines is >50ns.

• For comparison, an ALU on the Pentium4 takes ~0.3ns.

• Our worst case cycle (loads/stores) includes 2 memory
accesses
– A modern single cycle implementation would be stuck at

< 10Mhz.
– Caches will improve common case access time, not worst

case

5

It isn’t particularly hardware efficient, either…
• A single-cycle datapath also uses extra hardware—one ALU is not

enough, since we must do up to three calculations in one clock cycle for
a beq.

• This used to be a big deal, but now transistors are cheap. Heat issue is
more important.

Read
address

Instruction
memory

Instruction
[31-0]

Read
address
Write
address
Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Sign
extend

0
M
u
x
1

ALUSrc

Result
Zero

ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1
Read
register 2
Write
register
Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Goto pp.8

6

A multistage approach to instruction execution:
Key Idea

• Break instruction execution into multiple cycles
• One clock cycle for each major task

1. Instruction Fetch (IF)
2. Instruction Decode and Register Fetch (ID)
3. Execution, memory address computation, or branch

computation (EX)
4. Memory access / R-type instruction completion

(MEM)
5. Memory read completion (WB)

• Share hardware to simplify datapath
This would mean that instructions complete as soon as possible, instead
of being limited by the slowest instruction.

7

Characteristics of Multicycle Design
• Instructions take more than one cycle

– Some instructions take more cycles than others
– Clock cycle is shorter than single-cycle clock

• Reuse of major components simplifies datapath
– Single ALU for all calculations
– Single memory for instructions and data
– But, added registers needed to store values across

cycles
• Control Unit Implemented State Machine

– Control signals no longer a function of just the
instruction

8

Multicycle Datapath - High-Level View

Goto pp.5

9

Review: Register Transfers
• Instruction Fetch

Instruction <- MEM[PC]; PC = PC + 4;
• Instruction Execution

Instr. Register Transfers
add R[rd] <- R[rs] + R[rt];
sub R[rd] <- R[rs] - R[rt];
and R[rd] <- R[rs] & R[rt];
or R[rd] <- R[rs] | R[rt];
lw R[rt] <- MEM[R[rs] + s_extend(offset)];
sw MEM[R[rs] + sign_extend(offset)] <- R[rt];
beq if (R[rs] == R[rt]) then PC <- PC+4 + s_extend(offset<<2)
 else PC <- PC + 4
j PC <- upper(PC)@(address << 2)

Key idea: break into multiple cycles!

10

Multicycle Execution
• Instructions take between 3 and 5 clock cycles

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

(1)

(2)

(3)

(4)

(5)

New registers needed to store values across clock steps!

11

Multicycle Execution Step (1)
Instruction Fetch

IR = Memory[PC];
PC = PC + 4;

4 PC + 4

12

Multicycle Execution Step (2)
Instruction Decode and Register Fetch

A = Reg[IR[25-21]]; (A = Reg[rs])
B = Reg[IR[20-15]]; (B = Reg[rt])
ALUOut = (PC + sign-extend(IR[15-0]) << 2)

Branch
Target

Address

Reg[rs]

Reg[rt]

PC + 4

13

Multicycle Execution Steps (3)
Memory Reference Instructions

ALUOut = A + sign-extend(IR[15-0]);

Mem.
Address

Reg[rs]

Reg[rt]

PC + 4

14

Multicycle Execution Steps (3)
ALU Instruction (R-Type)

ALUOut = A op B

R-Type
Result

Reg[rs]

Reg[rt]

PC + 4

15

Multicycle Execution Steps (3)
Branch Instructions

if (A == B) PC = ALUOut;

Branch
Target

Address

Reg[rs]

Reg[rt]

Branch
Target

Address

16

Multicycle Execution Step (3)
Jump Instruction

PC = PC[31-28] concat (IR[25-0] << 2)

Jump
Address

Reg[rs]

Reg[rt]

Branch
Target

Address

17

Multicycle Execution Steps (4)
Memory Access - Read (lw)

MDR = Memory[ALUOut];

Mem.
Data

PC + 4

Reg[rs]

Reg[rt]

Mem.
Address

18

Multicycle Execution Steps (4)
Memory Access - Write (sw)

Memory[ALUOut] = B;

PC + 4

Reg[rs]

Reg[rt]

19

Multicycle Execution Steps (4)
ALU Instruction (R-Type)

Reg[IR[15:11]] = ALUOUT

R-Type
Result

Reg[rs]

Reg[rt]

PC + 4

20

Multicycle Execution Steps (5)
Memory Read Completion (lw)

Reg[IR[20-16]] = MDR;

PC + 4

Reg[rs]

Reg[rt] Mem.
Data

Mem.
Address

21

22

23

24

25

26

27

28

29

30

31

32

33

34

	Processor: Multicycle Implementation
	The slowest instruction...
	How bad is this?
	It gets worse...
	It isn’t particularly hardware efficient, either…
	A multistage approach to instruction execution: �Key Idea
	Characteristics of Multicycle Design
	Multicycle Datapath - High-Level View
	Review: Register Transfers
	Multicycle Execution
	Multicycle Execution Step (1)�Instruction Fetch
	Multicycle Execution Step (2)�Instruction Decode and Register Fetch
	Multicycle Execution Steps (3)�Memory Reference Instructions
	Multicycle Execution Steps (3)�ALU Instruction (R-Type)
	Multicycle Execution Steps (3)�Branch Instructions
	Multicycle Execution Step (3)�Jump Instruction
	Multicycle Execution Steps (4)�Memory Access - Read (lw)
	Multicycle Execution Steps (4)�Memory Access - Write (sw)
	Multicycle Execution Steps (4)�ALU Instruction (R-Type)
	Multicycle Execution Steps (5)�Memory Read Completion (lw)
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

