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Processor: Multicycle Implementation 

Dr. Tao Xie 

Fall, 2017 

These slides are adapted from notes by Dr. David Patterson (UCB) 



2 

The slowest instruction... 
• If all instructions must complete within one clock cycle, then the cycle time has 

to be large enough to accommodate the slowest instruction. 
• Assuming the delays shown here: 
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Instruction Time 
Arithmetic 2+1+2+1 = 6 

Loads 2+1+2+2+1 = 8 
Stores 2+1+2+2 = 7 

Branches 2+1+2 = 5 
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• With these same component delays, a sw instruction would need 7ns, and 
beq would need just 5ns. 

• Let’s consider the gcc benchmark. 
 

 
 
 
 

• With a single-cycle datapath, each instruction would require 8ns. 
• But if we could execute instructions as fast as possible, the average time 

per instruction for gcc would be: 

        (48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns 
• The single-cycle datapath is about 1.26 times slower! 

How bad is this? 

Instruction Frequency 
Arithmetic 48% 

Loads 22% 
Stores 11% 

Branches 19% 



4 

It gets worse... 
• We’ve made very optimistic assumptions about 

memory latency: 
– Main memory accesses on modern machines is >50ns. 

• For comparison, an ALU on the Pentium4 takes ~0.3ns. 

• Our worst case cycle (loads/stores) includes 2 memory 
accesses 
– A modern single cycle implementation would be stuck at     

< 10Mhz. 
– Caches will improve common case access time, not worst 

case 
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It isn’t particularly hardware efficient, either… 
• A single-cycle datapath also uses extra hardware—one ALU is not 

enough, since we must do up to three calculations in one clock cycle for 
a beq. 

• This used to be a big deal, but now transistors are cheap. Heat issue is 
more important. 
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A multistage approach to instruction execution:  
Key Idea 

• Break instruction execution into multiple cycles 
• One clock cycle for each major task 

1. Instruction Fetch (IF) 
2. Instruction Decode and Register Fetch (ID) 
3. Execution, memory address computation, or branch 

computation (EX) 
4. Memory access / R-type instruction completion 

(MEM) 
5. Memory read completion (WB) 

• Share hardware to simplify datapath 
This would mean that instructions complete as soon as possible, instead 
of being limited by the slowest instruction. 
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Characteristics of Multicycle Design 
• Instructions take more than one cycle 

– Some instructions take more cycles than others 
– Clock cycle is shorter than single-cycle clock 

• Reuse of major components simplifies datapath 
– Single ALU for all calculations 
– Single memory for instructions and data 
– But, added registers needed to store values across 

cycles 
• Control Unit Implemented State Machine 

– Control signals no longer a function of just the 
instruction 
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Multicycle Datapath - High-Level View 

Goto pp.5 
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Review: Register Transfers 
• Instruction Fetch 

Instruction <- MEM[PC];     PC = PC + 4; 
• Instruction Execution 

Instr. Register Transfers 
add  R[rd] <- R[rs] + R[rt]; 
sub  R[rd] <- R[rs] - R[rt]; 
and  R[rd] <- R[rs] & R[rt]; 
or   R[rd] <- R[rs] | R[rt]; 
lw   R[rt] <- MEM[R[rs] + s_extend(offset)]; 
sw   MEM[R[rs] + sign_extend(offset)] <- R[rt]; 
beq  if (R[rs] == R[rt]) then PC <- PC+4 + s_extend(offset<<2) 
   else PC <- PC + 4 
j   PC <- upper(PC)@(address << 2) 

Key idea: break into multiple cycles! 
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Multicycle Execution 
• Instructions take between 3 and 5 clock cycles 

Step name
Action for R-type 

instructions
Action for memory-reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

(1) 

(2) 

(3) 

(4) 

(5) 

New registers needed to store values across clock steps! 
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Multicycle Execution Step (1) 
Instruction Fetch 

IR = Memory[PC]; 
PC = PC + 4; 

4 PC + 4 
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Multicycle Execution Step (2) 
Instruction Decode and Register Fetch 

A = Reg[IR[25-21]];  (A = Reg[rs]) 
B = Reg[IR[20-15]];  (B = Reg[rt]) 
ALUOut = (PC + sign-extend(IR[15-0]) << 2) 
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Multicycle Execution Steps (3) 
Memory Reference Instructions 

ALUOut = A + sign-extend(IR[15-0]); 
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Multicycle Execution Steps (3) 
ALU Instruction (R-Type) 

ALUOut = A op B 
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Multicycle Execution Steps (3) 
Branch Instructions 

if (A == B) PC = ALUOut; 
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Multicycle Execution Step (3) 
Jump Instruction 

PC = PC[31-28] concat (IR[25-0] << 2) 
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Multicycle Execution Steps (4) 
Memory Access - Read (lw) 

MDR = Memory[ALUOut]; 
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Multicycle Execution Steps (4) 
Memory Access - Write (sw) 

Memory[ALUOut] = B; 
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Multicycle Execution Steps (4) 
ALU Instruction (R-Type) 

Reg[IR[15:11]] = ALUOUT 
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Multicycle Execution Steps (5) 
Memory Read Completion (lw) 

Reg[IR[20-16]] = MDR; 
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