Processor: Multicycle Implementation

Dr. Tao Xie

Fall, 2017

These slides are adapted from notes by Dr. David Patterson (UCB)

The slowest Instruction...

« If all instructions must complete within one clock cycle, then the cycle time has
to be large enough to accommodate the slowest instruction.

o Assuming the delays shown here:

Instruction Time
Arithmetic 2+1+2+1 =06
Loads 2+1+2+2+1 =8
Stores 2+1+242 =7
Branches 2+1+2 =5
Read Instruction I[25 - 21] [Read R
address [31-0] [P B e ead >
| [20 - 16] register 1 data 1 ALU | Read ond (1
Instruction 4 » Read > Zero address data M
memory 0 register 2 dR?ag —p—>| O ReSUlt jmgyp| Write u
M Write aa M address X
u register _)L: | owrite | Data 0
2ns 1115-111] X | | write Registers 2ns " gata Memory 0 s
1 data !
0 ns 1ns
1[15-0] Sign
extend
0 ns

How bad Is this?

With these same component delays, a sw instruction would need 7ns, and
beq would need just 5ns.

Let’s consider the gcc benchmark.

Instruction Frequency
Arithmetic 48%
Loads 22%
Stores 11%
Branches 19%

With a single-cycle datapath, each instruction would require 8ns.

But if we could execute instructions as fast as possible, the average time
per instruction for gcc would be:

(48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns
The single-cycle datapath is about 1.26 times slower!

It gets worse...

« \We’ve made very optimistic assumptions about
memory latency:

— Main memory accesses on modern machines is >50ns.
» For comparison, an ALU on the Pentium4 takes ~0.3ns.

e Our worst case cycle (loads/stores) includes 2 memory
accesses

— A modern single cycle implementation would be stuck at
< 10Mhz.

— Caches will improve common case access time, not worst
case

It 1sn’t particularly hardware efficient, either...

A single-cycle datapath also uses extra hardware—one ALU is not
enough, since we must do up to three calculations in one clock cycle for

a beq.

This used to be a big deal, but now transistors are cheap. Heat issue is
more important.

\ 4

PC

!

=

»

Read Instruction
address [31-0]

Instruction
memory

10

. M
" u
X

Add
4 Add
PCSrc
RegWrite
MemWrite MemToReg
| @ [25-21] »| Read Read > \
register 1 data 1 ALU » Read Read > 1
Read > Zero address data M
register 2 de‘ag > 0 Result =—ap=—p Write u
Write ala M address Dat X
register _ u > Write ata
Write Registers > X ALUOp data Memory
data
MemRead
RegDst ALUSrc
I]15 - 0]

Sign
xten

A multistage approach to instruction execution:
Key ldea

 Break instruction execution into multiple cycles

* One clock cycle for each major task

1. Instruction Fetch (IF)
2. Instruction Decode and Register Fetch (ID)

3. Execution, memory address computation, or branch
computation (EX)

4. Memory access / R-type instruction completion
(MEM)

5. Memory read completion (WB)

« Share hardware to simplify datapath

This would mean that instructions complete as soon as possible, instead
of being limited by the slowest instruction.

Characteristics of Multicycle Design

* [nstructions take more than one cycle
— Some instructions take more cycles than others
— Clock cycle is shorter than single-cycle clock

* Reuse of major components simplifies datapath
— Single ALU for all calculations
— Single memory for instructions and data

— But, added registers needed to store values across
cycles

e Control Unit Implemented State Machine

— Control signals no longer a function of just the
Instruction

Multicycle Datapath - High-Level View

PC

!

WD

MemWrite

| ADDR

Memory

MemRead

RD

Instruction I

f

f

R .
Vi
RN1 RN2 WN
M Registers RD1
D p| WD
R A
RD2
RegWrite

f

Operation
3

Zero

ALU
ouT

Review: Register Transfers

e Instruction Fetch
Instruction <- MEM[PC]; PC =PC + 4;

e |nstruction Execution

Instr. Register Transfers

add R[rd] <- R[rs] + R[rt];

sub R[rd] <- R[rs] - R[rt];

and R[rd] <- R[rs] & R[rt];

or R[rd] <- R[rs] | R[rt];

Iw R[rt] <- MEM[R]rs] + s_extend(offset)];

Sw MEM([R[rs] + sign_extend(offset)] <- R[rt];

beq If (R[rs] == R[rt]) then PC <- PC+4 + s_extend(offset<<2)
else PC <- PC +4

J PC <- upper(PC)@(address << 2)

Key idea: break into multiple cycles! |

(1)
(2)
(3)

(4)
(5)

Multicycle Execution

 Instructions take between 3 and 5 clock cycles

Step name

Action for R-type
instructions

Action for memory-reference
instructions

Action for
branches

Action for
jumps

Instruction fetch

IR = Memory[PC]
PC=PC+4

Instruction
decodelregister fetch

A = Reg [IR[25-21]]
B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Execution, address
computation, branch/
jump completion

ALUOut=AopB

ALUOut = A + sign-extend
(IR[15-0])

if (A ==B) then
PC = ALUOut

PC=PC[31-28] II
(IR[25-0]<<2)

Memory access or R-type
completion

Reg [IR[15-11]] =
ALUQut

Load: MDR = Memory[ALUOut]
or
Store: Memory [ALUOut] = B

Memory read completion

Load: Reg[IR[20-16]] = MDR

| New registers needed to store values across clock steps!

10

Multicycle Execution Step (1)
Instruction Fetch

Memory[PC];
PC + 4;

IR
PC

Instruction I

O
RN1 RN2 WN
RD1

Registers

ALU
ouT

WD
71

Multicycle Execution Step (2)
Instruction Decode and Register Fetch

A = Reg[IR[25-21]]; (A = Reg][rs])
B Reg[IR[20-15]]; (B = Reg][rt])
ALUOut = (PC + sign-extend(IR[15-0]) << 2)

IIQ Instruction I
B ! ! Branch
i is i5 is Regrs] pperption Target
PC| % MemWrite RN1 RN2 WN Address
» ADDR
Memory M Registers [0 P A g
RD =+ D 1 WD > g‘f#

PC+4 WD R rRD2 #» B

MemRead RegWrite

3 3 Reg[rt]

12

Multicycle Execution Steps (3)
Memory Reference Instructions

ALUOut = A + signh-extend(IR[15-0}]);

Instruction I

PC 4 MemWrite
» ADDR
Memory
RD
PC+4 WD
|‘ MemRead

R _

i5 if’ i5 Reg[rs]

RN1 RN2 WN
M Registers RD1 ¥ A

WD
R [T
RD2 | B
Re gWrit
3 Reg[rt] T

Mem.

Address

ALU
- ouT

13

Multicycle Execution Steps (3)
ALU Instruction (R-Type)

ALUOut = A op B

I Instruction I
-» R - -
5 5 5 0 tii
l i i i Reg|rs] peration R-Type
PC ' MemWrite RN1 RN2 WN RESU|t
» ADDR . RD1 1+ A
Memory M Registers
RO+ D rug WD | ALU
PC+4 R out
-» WD rRD2 | B
MemRead RegWrit
t t Reg|[rt]

14

Multicycle Execution Steps (3)
Branch Instructions

iIT (A == B) PC = ALUOut;

IIQ Instruction I
> ! ! Branch
5 5 5 i
4 i i i Regrs] oPe'a;'O" Target
N »| ADDR Registers RD1 1 A N
Memory M 9
Branch RO—# D e oot
R
Target WD _ rRD2 +»| B
Address MemRead RegWrite
t t Reg[rt]

15

Multicycle Execution Step (3)
Jump Instruction

PC = PC[31-28] concat (IR[25-0] << 2)

II? Instruction I
_. ~ =
. Branch
l i5 i5 ¢5 Reg([rs Operation
Target
PC MemWrite RN1 RN2 WN 3 g
ADDR) RDA
Memory M Registers
RD > D rug WD
Jump WD R
RD2
Address MemRead Re gWrit

16

Multicycle Execution Steps (4)
Memory Access - Read (lw)

MDR = Memory[ALUOut];

I Instruction I

R

! i5 i‘r’ ¢5 Mem.
PC| ¥ MemWrite RN1 RN2 WN Address
- | ADDR _ RD1
Memory Registers
R 3" >0
PC + 4 _. WD RD2
MemRead Re gWrit
f Mem. f
Data

17

Multicycle Execution Steps (4)
Memory Access - Write (sw)

Memory[ALUOut] = B;

I Instruction I

i " is i5 is Reg[rs] Operation

A0

PC| ¥ »ADDgemWrite RN1 RN2 W,;D1 R 3 _
Memory M Registers
RD [r i ’: o B
R o RD2 1 B
MemRead RegWrite T

Multicycle Execution Steps (4)
ALU Instruction (R-Type)

Reg[IR[15:11]] = ALUOUT

I Instruction I
- R : :
¢ i5 is i5 Reg[rs] Opera:on R-Type
PC L 4 MemWrite RN1 RN2 WN Result
- » ADDR _ ro1 kel A rero
Memory M Registers
RD t—=9»{ D p{ WD |yl ALU
R 4 out
PC+4 | WP RD2 +» B
MemRead RegWrite
t) Reg[rt]

19

Multicycle Execution Steps (5)
Memory Read Completion (Iw)

Reg[IR[20-16]] = MDR:

Instruction I

PC 4 MemWrite
| ADDR
Memory
RD
PC + 4 -4 WD
MemRead

RN1 RN2 WN
RD1

Registers

Mem.
Address

wD

RD2

20

Controlling the multicycle datapath

» Today, we talk about how to control this datapath.

PCWrite
A J
PC ALUSrcA
lorD
|
RegDst RegWrite
0 Mem|Read — | — 0
» Rea ea
M e : > ALU M
u Address register 1 data 1 Zero u
| X . » Read ALU X
" Memory IR\.f‘ifrlte ; register 2 Read | Result Out +h1
: data2 | ~
N Write Mem [25_21]_ u register PCSource
| data Data X .
| [20-16] » Viite pegisters
I [15-11] [™\ "| data
MemWrite [15-0]
Instruction » 0 ALUSrcB
register
T Sign
Memory X extend
—p data "
register .
&

MemToReg

Multicycle control unit

* The control unit is responsible for producing all of the control signals.

» Fachinstruction requires a sequence of control signals, generated over
multiple clock cycles.

— This implies that we need a state machine.

— The datapath control signals will be outputs of the state machine.,
» Different instructions require different sequences of steps.

— This implies the instruction word 1s an input to the state machine.

— The next state depends upon the exact instruction being executed.

» After we finish executing one instruction, we'll have to repeat the entire
process again to execute the next instruction.

22

Finite-state machine for the control unit

R-type R-type
i writeback

Op = R-type

Instruction fetch

and PC increment Register fetch and
branch computation

ranch
completion

=

Op = BEQ

Effective address

computation Op =

SW

L J

Register

Op = LW/SW
write

= Each bubble is a state
— Holds the control signals for a single cycle
— Note: All instructions do the same things during the first two cycles

23

Stage 1 control signals

= |nstruction fetch: IR = Mem[PC]

Signal [Value Description

MemRead| 1 |Read from memory
lorD 0 |Use PC as the memory read address
IRWrite 1 | Save memory contents to instruction register

* |ncrement the PC: PC=PC + 4

Signal | Value Description

ALUSrcA | 0 | Use PC as the first ALU operand

ALUSrcB | 01 |Use constant 4 as the second ALU operand
ALUOp | ADD [Perform addition

PCWrite 1 | Change PC

PCSource | 0 |Update PC from the ALU output

= We’ll assume that all control signals not listed are implicitly set to 0.

Stage 2 control signals

* No control signals need to be set for the register reading operations A =
Reg[IR[25-21]] and B = Reg[IR[20-16]].
— IR[25-21] and IR[20-16] are already applied to the register file.

» Branch target computation: ALUOut = PC + (sign-extend(IR[15-0]) << 2)

Signal | Value Description

ALUSrcA| 0 |Use PC as the first ALU operand
ALUSreB | 11 | Use (sign-extend(IR[15-0]) << 2) as second operand
ALUOp | ADD |[Add and save the result in ALUOut

Optimistic execution

v But, we don’t know whether or not the branch 1s taken in cycle 2!!

' That's okay.... we can still go ahead and compute the branch target first.
The book calls this optimistic execution.

— The ALU 15 otherwise free during this clock cycle.

— Nothing 1s harmed by doing the computation early. If the branch is not
taken, we can just ignore the ALU result.

v This idea 15 also used 1n more advanced CPU design techniques.

— Modern CPUs perform branch prediction, which we'll discuss in a few
weeks in the context of pipelining.

Stage 3 (beq) control signals

|
= Comparison: if (A ==B) ...

Signal | Value Description

ALUSrcA | 1 |Use A as the first ALU operand
ALUSrcB | 00 |Use B as the second ALU operand
ALUOp | SUB [Subtract, so Zero will be set if A=B

= Branch: ...then PC = ALUQOut

Signal | Value Description

PCWrite | Zero |Change PC only if Zero is true (i.e., A =B)
PCSource | 1 [Update PC from the ALUOut register

= ALUOut contains the ALU result from the previous cycle, which would be
the branch target. We can write that to the PC, even though the ALU is
doing something different (comparing A and B) during the current cycle.

Stages 3-4 (sw) control signals

» Stage 3 (address computation): ALUOut = A + sign-extend(IR[15-0])

Signal [Value Description

ALUSrcA | 1 [Use A as the first ALU operand
ALUSrcB | 10 |[Use sign-extend(IR[15-0]) as the second operand
ALUOp | 010 |Add and store the resulting address in ALUOut

= Stage 4 (memory write): Mem[ALUQut] = B

Signal [Value Description

MemWrite| 1 [Write to the memory
lorD 1 | Use ALUOut as the memory address

The memory’s “Write data” input always comes from the B intermediate
register, so no selection is needed.

Executing a [w instruction

» Finally, [w is the most complex instruction, requiring five stages.
* The first two are like all the other instructions.

— Stage 1: instruction fetch and PC increment.

— Stage 2: register fetch and branch target computation.

* The third stage is the same as for sw, since we have to compute an
effective memory address in both cases.

— Stage 3: compute the effective memory address.

Stages 4-5 (Iw): memory read and register write

r Stage 415 to read from the effective memory address, and to store the
value in the intermediate register MDR (memory data register).

MDR = Mem[ALUOut]
r Stage 5 stores the contents of MDR into the destination register.
Reg[IR[20-16]] = MDR

Remember that the destination register for (w is field rt (bits 20-16) and
not field rd (bits 15-11).

Stages 4-5 (Iw) control signals

» Stage 4 (memory read): MDR = Mem[ALUOut]

Signal | Value Description
MemRead | 1 |Read from memory
lorD 1 |Use ALUOut as the memory address

The memory contents will be automatically written to MDR.

» Stage 5 (writeback): Reg[IR[20-16]] = MDR

Signal | Value Description
RegWrite | 1 [Store new data in the register file
RegDst 0 [Use field rt as the destination register
MemToReg| 1 [Write data from MDR (from memory)

Instruction fetch
and PC increment

lorD=0
MemRead = 1
IRWrite = 1
ALUSrcA =0
ALUSrcB = 01
ALUOp =010
PCSource =0
PCWrite = 1

Register fetch and

branch computation

ALUSrcA =0
ALUSrcB =11
ALUOp =010

Op = R-type

Op = LW/SW

R-type

ALUSrcA =1
ALUSreB =00
ALUOp = func

ALUSrcA = 1 \Dranch

ALUSrcB =00

execution

RegWrite = 1
RegDst =1

MemToReg = 0

completion

R-type

writeback

Finite-state machine for the control unit

ALUOp =110
PCWrite = Zero
PCSource =1

Effective address

computation Op =

SW

ALUSrcA =1
ALUSrcB =10
ALUCp =010

Op = LW

MemWrite = 1
lorD =1

MemRead = 1
lorD = 1

Memory
write

Register
write

RegWrite = 1
RegDst =0
MemToReg = 1

» This can be translated into a state table; here are the first two states.

Implementing the FSM

Output (Control signals)

Current | Input Next

State (Op) State PC Mem | Mem IR Reg | MemTo | Reg ALU | ALU | ALU PC

Write | lorD | Read | Write | Write | Dst Reg Write | SrcA | SreB | Op | Source

Instr X Reg
Fetch Fetch 1 0 1 0 1 X X 0 0 01 010 0
Reg | BEQ Branch 1 o5 1y | 0 0 | X X o | o |11 | o0 X
Fetch compl
Reg | Rtype [Rtype 1 o | x | o o | o | x| x o | o | 11| ow0| x
Fetch execute
Reg LW/S | Compute
Fetch W off addr 0 X 0 0 0 X X 0 0 11 010 X

= You can implement this the hard way.

— Represent the current state using flip-flops or a register.

— Find equations for the next state and (control signal) outputs in terms
of the current state and input (instruction word).

= Or you can use the easy way.
— Stick the whole state table into a memory, like a ROM.
— This would be much easier, since you don’t have to derive equations.

Summary

_=—==—
» Now you know how to build a multicycle controller!
— Each instruction takes several cycles to execute.,

— Different instructions require different control signals and a different
number of cycles.

— We have to provide the control signals in the right sequence.

	Processor: Multicycle Implementation
	The slowest instruction...
	How bad is this?
	It gets worse...
	It isn’t particularly hardware efficient, either…
	A multistage approach to instruction execution: �Key Idea
	Characteristics of Multicycle Design
	Multicycle Datapath - High-Level View
	Review: Register Transfers
	Multicycle Execution
	Multicycle Execution Step (1)�Instruction Fetch
	Multicycle Execution Step (2)�Instruction Decode and Register Fetch
	Multicycle Execution Steps (3)�Memory Reference Instructions
	Multicycle Execution Steps (3)�ALU Instruction (R-Type)
	Multicycle Execution Steps (3)�Branch Instructions
	Multicycle Execution Step (3)�Jump Instruction
	Multicycle Execution Steps (4)�Memory Access - Read (lw)
	Multicycle Execution Steps (4)�Memory Access - Write (sw)
	Multicycle Execution Steps (4)�ALU Instruction (R-Type)
	Multicycle Execution Steps (5)�Memory Read Completion (lw)
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

