The Problem with Single-Cycle Processor
Implementation: Performance

e Performance is limited by the slowest instruction
e Example: suppose we have the following delays

— Memory read/write 200ps
— ALU and adders 100ps
— Register File read/write 50ps

« What is the critical path for each instruction?

What Is the critical path for lw?

_L' Data

» \WriteRegister

— R1(rtL
P\ — | address Inst L R2(rs)__
C 16 (Imm)
ROM —— -100
Instruction —— |w
Memory

—Memory read/write
—ALU and adders

200ps
100ps

—Register File read/write 50ps

—

sl ReadRegister#1

—pReadRegister#2

Port#1

Port#2

REGISTERS

ALU‘—

—

Address

lw: 200 + 50 + 100 + 200 + 50 600ps

DataOut fe——p
—p Dataln

RAM

Data Memory
2

What Is the critical path for sw?
swR1,-100(R2)

= Data _,
I Rl\ —>\WriteRegister POl —
P
C —>| address InSt. j—p R2 ——— » ReadRegister#1 ALU
16 \
ROM —— -100 ———pReadRegister#?2 Porti#2 _T /
Instruction —— sw REGISTERS

Memory

—Memory read/write 200ps \ 16 32 / -
—ALU and adders 100ps

—Register File read/write 50ps

DataOut fe—p

. Dataln

—Sign-Extended 10ps RAM

Data Memory
3

What Is the critical path for sw?
swR1,-100(R2)

— Data _y‘\
N Rl\ ——>\WriteRegister " Ort#l ——
=
C —>| address _Inst. —p R2 »ReadRegister#1
ROM + -100 \—lReadReglster#z Port#2 _T /
Instruction SW REGISTERS

Memory

—Memory read/write 200ps \ 16 32 / -
—ALU and adders 100ps

—Register File read/write 50ps

DataOut fe—p

. Dataln

RAM

Data Memory
4

sw: 200 + 50 + 100 + 200 550ps

What is the critical path for each instruction?

— R-format 200 +50+ 100+ 0 + 50 400ps
— Load word 200 +50 + 100 + 200 + 50 600ps
— Store word 200 + 50 + 100 + 200 550ps
— Branch 200 + 50 + 100 350ps
— Jump 200 200ps

What is the implication?

Alternatives to Single-Cycle

« Multicycle Processor Implementation
— Shorter clock cycle
— Multiple clock cycles per instruction
— Some instructions take more cycles then others
— Less hardware required

* Pipelined Implementation
— Overlap execution of instructions
— Try to get short cycle times and low CPI

— More hardware required ... but also more
performance!

Summary

Single-cycle control is purely combinational logic
(1-state FSM)

Complex logic requirements, like ALUs are often
broken down in simpler components for a
hierarchical design (2-level in this case)

Once the dataflow for each instruction is
understood, how to enable it through control
points Is straightforward.

Logic synthesis tools can be very helpful in
obtaining error-free logic (once the specs are
right).

Processor: Multicycle Implementation

Our Simple Control Structure

All of the logic Is combinational

* We wait for everything to settle down, and the right
thing to be done
— ALU might not produce “right answer” right away

— We use write signals along with clock to determine when to
write

e Cycle time determined by length of the longest path

State State
element Combinational logic element
1 2

Clock cycle

We are ignoring some details like setup and hold times

Single Cycle Implementation

Calculate cycle time assuming negligible delays except:

—memory (200ps),
—ALU and adders (100ps)

—register file access (50ps)

PCSrc

Add

Read Read
register 1
1 PC %> address g
Read
register 2

Instruction ¢

Registers Rread

Read

data 1

data 2

) Write
Instruction register
memory
—»| Write
data
RegWrite ‘

16

MemWrite

Read

Address data

Data

@

Write memory
data

MemRead

MemtoReg

M
u
X

10

Where we are headed

« Single Cycle Problems:

— what if we had a more complicated instruction like floating
point?
— wasteful of area

 One Solution:

— use a “smaller” cycle time
— have different instructions take different numbers of cycles
— a “multicycle” datapath:

Instruction
‘ register
L~ pC Address g Data

Instruction Register #
or data Registers ALU &> ALUOuUt H

Register #

Memory

register

Memory _,E
’»Data data ~Pe=| Register #

Multicycle Approach

« We will be reusing functional units

— ALU used to compute address and to increment PC
— Memory used for instruction and data

e Our control signals will not be determined

directly by Instruction
— e.g., what should the ALU do for a “subtract” instruction?

o \We’ll use a finite state machine for control

12

« Break up the instructions into steps, each step takes a

Multicycle Approach

cycle
— balance the amount of work to be done
— restrict each cycle to use only one major functional unit

o Atthe end of acycle
— store values for use in later cycles (easiest thing to do)
— Introduce additional “internal” registers

L

PC

PrxcZ O

>

Address

Memory

MemData ¢+

Write
data

Instruction

[25-21]

Instruction

[20-16]

Instruction
[15-0]

Instruction

T—>

Instruction
[15-11]

r—\xcgo

register

Instruction
[15-0]

>

.

Memory
data
register

16

Zero
ALU ALU

Read L 0
i M
register 1 Read N
datal["| A X
Read ata 1
register 2
Registers
Write
h Read _| 73\
register data 2 _>B 0
. 4+ 1 M
Write u
data 2 x
N

Sign
extend

32
>

y

ALUOut

13

Instructions from ISA perspective

e Consider each instruction from perspective of ISA.

e Example:
— The add instruction changes a register.
— Register specified by bits 15:11 of instruction.
— Instruction specified by the PC.
— New value is the sum (*op”) of two registers.

— Registers specified by bits 25:21 and 20:16 of the instruction
Reg[Memory[PC][15:11]] <=
Reg[Memory[PC][25:21]] op

Reg[Memory[PC][20:16]]

| 6 bits | S bits | S bits, | 5 bits | 5 bits | 6 bits |

- rs | rt | rd shamt- R-Format

— In order to accomplish this we must break up the instruction.

14

Breaking Down an Instruction

e |SA definition of arithmetic:

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
Reg[Memory[PC][20:16]]

e Could break down to: 1225, 20, 2 DIty pDity | 2 bity | 6DILS, |

— IR <= Memory[PC] [BOP rs [rt] rd phan{fliet] R-Format
— A <= Reg[IR[25:21]]

— B <= Reg[IR[20:16]]

— ALUOuUt <= A op B

— Reg[IR[15:11]] <= ALUOut

» We forgot an important part of the definition of arithmetic!
—PC <= PC + 4

15

Idea behind multicycle approach

We define each instruction from the ISA perspective (do this!)

Break it down into steps following our rule that data flows
through at most one major functional unit (e.g., balance work
across steps)

Introduce new registers as needed (e.g, A, B, ALUOut, MDR,
etc.)

Finally try and pack as much work into each step
(avoid unnecessary cycles)

while also trying to share steps where possible
(minimizes control, helps to simplify solution)

16

Intermediate registers

» Sometimes we need the output of a functional unit in a later clock cycle
during the execution of one instruction.

— The instruction word fetched in stage 1 determines the destination of
the register write in stage 5.

— The ALU result for an address computation in stage 3 is needed as the
memory address for lw or sw in stage 4.

» These outputs will have to be stored in intermediate registers for future
use. Otherwise they would probably be lost by the next clock cycle.

— The instruction read in stage 1 is saved in Instruction register.
— Register file outputs from stage 2 are saved in registers A and B.
— The ALU output will be stored in a register ALUOuL,

— Any data fetched from memory in stage 4 is kept in the Memory data
register, also called MDR.

The final multicycle datapath

PCWrite
v
PC ALUSrcA
lorD
¢ » 0
RegDst RegWrite M
(0 Mem‘Read | g (0
»| Read Read
M > M
u Address register 1 data 1 A | 1 ALU u
X Zero X
: ——»| Read ALU
— 1 Memory IRWrite ; register 2 Read B Result out 4> 1
| , data 2 0
Wite Mem | | 131261 M W”.tet 4 4l PCSourcs
— data Data [25-21] ! regIster 2 ALUOp
[20-16] ’ Write pegisters 3
| 15111 (1) data "0
MemWrite > [15-0]
Instruction| pep| 0 ALUSIcB
register M
u Sign
Memory X extend
> data > 1
register
>

MemToReg

Register write control signals

|
* We have to add a few more control signals to the datapath.

» Since instructions now take a variable number of cycles to execute, we
cannot update the PC on each cycle.

— Instead, a PCWrite signal controls the loading of the PC.

— The instruction register also has a write signal, RWrite, We need to
keep the instruction word for the duration of its execution, and must
explicitly re-load the instruction register when needed.

' The other intermediate registers, MDR, A, B and ALUOut, will store data
for only one clock cycle at most, and do not need write control signals.

Five Execution Steps

Instruction Fetch
Instruction Decode and Register Fetch

Execution, Memory Address Computation, or Branch
Completion

Memory Access or R-type instruction completion

Write-back step
INSTRUCTIONS TAKE FROM 3 -5 CYCLES!

20

Step 1: Instruction Fetch

* Use PC to get instruction and put it in the Instruction
Register.

 Increment the PC by 4 and put the result back in the PC.

o (Can be described succinctly using RTL "Register-Transfer
Language”

IR <= Memory[PC];
PC <=PC +/4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

21

Step 2: Instruction Decode and Register
Fetch

Read reqisters rs and rt in case we need them
Compute the branch address in case the instruction is a

branch Bbits | 5bits, | 5bity | 5bits | Sbits , 6bits,
RTL: - rs | rt | rd shamt- R-Format

A <= Reg[IR[25:21]]:
B <= Reg[IR][20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

We aren't setting any control lines based on the instruction

type
(we are busy "decoding" it in our control logic)

22

Step 3 (Instruction dependent)

ALU is performing one of three functions, based
on instruction type

Memory Reference:
ALUOut <= A + sign-extend(IR[15:0]);

R-type:
ALUOut <= A op B;

Branch:
1T (A==B) PC <= ALUOut;

23

Step 4 (R-type or memory-access)

» Loads and stores access memory

MDR <= Memory[ALUOut];

or

Memory[ALUOut] <= B;

* R-type Instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the

edge

| 6 bits I5bitg I5N§|

SNQI SMQI 6 bits |

[op [rs

rt

rd

R-Format

24

Step 5 (Write-back step)

e Reg[IR[20:16]] <= MDR;

Which instruction needs this?

6 bits 5 bits 5 bits

| ——— > | — | «— | <«

16 bits

offset

I-Format

25

Summary:

Action for memory-
raeferanca instructions

Action for
jumps

Instruction tetzh

IR <= Mamory[FC]
FC <= PC+ 4

Instruction decods, Teglster feteh

A <= Rag [IR[25:21]]
B <= Reg [IR[20:16]]

ALUOUL <= PC + (slgrraxtend (IR[15:0]) << 2)

Store: Mamory [ALUOUL) <= B

Exacution, address computation, | ALUGUE <= A op B ALUUE == A + slgnextend IT (A ==B) PC == [PC [31:28],
branch /Jump completion (IR[L5:0]) PC <= ALUOUt | (IR[25:0]),2'bOO
Memory access of Friype Reg [IR[15:11]] <= Load: MDR <= Memory[ALUOUt]

completion ALLIGUL ar

Memory read comppelon

Load: Reg[IR[20:16]] <= MDR

FIGURE 5.30 Summary of the steps taken to execute any instruction class. Instructions take from three to five execution steps. The
first two steps are independent of the nstruction class. After these steps. an instruction takes from one to three more cveles to complets, depending on
the instruction class, The ernpty entries for the Memory access step or the Memory read completion step indicate that the particular mstruction class
takes fewer cycles. In a multicyele implementation, o new mstruction will be started os seon as the current mstruction completes, so these cycles are
not idle or wasted. As mentioned sarlier, the register file actually reads every cycle, but az long as the IR does not change, the values read from the reg-
ister file are identical. In particular, the value read into register B during the Instruction decode stage, for a branch or B-type instruction, is the sams as
the valus stored inte B during the Execution stage and then used in the Memory access stage for a store word instruction.

26

A single-cycle CPU has two main disadvantages.
— The cycle time 1s limited by the worst case latency.
— |t requires more hardware than necessary.

A multicycle processor splits instruction execution into several stages.
— Instructions only execute as many stages as required.
— Each stage is relatively simple, so the clock cycle time is reduced.
— Functional units can be reused on different cycles.

We made several modifications to the single-cycle datapath.
— The two extra adders and one memory were removed.

— Multiplexers were inserted so the ALU and memory can be used for
different purposes in different execution stages.

— New registers are needed to store intermediate results.
Next time, we’ll look at controlling this datapath.

	The Problem with Single-Cycle Processor Implementation: Performance
	What is the critical path for lw?
	Slide Number 3
	Slide Number 4
	What is the critical path for each instruction?
	Alternatives to Single-Cycle
	Summary
	Processor: Multicycle Implementation
	Our Simple Control Structure
	Slide Number 10
	Where we are headed
	Multicycle Approach
	Multicycle Approach
	Instructions from ISA perspective
	Breaking Down an Instruction
	Idea behind multicycle approach
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Five Execution Steps
	Step 1: Instruction Fetch
	Step 2: Instruction Decode and Register Fetch
	Step 3 (instruction dependent)
	Step 4 (R-type or memory-access)
	Step 5 (Write-back step)
	Summary:
	Slide Number 27

