
1

Attention

• Midterm Exam is scheduled on Oct. 23
Monday in class (75 minutes)

• SDSU is ranked No. 140 in this year’s list
of national universities by US News &
World Report‘s. It was ranked No. 183 in
2011.

2

I-Format vs. R-Format Instructions

• Compare with R-Format

offset

6 bits 5 bits 5 bits 16 bits

I-Format op rs rt

rd funct shamt

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format op rs rt

Note similarity!

What’s the difference?

3

I-Format Example
• Machine language for

 lw $9, 1200($8)

op rs rt offset

6 bits 5 bits 5 bits 16 bits

Binary

Decimal 35 8 9 1200

100011 01000 01001 0000010010110000

0 31

4

MIPS Conditional Branch Instructions

• Conditional branches allow decision making
 beq R1, R2, LABEL if R1==R2 goto LABEL
 bne R3, R4, LABEL if R3!=R4 goto LABEL

• Example
C Code if (i==j) goto L1;
 f = g + h;
 L1: f = f - i;

Assembly beq $s3, $s4, L1
 add $s0, $s1, $s2
 L1: sub $s0, $s0, $s3

5

MIPS Instruction Encoding

6

Example: Compiling C if-then-else

• Example
C Code if (i==j) f = g + h;
 else f = g - h;

Assembly bne $s3, $s4, Else
 add $s0, $s1, $s2
 j Exit; # new: unconditional jump
 Else: sub $s0, $s1, $s2
 Exit:

• New Instruction: Unconditional jump

 j LABEL # goto Label

7

Binary Representation - Branch

• Branch instructions use I-Format
• offset is added to PC when branch is taken

 beq r0, r1, offset

 has the effect:

 if (r0==r1) pc = pc + 4 + (offset << 2)
 else pc = pc + 4;

• Offset is specified in instruction words (why?)
• What is the range of the branch target addresses?

op rs rt offset

6 bits 5 bits 5 bits 16 bits

Conversion to
word offset

(PC+4)-217 <= target address <= (PC+4)+ 217

8

Branch Example
• Machine language for

 beq $s3, $s4, L1
 add $s0, $s1, $s2
 L1: sub $s0, $s0, $s3

op rs rt offset

6 bits 5 bits 5 bits 16 bits

Binary

Decimal 4 19 20 1

000100 10011 10100 0000000000000001

19 20

PC
PC+4

Target
of beq

1-instruction
offset

0 31

9

Comparisons - What about <, <=, >, >=?

• bne, beq provide equality comparison
• slt provides magnitude comparison

 slt $t0,$s3,$s4 # if $s3<$s4 $t0=1;
 # else $t0=0;

• Why not include a blt instruction in hardware?
– Supporting in hardware would lower performance
– Assembler provides this function if desired

• Combine with bne or beq to branch:
 slt $t0,$s3,$s4 # if (a<b)
 bne $t0,$zero, Less # goto Less;

slt: Set on Less Than
blt: Branch Less Than

10

Binary Representation - Jump

• Jump Instruction uses J-Format (op=2)
• What happens during execution?
 PC = PC[31:28] : (IR[25:0] << 2)

op address

6 bits 26 bits

Conversion to
word offset

Concatenate
upper 4 bits
of PC to form
complete
32-bit address

11

Jump Example
• Machine language for

 j L5

Assume L5 is at address 0x00400020
and

PC <= 0x03FFFFFF

Binary

Decimal/Hex

op address

6 bits 26 bits

2 0x0100008

000010 00000100000000000000001000

>>2

lower 28
bits

0x0100008
31 0

12

Constants / Immediate Instructions
• Small constants are used quite frequently

(50% of operands)
 e.g., A = A + 5;
 B = B + 1;
 C = C - 18;

• MIPS Immediate Instructions (I-Format):
 addi $29, $29, 4
 slti $8, $18, 10
 andi $29, $29, 6
 ori $29, $29, 4

• Allows up to 16-bit constants
• How do you load just a constant into a register?

 ori $5, $zero, 666

Arithmetic instructions sign-extend immed.

Logical instructions don’t sign extend immed.

13

Why are Immediates only 16 bits?

• Because 16 bits fits neatly in a 32-bit
instruction

• Because most constants are small (i.e. < 16
bits)

• Design Principle 4: Make the Common
Case Fast

14

MIPS Logical Instructions
• and, andi - bitwise AND
• or, ori - bitwise OR
• Example

and $s2,$s0,$s1

ori $s3,$s2,252

11011111010110100100100011110101

11110000111100001111000011110000
$s0

$s1

$s2 11010000010100000100000011110000

$s3 11010000010100000100000011111100

00000000000000000000000011111100 (25210)

15

(original contents) $t0

32-Bit Immediates and Address
• Immediate operations provide for 16-bit

constants.
• What about when we need larger constants?
• Use "load upper immediate - lui” (I-Format) to

set the upper 16 bits of a constant in a register.
 lui $t0, 1010101010101010

• Then use ori to fill in lower 16 bits:
 ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

filled with zeros

$t0 1010101010101010 0000000000000000 1010101010101010

16

MIPS Shift Instructions
• MIPS Logical Shift Instructions

– Shift left: sll (shift-left logical) instruction
– Right shift: srl (shift-right logical) instruction

 sll $s1,$s0,8

srl $s2,$s1,4 01011010010010001111010100000000

Zeros shift in

00000101101001001000111101010000

Zeros shift in

11011111010110100100100011110101 $s0

$s1

$s2

17

Shift Instruction Encodings

• Applications
– Multiplication / Division by power of 2
– Example: array access

op rs rt rd funct shamt

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

srl

0 rs rt rd 0 shamt sll

0 rs rt rd 6 shamt
unused

18

How to Decode?
• What is the assembly language statement

corresponding to this machine instruction?
 0x00af8020

• Convert to binary
0000 0000 1010 1111 1000 0000 0010 0000

• Decode
– op: 000000
– rs: 00101
– rt: 01111
– rd: 10000
– shamt: 00000
– funct: 100000

• Solution: add $s0, $a1, $t7

rd funct shamt
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format op rs rt

19

MIPS Instruction Set - Summary
• simple instructions all 32 bits wide
• very structured
• only three instruction formats

op rs rt offset

6 bits 5 bits 5 bits 16 bits

op rs rt rd funct shamt

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format

I-Format

op address

6 bits 26 bits

J-Format

20

Single-Cycle Processor Implementation

CS572 Micro Architecture

These slides are adapted from notes by Dr. Dave Patterson (UCB)

21

Processor Design

• Execution time is a primary measure of
program performance

• CPU time = IC x CPI x clock cycle time

– IC depends on the compiler and the ISA;
– CPI and Clock cycle time depend on

processor design.

22

MIPS Instruction Subset
• Representative instructions from three

classes included for processor design:
– Memory reference:

• lw, sw
– Arithmetic-logical:

• add, sub, and, or, slt
– Branch:

• beq, j

23

Two General Rules

1. Make the common case fast
2. Simplicity favors regularity

 According to the first rule, we look for

commonality in implementing:
• the three classes of instructions
• instructions within each class

24

What is Common to All Instructions

• Fetch and decode: Every instruction must be
fetched from memory to the processor and
decoded to carry out its meaning

• Register use: Every instruction (in the three
classes) reads one or two registers

• ALU use: Every instruction uses ALU to do
computation Why?

25

What is Different
• After ALU use
Instructions Operations
Memory reference accesses (reads or writes) a

memory location
Arithmetic-logical writes data to a register

Branch conditionally modify next
instruction address

26

General Procedure

1. Fetch Instruction from memory (IF)
2. Decode Instruction, read register values (ID)
3. If necessary, perform an ALU operation

(EX)
4. If load or store, do memory access (MEM)
5. Write results back to register file and

increment PC (WB)

27

Review: Digital Design

• Combinational is memory-less.
– Outputs depends only on inputs.
– Functional abstraction

• Sequential Logic: Can remember.
– Outputs depends inputs and internal states.
– At least two inputs: data input and clock

Combinational vs. Sequential Logic

cycle time
C l o c k p e r i o d R i s i n g e d g e

F a l l i n g e d g e

28

Edge-Triggered Clocking
• Controls sequential circuit operation

– Register outputs change after first clock edge
– Combinational logic determines “next state”
– Storage elements store new state on next clock edge

rising edge falling edge

Adder
Mux

Combinational Logic Register
Output

Register
Input

Clock

29

Edge-Triggered Clocking
• Propagation delay - tprop

• Logic (including register outputs)
• Interconnect

• Register setup time - tsetup

Clock

Adder
Mux

Combinational Logic Register
Output

Register
Input

tprop tsetup

tclock > tprop+ tsetup

tclock = tprop+ tsetup + tslack

30

Datapath: Abstract View

What is missing?
 * Mux’es in circled places

* Instruction decoding and control signals

Separate instruction and data
memories

Single-cycle implementation
– Instruction execution

completes in one clock
cycle

Data

Register #

Register #

Register #

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

	Attention
	I-Format vs. R-Format Instructions
	I-Format Example
	MIPS Conditional Branch Instructions
	MIPS Instruction Encoding
	Example: Compiling C if-then-else
	Binary Representation - Branch
	Branch Example
	Comparisons - What about <, <=, >, >=?
	Binary Representation - Jump
	Jump Example
	Constants / Immediate Instructions
	Why are Immediates only 16 bits?
	MIPS Logical Instructions
	32-Bit Immediates and Address
	MIPS Shift Instructions
	Shift Instruction Encodings
	How to Decode?
	MIPS Instruction Set - Summary
	CS572 Micro Architecture
	Processor Design
	MIPS Instruction Subset
	Two General Rules
	What is Common to All Instructions
	What is Different
	General Procedure
	Review: Digital Design
	Edge-Triggered Clocking
	Edge-Triggered Clocking
	Datapath: Abstract View

