
1

Grader and Prerequisite
• Chinmay Kulkarni

• Email: chinmayk93@gmail.com

• Lab sessions: Monday&Wednesday 4 pm ~ 5 pm at GMCS 557

• Please send an Hello email to him: email subject is “Hello,

cs572!”, in the email body, please tell him your Red ID, full
name, your working email address if it is not the one in the Hello
email, and a screenshot of your transcript to show that you
passed (D or above) the prerequisite of cs572 (i.e., CS 370 or
equivalent).

2

Review
• Two performance metrics execution time and throughput.
• Measuring CPU time: CPI

CPU time = Instruction count x CPI x clock cycle time
CPU time = Instruction count x CPI / clock rate

3

Suppose that enhancement E accelerates a fraction F of the task
by a factor S, and the remainder of the task is unaffected

tEnhancemenWithoutePerformanc
tEnhancemenWithePerformanc

tEnhancemenWithTimeExecution
tEnhancemenWithoutTimeExecutionESpeedup

__
__

___)(==

Speedup due to enhancement E:

This fraction enhanced

Quantitative Design: Amdahl's Law
Amdahl’s Law gives a quick way to find the speedup

from some enhancement.

4

Quantitative Design: Amdahl's Law

This fraction enhanced

ExTimeold ExTimenew

ExTimenew = ExTimeold x (1 - Fractionenhanced) + Fractionenhanced

Speedupoverall =
ExTimeold

ExTimenew

Speedupenhanced

=
1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

5

Pictorial Depiction of Amdahl’s Law

Before: Execution Time without enhancement E

After: Execution Time with enhancement E:

Enhancement E accelerates fraction F of original execution time by a factor of S

Unaffected fraction: (1- F) Affected fraction: F

Unaffected fraction: (1- F) F/S

Unchanged

 Execution Time without enhancement E 1
Speedup(E) = --- = ----------------------
 Execution Time with enhancement E (1 - F) + F/S

• shown normalized to 1 = (1-F) + F =1

6

• Floating point (FP) instructions improved to run
2X; but only 10% of actual instructions are FP.
Suppose the old execution time is ExTimeold,
What are the current execution time and speedup?

Quantitative Design: Amdahl's Law

Speedupoverall = 1
0.95

= 1.053

ExTimenew = ExTimeold x (0.9 + 0.1/2) = ExTimeold x 0.95

 Speedup =
ExTimeold

ExTimenew

 =
1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

 Speedup =
1

(1 - 0.1) + 0.1/2
= 1.053

7

Performance Summary
• Two performance metrics execution time and

throughput.
• Measuring CPU time: CPI

CPU time = Instruction count x CPI x clock cycle
time

CPU time = Instruction count x CPI / clock rate
• Amdahl’s Law

• When trying to improve performance, look at what

occurs frequently => make the common case fast.

 Execution Time without enhancement E 1
Speedup(E) = --- = ----------------------
 Execution Time with enhancement E (1 - F) + F/S

8

Outline
• Instruction Set Overview

– Classifying Instruction Set Architectures
(ISAs)

– Memory Addressing
– Types of Instructions

9

I/O system Processor

Compiler
Operating System

(Unix;
Windows 9x)

Application (Netscape)

Digital Design
Circuit Design

Instruction Set
 Architecture

Datapath & Control

transistors, IC layout

Memory Hardware

Software Assembler

Instruction Set Architecture (ISA)

• Serve as an interface between software and hardware.
• Provides a mechanism by which the software tells the

hardware what should be done.

10

Instruction Set Architecture (ISA)
High Level Language

Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Datapath Transfer
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

°
°

IR <− Imem[PC]; PC <− PC + 4

11

Interface Design

• Lasts through many implementations (portability,
compatibility)

• Is used in many different ways (generality)
• Provides convenient functionality to higher levels
• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time

12

Instruction Set Design Issues
– Where are operands stored?

• registers, memory, stack, accumulator
– How many explicit operands are there?

• 0, 1, 2, or 3
– How is the operand location specified?

• register, immediate, indirect, . . .
– What type & size of operands are supported?

• byte, int, float, double, string, vector. . .
– What operations are supported?

• add, sub, mul, move, compare . . .

13

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
 from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)
CISC

Intel x86, Pentium

Design goals:
maximize performance
and minimize cost,
reduce design time

14

Classifying ISAs
Accumulator (1 register):
 1 address add A acc ← acc + mem[A]
 1+x address addx A acc ← acc + mem[A + x]
Stack:
 0 address add tos ← tos + next
General Purpose Register:
 2 address add A B EA(A) ← EA(A) + EA(B)
 3 address add A B C EA(A) ← EA(B) + EA(C)
Load/Store:
 load Ra Rb Ra ← mem[Rb]
 store Ra Rb mem[Rb] ← Ra
Memory to Memory:
 All operands and destinations can be memory addresses.

15

Operand Locations in Four ISA Classes
GPR

16

Code Sequence C = A + B
for Four Instruction Sets

Stack Accumulator Register
(register-memory)

Register (load-
store)

Push A
Push B
Add
Pop C

Load A
Add B
Store C

Load R1, A
Add R3, R1, B
Store R3, C

Load R1,A
Load R2, B
Add R3, R1, R2
Store R3, C

memory memory
acc = acc + mem[B] R3 = R1 + mem[C] R3 = R1 + R2

17

General Purpose Registers (GPR)
• Why GPRs Dominate?

– Registers are much faster than memory (even
cache)
• Register values are available immediately
• When memory isn’t ready, processor must wait (“stall”)

– Registers are convenient for variable storage
• Compiler assigns some variables just to registers
• More compact code since small fields specify registers

(compared to memory addresses)

Registers Cache

Memory Processor Disk

18

Stack Architectures
• Instruction set:

add, sub, mul, div, . . .
push A, pop A

• Example: A*B - (A+C*B)
push A
push B
mul
push A
push C
push B
mul
add
sub

A B
A

A*B
A*B

A*B
A*B

A
A
C

A*B
A A*B

A C B B*C A+B*C result

19

Stacks: Pros and Cons

• Pros
– Good code density (implicit top of stack)
– Low hardware requirements
– Easy to write a simpler compiler for stack architectures

• Cons
– Stack becomes the bottleneck
– Little ability for parallelism or pipelining
– Data is not always at the top of stack when need, so

additional instructions like TOP and SWAP are needed
– Difficult to write an optimizing compiler for stack

architectures

20

Accumulator Architectures
• Instruction set:

add A, sub A, mul A, div A, . . .
load A, store A

• Example: A*B - (A+C*B)
load B
mul C
add A
store D
load A
mul B
sub D

B B*C A+B*C A A+B*C A*B result

acc = acc +,-,*,/ mem[A]

mem[D]

21

Accumulators: Pros and Cons

• Pros
– Very low hardware requirements
– Easy to design and understand

• Cons
– Accumulator becomes the bottleneck
– Little ability for parallelism or pipelining
– High memory traffic

22

Memory-Memory Architectures
• Instruction set:

(3 operands) add A, B, C sub A, B, C mul A, B, C
(2 operands) add A, B sub A, B mul A, B

• Example: A*B - (A+C*B)

• 3 operands 2 operands
mul D, A, B mov D, A
mul E, C, B mul D, B
add E, A, E mov E, C
sub E, D, E mul E, B
 add E, A
 sub E, D

mem[D] mem[E]

23

Memory-Memory: Pros and Cons
• Pros

– Requires fewer instructions (especially if 3
operands)

– Easy to write compilers for (especially if 3
operands)

• Cons
– Very high memory traffic (especially if 3 operands)
– Variable number of clocks per instruction
– With two operands, more data movements are

required

24

Register-Memory Architectures

• Instruction set:
add R1, A sub R1, A mul R1, B
load R1, A store R1, A

• Example: A*B - (A+C*B)
load R1, A
mul R1, B /* A*B */
store R1, D
load R2, C
mul R2, B /* C*B */
add R2, A /* A + CB */
sub R2, D /* AB - (A + C*B) */

R1 = R1 +,-,*,/ mem[B] mem[D] R2

25

Memory-Register: Pros and Cons

• Pros
– Some data can be accessed without loading first
– Instruction format easy to encode
– Good code density

• Cons
– Operands are not equivalent
– Variable number of clocks per instruction
– Limit number of registers

26

Load-Store Architectures

• Instruction set:
add R1, R2, R3 sub R1, R2, R3 mul R1, R2, R3
load R1, &A store R1, &A move R1, R2

• Example: A*B - (A+C*B)
load R1, &A
load R2, &B
load R3, &C
mul R7, R3, R2 /* C*B */
add R8, R7, R1 /* A + C*B */
mul R9, R1, R2 /* A*B */
sub R10, R9, R8 /* A*B - (A+C*B) */

R3 = R1 +,-,*,/ R2 R7

R8

R9

R10

27

Load-Store: Pros and Cons

• Pros
– Simple, fixed length instruction encodings
– Instructions take similar number of cycles
– Relatively easy to pipeline and make superscalar

• Cons
– Higher instruction count
– Not all instructions need three operands
– Dependent on good compiler

28

Registers:Advantages and Disadvantages
• Advantages

– Faster than cache or main memory (no addressing mode or tags)
– Deterministic (no misses)
– Can replicate (multiple read ports)
– Short identifier (typically 3 to 8 bits)
– Reduce memory traffic

• Disadvantages
– Need to save and restore on procedure calls and context switch
– Can’t take the address of a register (for pointers)
– Fixed size (can’t store strings or structures efficiently)
– Compiler must manage
– Limited number

• ISAs designed after 1980 use a load-store ISA (i.e MIPS,Sparc,
HP-PA,IBM RS6000,PowerPC, to simplify CPU design).

29

Summary
• Instruction Set Overview

– Classifying Instruction Set Architectures (ISAs)

30

For Next Time…
– Memory Addressing
– Types of Instructions
– MIPS Instruction Set

 The grader will email you a supplemental

reading document after you send him a Hello
email. You need to finish the reading by Sept.
10.

	Grader and Prerequisite
	Review
	Slide Number 3
	Slide Number 4
	Pictorial Depiction of Amdahl’s Law
	Slide Number 6
	Performance Summary
	Outline
	Instruction Set Architecture (ISA)
	Instruction Set Architecture (ISA)
	Interface Design
	Instruction Set Design Issues
	Evolution of Instruction Sets
	Classifying ISAs
	Operand Locations in Four ISA Classes
	Code Sequence C = A + B �for Four Instruction Sets
	General Purpose Registers (GPR)
	Stack Architectures
	Stacks: Pros and Cons
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Summary
	For Next Time…

