CS 572 Micro Architecture

Dr. Tao Xie

San Diego State University http://taoxie.sdsu.edu/ txie@mail.sdsu.edu

Fall, 2017

These slides are adapted from notes by Dr. Dave Patterson (UCB) and Dr. Xiao Qin (Auburn)

Grader

Chinmay Kulkarni Email: chinmayk93@gmail.com Office: GMCS 557 Office hours: Monday&Wednesday 4 pm to 5 pm

Outline

- Course Objectives
- Course Content & Grading
- Laboratory Assignments
- Technology Trends
- Introduction to Computer Organization and Technology

CS 572: Semester Calendar

See the class webpage for the most up to date version!

http://taoxie.sdsu.edu/cs572

tao xie	Advanced Search Preferences		
	Google Search	I'm Feeling Lucky	Language Tools

Advertising Programs - Business Solutions - About Google

Make Google Your Homepage!

©2007 Google

San Diego State University

Tao Xie

Ph.D.

Home

<u>Research</u>

Publications

Teaching

<u>Resume</u>

Contact Me

SAN DIEGO STATE

UNIVERSITY

Tao Xie

Professor Department of Computer Science San Diego State University

I am a professor in Computer Science at the San Diego State University.

I received my B.S. in Electrical Engineering and M.S. in Computer Engineering both from <u>Hefei University of Technology</u>, Hefei, China. I received my Ph.D. in Computer Science from <u>New Mexico Institute of Mining and Technology</u> in May 2006.

Recent Events

- [11/29/16]: My student Deng Zhou successfully defended his Ph.D. dissertation entitled "I/O Stack Optimization for Non-Volatile Memory Based Storage Systems". Congratulations to Deng Zhou!
- [10/06/16]: My student Wen Pan presented our paper entitled "How Many MLCs Should Impersonate SLCs to Optimize SSD Performance?" at MEMSYS 2016 in Washing D.C.
- [05/16/16]: Our paper entitled "How Many MLCs Should Impersonate SLCs to Optimize SSD Performance?" is accepted by the 2nd International Symposium on Memory Systems (MEMSYS 2016). Congratulations to Wei Wang, Deng Zhou, and Wen Pan!
- [11/30/15]: The source code and the traces of our publication "I/O Characteristics of Smartphone Applications and Their Implications for eMMC Design (IISWC 2015)" are available now! The

 Image: Normal state sta

ю.

CS 572 Micro Architecture

Fall 2017 MW 2pm - 3:15pm, ENS-106 San Deigo State University

Instructor: Dr. Tao Xie

Office: GMCS 535, Phone: 619-594-2014, Email: txie@mail.sdsu.edu Office hours: Monday and Wednesday 11 am - noon; or by appointment Grader: Chinmay Kulkarni, <u>Chinmay Kulkarni</u>, GMCS 557, lab hours: Monday&Thursday 10 am ~ 12 pm

General Information | Announcements | Syllabus | Assignments | Lectures

Announcements

Course Information

This course aims to introduce many issues and challenges involved in designing and implementing modern computer systems. Since applications systems. Understanding the interdependence of architectural and implementation decisions is of help to the development of applications will be applied and implementation decisions in the development of applications will be applied as the development of applications will be applications will be applied as the development of

Objectives

- To learn the principles behind the design of modern computer systems (e.g., tradeoffs: cost vs. performance, speed vs. flexibility)
- · To understand the design of instruction sets

CS 572 Micro Architecture

Fall 2017 MW 14:00-15:15, ENS-106 San Diego State University

Instructor: Dr. Tao Xie GMCS 535, 619-594-2014 Office hours: MW 11 am - 12 pm, or by appointment.

Lectures and Schedule

Date	Topics	Reading Assignments	Slides
8/28/17	Introduction	Ch 1.1-1.6	Lec01.pdf
8/30/17	Performance Measurement	Ch 1.8-1.9	Lec02.pdf
9/06/17	Instruction Set Architecture	B.1-B.3, B.4, B.5	Lec03.pdf
9/11/17	Instruction Set Architecture: MIPS1	B.6, B.7, B.9	Lec04.pdf
9/13/17	Instruction Set Architecture: MIPS2		Lec05.pdf
9/18/17	Single-Cycle Processor Implementation1		Lec06.pdf
9/20/17	Single-Cycle Processor Implementation2		Lec07.pdf
9/25/17	Multi-Cycle Processor Implementation 1		Lec08.pdf
9/27/17	Multi-Cycle Processor Implementation 2		Lec09.pdf
10/02/17	Pipeline: Introduction	A.1	Lec10.pdf
10/04/17	Pipeline: Structural Hazards	A.2	Lec11.pdf
10/09/17	Pipeline: Data Hazards	A.3	Lec12.pdf
10/11/17	Pipeline: Branch Prediction	A.3	Lec13.pdf
10/16/17	Exercise Class		Lec14.pdf
10/18/17	Review session for midterm exam	The <u>Study Guide</u> for the Midterm exam	Lec15.pdf
10/23/17	Midterm		
10/25/17	Midterm Summary Session		Lec16.pdf

Why We Need to Learn

- Always Important Hardware? Every hardware system is different
 Understanding hardware → more efficient algorithms, programs (Microsoft developers say so!)
 Understanding hardware → more effective use of OS
 Understanding hardware → more efficient database design
- Timely Multicore, hyper-threading, security, . .
- Opens doors

Yet another option!

You won't know what you need until you need it (and this will probably be after you graduate)

Software and Hardware

Computer System Design

11

System, Component, Logic Circuit, IC, Transistor

The Implementation of Computer System

Course Objectives

- To learn the principles behind the design of modern computer systems (e.g., tradeoffs: cost vs. performance, speed vs. flexibility)
- To understand the design of instruction sets
- To learn pipelining techniques
- To understand issues in hierarchical memory system design
- To classify and describe parallel computer architectures
- To demonstrate the ability to program microprocessors in assembly language

Topic Coverage

- Textbook: Patterson and Hennessy, Computer Architecture: A Quantitative Approach, 5th Ed., 2012.
- Covers (These topics may change)
 - Basics of machine organization
 - Principles of instruction set design
 - Instruction set principles and examples
 - Pipelining
 - Memory hierarchy design

Course Syllabus

- Prerequisite: CS 370 Computer Architecture
- 3 homework assignments and 3 lab assignments.
 - Homework is due at the **start** of class.
 - -Late assignments will **NOT** be accepted without prior arrangement.
- 1 midterm exam and 1 final exam
- Grading
 - Class Participation 5%
 - Quizzes 10%
 - Midterm 20%
 - Final Exam 20%
 - Homework 15%
 - Lab Assignment 30%

Textbook

John Hennessy and David Patterson, "Computer Architecture: A Quantitative Approach" fifth edition, by Morgan Kaufmann, 2012, ISBN: 978-0-12-383872-8

Course Syllabus (cont.)

• Scale

- Letter grades will be awarded based on the following scale.

• Cheating

- All assignments have to be done individually.
- Students may discuss with their friends.
- Assignments submitted must be yours.
- Please do not attempt to recycle answers from the Internet (plagiarism).

Office Hours

Office hours: MW 11 am – 12 pm or by appointment at GMCS 535

Grader Office Hours: MW 4 pm – 5 pm at GMCS 557

Laboratory Assignments

- Three lab assignments (30% of final score)
- Programming languages (C, Java)
- Simulating simple machines
 - 1. Implement instruction set architectures
 - 2. Develop single and multi-cycle machines
 - 3. Design and implement pipelined datapath with interlocks and forwarding

Questions

Please ask at any time!

Technology Trend

In reality:

Big Fishes Eating Little Fishes

Technology Trend

1988 Computer Food Chain

Technology Trend

Clusters

supercomputer

computer

1998 Computer Food Chain

Supercomputer Trends in Top 500

Massively Parallel Processor (MPP)

Why Such Changes in 10 years?

- Performance
 - Technology Advances
 - CMOS VLSI dominates older technologies in cost and performance
 - Computer architecture advances improves low-end
 - RISC, superscalar, RAID, ...
- Cost: Lower costs due to ...
 - Simpler development
 - CMOS VLSI: smaller systems, fewer components
 - Higher volumes
 - CMOS VLSI : same dev. cost 10,000 vs. 10,000,000 units
 - Lower margins by class of computer, due to fewer services
- Function

Rise of networking/local interconnection technology

Growth in Microprocessor Performance

© 2003 Elsevier Science (USA). All rights reserved.

Six Generations of DRAMs

© 2003 Elsevier Science (USA). All rights reserved.

Technology \Rightarrow dramatic change

- Processor
 - transistor number in a chip: about 55% per year
 - clock rate: about 20% per year
- Memory
 - DRAM capacity: about 60% per year
 - Memory speed: about 10% per year
 - Cost per bit: improves about 25% per year
- Disk
 - capacity: about 60% per year
 - Total use of data: 100% per 9 months!
- Network Bandwidth
 - − 10 years: $10Mb \rightarrow 100Mb$
 - − 5 years: $100Mb \rightarrow 1 Gb$

Updated Technology Trends (Summary)

Capacity		Speed (latency)	
Logic	4x in 4 years	<u>2x in 3 years</u>	
DRAM	4x in 3 years	2x in 10 years	
Disk	4x in 2 years	2x in 10 years	
Network	(bandwidth) 10x in	5 years	

Amazing Underlying Technology Change

- In 1965, Gordon Moore sketched out his prediction of the pace of silicon technology.
- Moore's Law: The number of transistors incorporated in a chip will approximately double every 24 months.
- Decades later, Moore's Law remains true.

Technology Trends: Moore's Law

- Gordon Moore observed in 1965 that the number of transistors on a chip doubles about every 24 months.
- In fact, the number of transistors on a chip doubles about every 18 months.

Why Study Computer Architecture

- Aren't they fast enough already?
 - Are they?
 - Fast enough to do everything we will EVER want?
 - Protein sequencing, computational materials, graphics

Answer: Requirements are always changing

Understand where computers are going

Technology \Rightarrow dramatic change

Why Study Computer Architecture (cont.)

Based on SPEED, the CPU has increased dramatically, but memory and disk have increased only a little. This has led to dramatic changed in architecture, Operating Systems, and programming practices.

Answer: Technology playing field is always changing

Understand hardware for software tuning

Why Study Computer Architecture (cont.)

- Is speed the only goal?
 - Power: heat dissipation + battery life
 - Cost
 - Reliability
 - Etc.

Exposure to high-level design

• Get a job (design or research)

What is Computer Architecture ?

- The science and art of selecting and interconnecting hardware components to create computers that meet functional, performance and cost goals.
- An analogy to architecture of buildings...

For Next Time...

- 1. Read Chapter 1 Fundamentals of Computer Design
- Please show me your transcript of CS 370 or equivalent in our next class (Aug. 30, Wednesday).