
1

Pipeline: Introduction

These slides are adapted from notes by Dr. David Patterson (UCB)

2

What is Pipelining?

• A way of speeding up execution of instructions

• Key idea:

overlap execution of multiple instructions

3

The Laundry Analogy

• Anna, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 30 minutes

• “Folder” takes 30 minutes

• “Stasher” takes 30 minutes
to put clothes into drawers

A B C D

4

If we do laundry sequentially...

30
T
a
s
k

O
r
d
e
r

Time
A

30 30 3030

B

30 3030

C

30 30 3030

D

30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM

• Time Required: 8 hours for 4 loads

5

12 2 AM6 PM 7 8 9 10 11 1

Time30

A

C

D

B

30 30 3030 30 30T
a
s
k

O
r
d
e
r

To Pipeline, We Overlap Tasks

• Time Required: 3.5 Hours for 4 Loads

6

12 2 AM6 PM 7 8 9 10 11 1

Time30

A

C

D

B

30 30 3030 30 30T
a
s
k

O
r
d
e
r

To Pipeline, We Overlap Tasks

• Does Pipelining help latency of single

task?

• Does Pipelining help throughput of entire

workload?

• Pipeline rate limited by ___?

• Multiple tasks operating simultaneously

• Potential speedup = ?

• Unbalanced lengths of pipe stages will

• Time to “fill” pipeline and time to

“drain” it reduces speedup

No

Yes

the slowest pipeline stage

Number of pipe stage

reduces speedup

7

Pipelining a Digital System

• Key idea: break big computation up into pieces

Separate each piece with a pipeline register

1ns

200ps 200ps 200ps 200ps 200ps

Pipeline

Register

1 nanosecond = 10^-9 second

1 picosecond = 10^-12 second

8

Pipelining a Digital System

• Why do this? Because it's faster for repeated

computations

1ns

Non-pipelined:

1 operation finishes

every 1ns

200ps 200ps 200ps 200ps 200ps

Pipelined:

1 operation finishes

every 200ps

9

Comments about pipelining

• Pipelining increases throughput, but not latency

– Answer available every 200ps, BUT

– A single computation still takes 1ns

• Limitations:

– Computations must be divisible into stage size

– ?

Pipeline registers add overhead

10

Pipelining a Processor

• Recall the 5 steps in instruction execution:

1. Instruction Fetch (IF)

2. Instruction Decode and Register Read (ID)

3. Execution operation or calculate address (EX)

4. Memory access (MEM)

5. Write result into register (WB)

• Review: Single-Cycle Processor

– All 5 steps done in a single clock cycle

– Dedicated hardware required for each step

11

Review - Single-Cycle Processor

What do we need to add to actually split the datapath into stages?

12

The Basic Pipeline For MIPS

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

I
n
s
t
r.

O
r
d
e
r

MIPS R3000 is a 32-bit architecture (RISC) (please refer to

http://eecs.harvard.edu/~cs161/notes/mips-part-I.pdf)

13

Basic Pipelined Processor

14

Pipeline example: lw

IF

15

Pipeline example: lw

ID

16

Pipeline example: lw

EX

17

Pipeline example: lw

MEM

18

Pipeline example: lw

WB

Can you find a problem?

19

Basic Pipelined Processor (Corrected)

20

Single-Cycle vs. Pipelined Execution

Non-Pipelined
0 200 400 600 800 1000 1200 1400 1600 1800

lw $1, 100($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $2, 200($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $3, 300($0)
Instruction

Fetch

Time
Instruction
Order

800ps

800ps

800ps

Pipelined
0 200 400 600 800 1000 1200 1400 1600

lw $1, 100($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $2, 200($0)

lw $3, 300($0)

Time
Instruction
Order

200ps

Instruction

Fetch
REG

RD
ALU REG

WR
MEM

Instruction

Fetch
REG

RD
ALU REG

WR
MEM

200ps

200ps 200ps 200ps 200ps 200ps

21

22

Pipeline: Hazards

23

Single-Cycle vs. Pipelined Execution

Non-Pipelined
0 200 400 600 800 1000 1200 1400 1600 1800

lw $1, 100($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $2, 200($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $3, 300($0)
Instruction

Fetch

Time
Instruction
Order

800ps

800ps

800ps

Pipelined
0 200 400 600 800 1000 1200 1400 1600

lw $1, 100($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $2, 200($0)

lw $3, 300($0)

Time
Instruction
Order

200ps

Instruction

Fetch
REG

RD
ALU REG

WR
MEM

Instruction

Fetch
REG

RD
ALU REG

WR
MEM

200ps

200ps 200ps 200ps 200ps 200ps

24

Speedup
• Consider the unpipelined processor introduced previously. Assume that it has

a 1 ns clock cycle and it uses 4 cycles for ALU operations and branches, and

5 cycles for memory operations, assume that the relative frequencies of these

operations are 40%, 20%, and 40%, respectively. Suppose that due to clock

skew and setup, pipelining the processor adds 0.2ns of overhead to the clock.

Ignoring any latency impact, how much speedup in the instruction execution

rate will we gain from a pipeline?

Average instruction execution time
= 1 ns * ((40% + 20%)*4 + 40%*5)
= 4.4ns

Speedup from pipeline
= Average instruction time unpiplined/Average instruction time pipelined
= 4.4ns/1.2ns = 3.7

25

Comments about Pipelining

• The good news

– Multiple instructions are being processed at same time

– This works because stages are isolated by registers

– Best case speedup of N

• The bad news

– Instructions interfere with each other - hazards

• Example: different instructions may need the same piece of
hardware (e.g., memory) in same clock cycle

• Example: instruction may require a result produced by an
earlier instruction that is not yet complete

26

Pipeline Hazards

• Limits to pipelining: Hazards prevent next

instruction from executing during its

designated clock cycle

– Structural hazards: two different instructions use

same h/w in same cycle

– Data hazards: Instruction depends on result of

prior instruction still in the pipeline

– Control hazards: Pipelining of branches & other

instructions that change the PC

27

Structural Hazards

• Attempt to use same resource twice at same time

• Example: Single Memory for instructions, data

– Accessed by IF stage

– Accessed at same time by MEM stage

• Solutions ?

– Delay second access by one clock cycle

– Provide separate memories for instructions, data

•This is what the book does

•This is called a “Harvard Architecture”

•Real pipelined processors have separate caches

28

Pipelined Example -

Executing Multiple Instructions

• Consider the following instruction

sequence:
lw $r0, 10($r1)

sw $sr3, 20($r4)

add $r5, $r6, $r7

sub $r8, $r9, $r10

29

Executing Multiple Instructions

Clock Cycle 1
LW

30

Executing Multiple Instructions

Clock Cycle 2
LWSW

31

Executing Multiple Instructions

Clock Cycle 3
LWSWADD

32

Executing Multiple Instructions

Clock Cycle 4
LWSWADDSUB

33

Executing Multiple Instructions

Clock Cycle 5
LWSWADDSUB

34

Executing Multiple Instructions

Clock Cycle 6
SWADDSUB

35

Executing Multiple Instructions

Clock Cycle 7
ADDSUB

36

Executing Multiple Instructions

Clock Cycle 8
SUB

37

Alternative View - Multicycle Diagram

IM REG ALU DM REGlw $r0, 10($r1)

sw $r3, 20($r4)

add $r5, $r6, $r7

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

IM REG ALU DM REG

IM REG ALU DM REG

sub $r8, $r9, $r10 IM REG ALU DM REG

CC 8

38

Alternative View - Multicycle Diagram

IM REG ALU DM REGlw $r0, 10($r1)

sw $r3, 20($r4)

add $r5, $r6, $r7

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

IM REG ALU DM REG

IM REG ALU DM REG

sub $r8, $r9, $r10 IM REG ALU DM REG

CC 8

Memory Conflict

39

One Memory Port Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

40

Structural Hazards
Some Common Structural Hazards:

• Memory:

– we’ve already mentioned this one.

• Floating point:

– Since many floating point instructions require many

cycles, it’s easy for them to interfere with each other.

• Starting up more of one type of instruction than

there are resources.

– For instance, the PA-8600 can support two ALU + two

load/store instructions per cycle - that’s how much

hardware it has available.

41

Dealing with Structural Hazards
Stall

– low cost, simple

– Increases CPI

– use for rare case since stalling has performance effect

Pipeline hardware resource

– useful for multi-cycle resources

– good performance

– sometimes complex e.g., RAM

Replicate resource

– good performance

– increases cost (+ maybe interconnect delay)

– useful for cheap or divisible resources

42

Structural Hazards

• Structural hazards are reduced with these rules:

– Each instruction uses a resource at most once

– Always use the resource in the same pipeline stage

– Use the resource for one cycle only

• Many RISC ISA’s designed with this in mind

• Sometimes very complex to do this.
– For example, memory of necessity is used in the IF and

MEM stages.

43

Data Hazards

• Data hazards occur when data is used

before it is stored

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program

execution

order

(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of

register $2:

DM Reg

Reg

Reg

Reg

DM

The use of the result of the SUB instruction in the next two instructions causes a

data hazard, since the register is not written until after those instructions read it.

44

Data Hazards
Read After Write (RAW)

InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler nomenclature). This
hazard results from an actual need for communication.

Execution Order is:

InstrI

InstrJ

I: add r1,r2,r3

J: sub r4,r1,r3

45

Data Hazards
Write After Read (WAR)

InstrJ tries to write operand before InstrI reads i

– Gets wrong operand

– Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

Execution Order is:

InstrI

InstrJ

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

–All instructions take 5 stages, and

– Reads are always in stage 2, and

– Writes are always in stage 5

46

Data Hazards
Write After Write (WAW)

InstrJ tries to write operand before InstrI writes it

– Leaves wrong result (InstrI not InstrJ)

• Called an “output dependence” by compiler writers

This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

Execution Order is:

InstrI

InstrJ

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7

–All instructions take 5 stages, and

– Writes are always in stage 5

•Will see WAR and WAW in later more
complicated pipes

47

Data Hazards

• Solutions for Data Hazards

– Stalling

– Forwarding:

• connect new value directly to next stage

– Reordering

48

Data Hazard - Stalling
0 2 4 6 8 10 12

IF ID EX MEM

16

add $s0,$t0,$t1

STALL

18

sub $t2,$s0,$t3 IF EX MEM

STALL

BUBBLE BUBBLE BUBBLE BUBBLE

BUBBLEBUBBLE BUBBLE BUBBLE BUBBLE

$s0
written
here

W
s0

WB

$s0 read
here

R
s0

BUBBLE

49

Data Hazards - Stalling
Simple Solution to RAW

• Hardware detects RAW and stalls

• Assumes register written then read each cycle

+ low cost to implement, simple

-- reduces IPC

• Try to minimize stalls

Minimizing RAW stalls

• Bypass/forward/shortcircuit (We will use the word “forward”)

• Use data before it is in the register

+ reduces/avoids stalls

-- complex

• Crucial for common RAW hazards

50

Data Hazards - Forwarding

• Key idea: connect new value directly to next stage

• Still read s0, but ignore in favor of new result

•

Problem: what about load instructions?

51

Data Hazards - Forwarding

• STALL still required for load - data avail. after MEM

• MIPS architecture calls this delayed load, initial

implementations required compiler to deal with this

ID

0 2 4 6 8 10 12

IF ID EX MEM

16

lw $s0,20($t1)

18

sub $t2,$s0,$t3 IF EX MEM

W
s0

WB
R
s0

new value
of s0

STALL
BUBBLE BUBBLE BUBBLE BUBBLE BUBBLE

52

Data Hazards
This is another

representation

of the stall.

LW R1, 0(R2) IF ID EX MEM WB

SUB R4, R1, R5 IF ID EX MEM WB

AND R6, R1, R7 IF ID EX MEM WB

OR R8, R1, R9 IF ID EX MEM WB

LW R1, 0(R2) IF ID EX MEM WB

SUB R4, R1, R5 IF ID stall EX MEM WB

AND R6, R1, R7 IF stall ID EX MEM WB

OR R8, R1, R9 stall IF ID EX MEM WB?

Why “OR R8, R1, R9” needs to be stalled in “IF” stage? This is because if not, there

will be two instructions (itself and “AND R6, R1, R7”) both reading register R1 in the

same cycle, which is not allowed. For a register, two instructions can simultaneously

access it but it must be “one read and one write”, rather than, two writes.

53

Forwarding

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program

execution

order

(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of

register $2:

DM Reg

Reg

Reg

Reg

DM

IF/ID ID/EX EX/MEM MEM/WB

How would you design the forwarding?

Key idea: connect data internally before it's stored

54

Data Hazard Solution: Forwarding
• Key idea: connect data internally before it's stored

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program

execution order

(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :

X X X X – 20 X X X XValue of MEM/WB :

DM

Assumption:

• The register file forwards values that are read

and written during the same cycle.

55

Data Hazard Summary
• Three types of data hazards

– RAW (MIPS)

– WAW (not in MIPS)

– WAR (not in MIPS)

• Solution to RAW in MIPS

– Stall

– Forwarding

• Detection & Control

• A stall is needed if read a register after a load
instruction that writes the same register.

– Reordering

56

Control Hazards

A control hazard is when we need to find

the destination of a branch, and can’t fetch

any new instructions until we know that

destination.

A branch is either

– Taken: PC <= PC + 4 + Imm

– Not Taken: PC <= PC + 4

57

Control Hazard on BranchesControl Hazards

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

The penalty when branch taken is _________3 cycles! Three Stage Stall

58

Branch Hazards
• Just stalling for each branch is not practical

Common assumption: branch not taken

• When assumption fails: flush three instructions

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program

execution

order

(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

59

Basic Pipelined Processor

In our original Design, branches have a penalty of 3 cycles

60

Reducing Branch Delay
Move following to ID stage

a) Branch-target address calculation

b) Branch condition decision

Reduced penalty (1 cycle) when branch take!

61

62

63

64

65

66

67

68

69

Branch Behavior in Programs

• Based on SPEC benchmarks on DLX

– Branches occur with a frequency of 14% to 16% in integer

programs and 3% to 12% in floating point programs.

– About 75% of the branches are forward branches

– 60% of forward branches are taken

– 80% of backward branches are taken

– 67% of all branches are taken

• Why are branches (especially backward branches)

more likely to be taken than not taken?

70

