Pipeline: Introduction

These slides are adapted from notes by Dr. David Patterson (UCB)

What is Pipelining?

« A way of speeding up execution of instructions

« Key Idea:
overlap execution of multiple Instructions

The Laundry Analogy
OGO

Anna, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

Washer takes 30 minutes

Dryer takes 30 minutes °
O
“Folder” takes 30 minutes o

“Stasher” takes 30 minutes

to put clothes into drawers A

- 0ao-=-0 xXunoo -

v

If we do laundry sequentially...

GPM 7 38 9 10 11 12 1 2AM

30 30 30 30 30 30 30 30 30 30 30 30 30 30 30'%I

&.ﬁk Time
r-:» l@ﬁ.@%
S =Y

* Time Required: 8 hours for 4 loads

- D0ao-=-0 xXunoo -

To Pipeline, We Overlap Tasks

1

2 AM

6PM 7 8 9 10 11 12
3030 30 30 30 30’30I Time
51‘ A
D
'ﬁ A

V

* Time Required: 3.5 Hours for 4 Loads

- D0ao-=-0 xXunoo -

Gt Gt Gt Gt

To Pipeline, We Overlap Tasks

6IPM 7 8 9

10 11 12 1 2AM

e
3030 30 30 30 30 30

Time
Does Pipelining help latency of single
task? No

Does Pipelining help throughput of entire
workload? veg

Pipeline rate limited by ?

the slowest pipeline stage
Multiple tasks operating simultaneously
Potential speedup = ? Number of pipe stage

Unbalanced lengths of pipe stages will
reduces speedup

Time to “fill” pipeline and time to
“drain” it reduces speedup

Pipelining a Digital System

1 nanosecond = 107-9 second
1 picosecond = 107-12 second

« Key idea: break big computation up into pieces

o
»

<

1ns

Separate each piece with a pipeline register

<

> < > < > < > < >
200ps | 200ps | 200ps | 200ps | 200ps

|

Pipeline

Register

Pipelining a Digital System

« Why do this? Because it's faster for repeated
computations

Non-pipelined:
= 1 operation finishes
every 1ns

1ns
Pipelined:
1 operation finishes
every 200ps

o

© 200ps 200ps 200ps 200ps 200ps

Comments about pipelining

 Pipelining increases throughput, but not latency
— Answer available every 200ps, BUT
— A single computation still takes 1ns
 Limitations:

— Computations must be divisible into stage size
—?

Pipeline registers add overhead

Pipelining a Processor

Recall the 5 steps in instruction execution:

1. Instruction Fetch (IF)

2. Instruction Decode and Register Read (I1D)

3. Execution operation or calculate address (EX)
4. Memory access (MEM)

5. Write result into register (WB)

Review: Single-Cycle Processor
— All 5 steps done in a single clock cycle
— Dedicated hardware required for each step

10

Review - Single-Cycle Processor

I[F: Instruction fetch EX: Execute/l WB: Write back

address calculation

ID: Instruction decode/l
register file read

MEM: Memory access

>ADD
result

=

|

|

|

|

|

|

|

|

|

|

|

|

|

> |
1 |
Add |
|

|

|

|

|

|

|

[

Shiftl
left 2
Address register 1 data 1
Readl
- > i : | Addressl
= i resu
Instruction p Registers » OM | FI;;Z 1M
Write 0 Readl I Datall
- > . u
Instruction(] register data 2 X | Memory Y
memory L | X
p | Writel L 1 0 0
data ! Writel
i data
m I
|
16 . 32
N Signll \ :
|
|
|
]
|
|
|

| |
| |
| |
| |
| |
| |
| |
| |
I |
| |
| |
| |
| |
] |
| |
| |
| |
| |
| |
| |
| |
| |
Readl Readl | o |
| |
| |
| |
| |
|]
| |
| |
| |
| |
| |
| |
| |
| !
| |
f |
| |
| |
| |
| |
| |
| |
| |
| |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| is
-|- register 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

What do we need to add to actually split the datapath into stages?
11

The Basic Pipeline For MIPS

Cycle 1: Cycle 2: Cycle 3 Cycle 4 Cycle 5 i Cycle 6: Cycle 7

+ : [rfetch Reg |l > DMem :
r .

d :

e : [Ifetch R I .2 DMem

MIPS R3000 is a 32-bit architecture (RISC) (please refer to
http://eecs.harvard.edu/~cs161/notes/mips-part-1.pdf)

Basic Pipelined Processor

r

IFID

Address

Instruction
memory

llnstruction

Read
data

MEM/WB

ID/EX EX/MEM
Add Add
result
Shift
left 2
Read
register 1 Read >
data 1
oa 2 Zero = -
register ALU
Registers ALU -
Write Read > /.5\ result Address
N data 2
register M / Dt
u
Write X memory
data & 1
_ Write
data
16 I
° Sign | 32
T extend =

“xg=2°

13

Iw

Pipeline example: lw

Instruction fetch

IF

IF/ID

ID/EX

Address

Y

Instruction
memory

Shift
left 2

Add Add

EX'MEM

ﬂ

ﬁ

ALU 51y

result

/

=4
% Read
=] register 1 Read
£ data 1
= Read

register 2
L& HEQIStErS Read

Write data 2 -

" register
Write
data
16 Sign | 32 J
. extend

Address
Data
memary
Write
data

Read
data

MEM/WB

14

Pipeline example: Iw
ID

lw

Instruction decode

IFND

Address

Instruction
memory

Instruction

Read
data

MEM/MWB

ID/EX EX/MEM
Add Add "
result
Shift
left 2
Read
register 1 Read _ \
data 1
Read Zero . =
register 2 . ALU
RegIsters b ad ALL > Address
Write i) > 0 result o
register a M /
u Data
Write X memaory
data [
_ Write
data
16 Sign

A
T extend

15

Pipeline example: Iw

Iw

EX

Execution

Read
data

MEM/WB

IFID ID/EX EX/MEM
4 — / Add Ad?
result
Shift
left 2
Address Read
s register 1 Read > > \
5 data 1
2 Read Zero+—» -
. o register 2
Instruction - 1<) 9 Registers ALU 51y
memory Write Read o result Address
- data 2
register / bata
Write memory
data -
_ Write
o data
r extend =+ =

“xs=2°

16

Pipeline example: Iw
MEM

| Iw |
| Memory |
IF/1D ID/EX EX/MEM MEM/WEB
= / Add Add
resu
Shift |
left 2
Address Read
5 register 1 Read >
B Aead data 1
2 o Zero P -
j=) S !
Instruction 2 register2 ALU
— Registers ALU _—
memory] Write Read > > () result Address data —)
register data 2 M / M
u Data u
Write X me e X
data b>| 1 1
_ Write
o data
16 Sign | 32 .

LY
™| extend

17

Pipeline example: Iw

WB)
-

rite back
IF/ID ID/IEX EX/MEM MEM/WB
M}I \
4 _.,/ Add Adtlit .
resu
Shift |
left 2
Address _ |Read
s register 1 Read > >
s Read data 1
= ed Zero}—» -
. g p— register 2 ALU
Mmemory =1 Registers pead AL — Address Head 0
Y Write (0 result 58 data
X data 2 M M

register u Data u

Write X memory 1“

data [1

_ Write
data
> @ — —

Can you find a problem?

18

Basic Pipelined Processor (Corrected)

Add Add

EX/MEM

ﬂ

T~

A

!

Zero
ALU a1y

result

/

IF/1D ID/EX
p——-
Add .
4 —
Shift
left 2
Address C Read
2 register 1 Read >
g data 1
ﬁ‘ Read
Instruction £ register2
Registers
memory (- e Read .
W
register data 2 M
u
e | VVrite X
data
16 Sign | 32
: extend s

Address
Data

memory

Write
data

Read
data

MEM/WEB

19

Single-Cycle vs. Pipelined Execution

Non-Pipelined

Instruction 0 200 400 600 800 1000 1200 1400 1600 1800 _
Order ; ; ; ; ; ; ; ; ; I »Time

Instructi REG REG
1w $1, 100 ($0)|nsmucton RDI ALU I vem [REC
Instruction] REG REG
lw $2, 200($0) 800D > oich IRDI ALU MEM WR
1w $3, 300($0) < >'”Sg“c“°”” °oe
etch
 / 800ps
< >
800ps

Pipelined
Instruction 0 200 400 600 800 1000 1200 1400 1600 _
Order i : i i : i : : —pTime

1w $1, 100($0) '”Ségtfjr‘f’” e AL mEm [REC

Instruction REG REG

1w $2, 200($0)1§iigr Coteh D ALU MEM R

1w $3, 300($0) Dm— Nl s R mEm [REC
\ 4 200ps

< < < > > >
200ps 200ps 200ps 200ps 200ps

20

Pipelined datapath

MemWrite

Address

Data
memory

Read
data

Write
data

MEM/WB

MemToReg

=>4

MemRead

14
0 g
PCSrc
4 IF/ID ID/EX EX/MEM
¥ q
P Add
¢ Shift
RegWrite left 2
— »| Read Read jmep
register 1 data 1
Read Instruction
o ¥ —8—pf Read Read
address [31-0] register 2 data2 =P 9™
Write
Instruction > register
memory . Registers
—p Write
data
Instr [15 - 0] Sign
,@ 3 RegDst
Instr [20 - 16] R ‘Aa
Instr [15 - 11] g 'U >

Pipeline: Hazards

Single-Cycle vs. Pipelined Execution

Non-Pipelined

Instruction 0 200 400 600 800 1000 1200 1400 1600 1800 _
Order ; ; ; ; ; ; ; ; ; I »Time

Instructi REG REG
1w $1, 100 ($0)|nsmucton RDI ALU I vem [REC
Instruction] REG REG
lw $2, 200($0) 800D > oich IRDI ALU MEM WR
1w $3, 300($0) < >'”Sg“c“°”” °oe
etch
 / 800ps
< >
800ps

Pipelined
Instruction 0 200 400 600 800 1000 1200 1400 1600 _
Order i : i i : i : : —pTime

1w $1, 100($0) '”Ségtfjr‘f’” e AL mEm [REC

Instruction REG REG

1w $2, 200($0)1§iigr Coteh D ALU MEM R

1w $3, 300($0) Dm— Nl s R mEm [REC
\ 4 200ps

< < < > > >
200ps 200ps 200ps 200ps 200ps

23

Speedup

« Consider the unpipelined processor introduced previously. Assume that it has
a 1 ns clock cycle and it uses 4 cycles for ALU operations and branches, and
5 cycles for memory operations, assume that the relative frequencies of these
operations are 40%, 20%, and 40%, respectively. Suppose that due to clock
skew and setup, pipelining the processor adds 0.2ns of overhead to the clock.
Ignoring any latency impact, how much speedup in the instruction execution
rate will we gain from a pipeline?

Average instruction execution time
= 1 ns * ((40% + 20%)*4 + 407%*5)
= 4.4ns

Speedup from pipeline
= Average instruction time unpiplined/Average instruction time pipelined
= 4.4ns/1.2ns = 3.7

24

Comments about Pipelining

* The good news
— Multiple instructions are being processed at same time
— This works because stages are isolated by registers
— Best case speedup of N

e The bad news

— Instructions interfere with each other - hazards

« Example: different instructions may need the same piece of
hardware (e.g., memory) in same clock cycle

« Example: instruction may require a result produced by an
earlier instruction that is not yet complete

25

Pipeline Hazards

 Limits to pipelining: Hazards prevent next
Instruction from executing during its
designated clock cycle

— Structural hazards: two different instructions use
same h/w in same cycle

— Data hazards: Instruction depends on result of
prior instruction still in the pipeline

— Control hazards: Pipelining of branches & other
Instructions that change the PC

26

Structural Hazards

« Attempt to use same resource twice at same time

« Example: Single Memory for instructions, data
— Accessed by IF stage
— Accessed at same time by MEM stage

 Solutions ?
— Delay second access by one clock cycle

— Provide separate memories for instructions, data
*This is what the book does
*This is called a “Harvard Architecture”
Real pipelined processors have separate caches

27

Pipelined Example -
Executing Multiple Instructions

 Consider the following instruction
sequence:
1w Sr0, 10 (srl)
sw $sr3, 20($r4)
add $r5, Sr6, Sr7
sub $r8, $r9, S$rl0

28

Executing Multiple Instructions
Clock Cycle 1

LW

/ID ID/EX EX/IMEM MEM/WB

= ADDR

» RN1
5 RDA1
Instru AN P, ALU | » Zero
Mem 5 Register
5
—>

File gp2

L +
%

= ADDR

Data
Memory RD

>
(©z-xm)
i
Y

29

Executing Multiple Instructions
Clock Cycle 2

ID/EX EX/IMEM MEM/WB
— u— p—

|
+i
ADDR RN1
5 RDA1
Instruc RN2 —» Zero
Memc s Register —
5» WN File Rp2
WD E —»] ADDR
Data
E Memory RP[™
16)15 32 || | wo
N
D

30

Executing Multiple Instructions
Clock Cycle 3

_q IF/ID ID/EX EX/IMEM MEM/WB

=~ ADDR RD
32

Instruction
Memory

= ADDR

Data
Memory RP[™
» WD

31

Executing Multiple Instructions

PC

Clock Cycle 4

SUB oy LW
ImD ID/EX EX/IMEM MEM_IWB
-1 ADDR RD 14
Instruction | —> 2z
Memory

ADDR

Data
Memory R[]
1)

Executing Multiple Instructions
Clock Cycle 5

_q IF/ID ID/EX EX/IMEM MEM/WB
p— J— —

=~ ADDR RD A

+i
» RN1
Instruction DA | » Zero
5 Register —
’5' WN File gp2
—p| WD —»| ADDR

Memory
Data
E Memory RP[™
16)_IS 32 » WD
N
D

33

Executing Multiple Instructions
Clock Cycle 6

_ﬂ IF/ID ID/EX EXIMEM MEM/WB
— — p— []

+i
PC
— —-»{ ADDR RD »| RN1
32 5 RD1 .

Instruction AN P, Zero
Memory 5 Register —

—5"|WN File gp2

—p WD = ADDR

Data
Memory RP[™

>
(©z-xm)
i
Y

34

Executing Multiple Instructions
Clock Cycle 7

_q IF/ID ID/EX EX/IMEM MEM/WB
— r— —

4 i
I +
RN RD1 1= —p Zero
RN2
Register —
WN File gp2-
WD E —»] ADDR

Data
Memory RP[™

PC
— -1 ADDR RD —<>
Instruction IEEIN
Memory 5
5
—>

>
\
l
4

35

Executing Multiple Instructions
Clock Cycle 8

_q IF/ID ID/EX EX/IMEM MEM/WB
— — —

+i
PC
RN RD1 1= — Zero
RN2
Register —
WN File gp7}-
WD E = ADDR

—p ~-»| ADDR RD f=
32
Data
Memory RP[

Instruction
Memory

14

>
\
l
4

36

Alternative View - Multicycle Diagram

CC1i CC2 CC3 CC4 CC5 CC6 CC7 cCs8

Iw $r0, 10($rl) M ﬂi REG |— a_ _I: DM | REG

sw $r3, 20($r4) m - H rec |- a_ _I: pm | | Rrec
add $r5, $r6, $r7 M -] rec |— a_ _I: om | |dRec
sub $r8, $r9, $r10 wm 1 L rec L :B_ Wl‘,—ﬂ_ REG

37

Alternative View - Multicycle Diagram

CC6

cc1 cc2 ccs

lw $r0, 10($r1) M ﬂ-ﬁ REG | @_
sw $r3, 20($r4) m |- H rec |-
add $r5, $r6, $r7 M |—

sub $r8, $r9, $r10

CC7 cCs8

Memory Conflict

REG

38

One Memory Port Structural Hazards

I3 N

S0 Q3Q

Time (clock cycles)

Cycle

1iCycle 2iCycle 3iCycle 4iCycle 5: Cycle 6:Cycle 7: '

L o a d Ifetch

Instr 1

Instr 2

Stall

Instr 3;

Ifmq: : |I>2

Ifetch I :

: |Tfetch

Structural Hazards

Some Common Structural Hazards:
 Memory:
— we’ve already mentioned this one.

 Floating point:
— Since many floating point instructions require many
cycles, it’s easy for them to interfere with each other.
 Starting up more of one type of instruction than
there are resources.

— For instance, the PA-8600 can support two ALU + two
load/store instructions per cycle - that’s how much
hardware it has available.

40

Dealing with Structural Hazards

Stall

— low cost, simple
— Increases CPI
— use for rare case since stalling has performance effect

Pipeline hardware resource
— useful for multi-cycle resources
— good performance
— sometimes complex e.g., RAM

Replicate resource
— good performance
— Increases cost (+ maybe interconnect delay)
— useful for cheap or divisible resources

41

Structural Hazards

o Structural hazards are reduced with these rules:
— Each instruction uses a resource at most once
— Always use the resource Iin the same pipeline stage
— Use the resource for one cycle only

« Many RISC ISA’s designed with this in mind

« Sometimes very complex to do this.

— For example, memory of necessity is used in the IF and
MEM stages.

42

Data Hazards
e Data hazards occur when data Is used

before It 1s stored

Time (in clock cycles)

CcCo
-20

valueof 1 CC1 CC2 CC3 CC4 CC5 CC6 CcC7 CcCs8
register $2: 10 10 10 10 10/-20 -20 -20 -20
Program(
execution
orderQd
(in instructions)]]]
sub $2,$1,$3 | IM Reg| | —|: DM
and $12, $2, $5 IM |— J:[B % —|:DM-— — Reg
or $13, $6, M |- J:[— % —|:DM— - {Reg
add $14, $2, M < O % -|: DM — Reg
sw $15, 100 M JZ[L %— —[DMFH—

Reg

The use of the result of the SUB instruction in the next two instructions causes a
data hazard, since the register is not written until after those instructions read it.

43

Data Hazards

Execution Order is: Read After Write (RAW)

Instr,
Instr, Instr, tries to read operand before Instr, writes it

CI: add rl,r2,r3
J: sub r4,rl,r3

« Caused by a “Dependence” (in compiler nomenclature). This
hazard results from an actual need for communication.

44

Execution Order is:
Instr,
Instr,

Data Hazards
Write After Read (WAR)

Instr, tries to write operand before Instr, reads |
— Gets wrong operand

I: sub rd4,rl,r3
J: add rl,r2,r3
K: mul ré6,rl,r7

— Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

e Can’t happen in MIPS 5 stage pipeline because:
—All instructions take 5 stages, and

— Reads are always in stage 2, and

— Writes are always in stage 5
45

Execution Order is:
Instr,
Instr,

Data Hazards
Write After Write (WAW)

Instr, tries to write operand before Instr, writes it
— Leaves wrong result (Instr, not Instr;)

I: sub rl,r4,r3
J: add rl,r2,r3
K: mul r6,rl,r7

 (Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.
e Can’t happen in MIPS 5 stage pipeline because:

—All instructions take 5 stages, and
— Writes are always in stage 5

*Will see WAR and WAW in later more
complicated pipes
46

Data Hazards

e Solutions for Data Hazards
— Stalling

— Forwarding:
« connect new value directly to next stage

— Reordering

47

add $s0,$t0,$t1

STALL

STALL

sub $t2,$s0,$t3

Data Hazard - Stalling

2

4

©

8

10

12

16

18

F ﬂ_ EX|-HMEMEHS || ss0
— =y
EﬂfégtE |3§g£{E |3§EE{E IBjé;{E lyfégtE
|3§E;{E |3§E;{E IBjé;{E lyfg;tE [NfégtE
E I_SRO >EX— vemH-fwe

$s0 read

here

48

Data Hazards - Stalling

Simple Solution to RAW

Hardware detects RAW and stalls

Assumes register written then read each cycle
+ low cost to implement, simple
-- reduces IPC

Try to minimize stalls

Minimizing RAW stalls

Bypass/forward/shortcircuit (We will use the word “forward”)
Use data before it is in the register

+ reduces/avoids stalls

-- complex
Crucial for common RAW hazards

49

Data Hazards - Forwarding

« Key idea: connect new value directly to next stage
 Still read sO, but ignore in favor of new result

9 2 i 6 8 10 12 18

add $s0,$t0,$t1 IF

sub $t2, §s0,$t3 MEM WB

Problem: what about load instructions?

50

Data Hazards - Forwarding

« STALL still required for load - data avail. after MEM

« MIPS architecture calls this delayed load, initial
Implementations required compiler to deal with this

Q

6

10

12

lw $s0,20($t1)

STALL

sub $t2,$s0,$t3

=

O

BUBBLE

O

BUBBLE

O

BUBBLE

*

‘IF

MEM T_
4

BUBBLE

fort

—|WB

o1

This is another
representation

Data Hazards

of the stall.
LW R1,0(R2) IF ID EX MEM WB
SUB R4,R1,R5 IF ID EX MEM WB
AND R6, R1, R7 IF ID EX MEM WB
OR R8, R1, R9 IF ID EX MEM WB
LW R1,0(R2) IF ID EX MEM WB
SUB R4,R1,R5 IF ID stall EX MEM WB
AND R6, R1, R7 IF stall ID EX MEM | WB
OR R8,RL1,R9 @au? IF ID | EX | MEM| WB

Why “OR RS, R1, R9” needs to be stalled in “IF” stage? This 1s because if not, there
will be two 1nstructions (itself and “AND R6, R1, R7”) both reading register R1 1in the
same cycle, which is not allowed. For a register, two instructions can simultaneously
access 1t but 1t must be “one read and one write”, rather than, two writes. 52

Time (in clock cycles)

Valueof J CC1

register $2:

Program(
executiond
orderd

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Forwarding

Key idea: connect data internally before it's stored

CcCo
-20

cc2 cc3 Ccc4 CC5 CC6 ccv ccs
10 10 10 10 10/~ 20 -20 -20 -20
IF/ID ID/EX EX/MEM MEM/WB
M Reg[| DM | _{Reg
|+
— - 7 — _
IM Reg: E l_/—l—_DM _Reg
M Reg|_| %j— —|:DM— —{ Reg
M Hregl] —|:DM— L Reg
T PHIER

How would you design the forwarding?

Reg

53

Data Hazard Solution: Forwarding

Key idea: connect data internally before it's stored

Time (in clock cycles) >

CC1 CC2 CC3 CC4 CC5 CC6 CC7 ccs CC9

Value of register $2 : 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EXIMEM : X X X -20 X X X X X
Value of MEM/WB : X X X X -20 X X X X

Program(
execution order]

(in instructions)]
sub $2, $1,$3 | IM Reg| | DM [H Reg

and $12, $2, $5 M (H FHReg[| DM}— [HReg
— [
or $13, $6, $2 M HH FHReog[| j— -[DM HReg

add $14, $2, $2 IM |+ HHReg| | % —[DM— — Reg
sw $15, 100($2) IM H FH Reg[] % ~|ﬂT_|:|>Reg
v

Assumption:
» The register file forwards values that are read
and written during the same cycle.

54

Data Hazard Summary

* Three types of data hazards
— RAW (MIPS)
— WAW (not in MIPS)
— WAR (not in MIPS)

e Solution to RAW in MIPS
— Stall

— Forwarding
e Detection & Control

 Astall is needed if read a register after a load
Instruction that writes the same register.

— Reordering

55

Control Hazards

A control hazard 1s when we need to find
the destination of a branch, and can’t fetch

any new instructions until we know that
destination.

A branch Is either
— Taken: PC<=PC +4 + Imm
— Not Taken: PC <=PC + 4

56

Control Hazards

10: beq r1,|r3,36 I

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

}
36: xor r10,r1,r11

fetch

fetch

Control Hazard on Branches

faioicle
i)

fetch

1:& |l>2 |

The penalty when branch taken is _3 cycles!

Me

fetch

Three Stage Stall

S7

ProgramO
exe
order

(in

O =

cutiond
instructions)

=

40 beq $1, $3, 7

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 Iw $4, 50($7)
v

Time (in clock cycles)

Branch Hazards

« Just stalling for each branch is not practical
Common assumption: branch not taken

« When assumption fails: flush three instructions

CC1 CC2 CC3

CC4

DM

o
El

3

CC5

DM

=

CCeo

}@

CC7 ccs CC9

T

58

Basic Pipelined Processor

IF/ID

PC

—Hx c

Instruction
memoryl

ID/EX

IRs..10

IR11.15 _

MEM/WB.IR

Registers

al

Y

-

16_@ 32

— 4

EX/MEM
Branch
taken
Zero? —
(m)
u
X
>§ > ALU R .
M
u _—
o

extend

Y

Data
memory

MEM/WB

Y

In our original Design, branches have a penalty of 3 cycles

59

Reducing Branch Delay

>ADD
IF/ID -
4 =
(M
ADD u
X
IRG..10 -
PC
IR11..‘|5
Instruction | IR | _
memory g MEM/WB.IR| Registers
16 [Sign- \ 32
> extend

N

|

Zero?

ID/EX

Move following to ID stage
a) Branch-target address calculation
b) Branch condition decision

EX/MEM MEM/WB
M Data
u memory L | M
X u
- - X

Reduced penalty (1 cycle) when branch takel

60

Branches

.~—/- "
= Most of the work for a branch computation is done in the EX stage.
— The branch target address is computed.

— The source registers are compared by the ALU, and the Zero flag is set
or cleared accordingly.

= Thus, the branch decision cannot be made until the end of the EX stage.
— But we need to know which instruction to fetch next, in order to keep
the pipeline running!
— This leads to what’s called a control hazard.

Clock cycle
t 2 3 4 5 6 7 8
beq $2, $3, Label | ™ E Reg_g ’E DM E Reg

299 M |-

Stalling is one solution

= Again, stalling is always one possible solution.

Clock cycle
1 2 3 4 5 6 7 8

beq $2, $3, Label IM——RQ_BIDM__RQ

]
|
|
|

I |M_ Q IM —E—Reg BIDM__R&Q

» Here we just stall until cycle 4, after we do make the branch decision.

Branch prediction

|
= Another approach is to guess whether or not the branch is taken.
— In terms of hardware, it’s easier to assume the branch is not taken.

— This way we just increment the PC and continue execution, as for
normal instructions.

= |f we’re correct, then there is no problem and the pipeline keeps going at
full speed.

Clock cycle
1 2 3 4 5 6 7

beq $2, $3, Label | ™ Reg: :% I DM | || Reg

next instruction 1 M™ME R _5‘ I M e

. . IM — —Reg_é_ DM Reg
next instruction 2 || _9‘

Branch misprediction

= |f our guess is wrong, then we would have already started executing two
instructions incorrectly. We’ll have to discard, or flush, those instructions
and begin executing the right ones from the branch target address, Label.

beq $2, $3, Label

Clock cycle

DM

Reg

Performance gains and losses

|
» QOverall, branch prediction is worth it.
— Mispredicting a branch means that two clock cycles are wasted.

— But if our predictions are even just occasionally correct, then this is
preferable to stalling and wasting two cycles for every branch.

» All modern CPUs use branch prediction.
— Accurate predictions are important for optimal performance.

— Most CPUs predict branches dynamically—statistics are kept at run-
time to determine the likelihood of a branch being taken.

» The pipeline structure also has a big impact on branch prediction.

— A longer pipeline may require more instructions to be flushed for a
misprediction, resulting in more wasted time and lower performance.

— We must also be careful that instructions do not modify registers or
memory before they get flushed.

Implementing branches

= We can actually decide the branch a little earlier, in ID instead of EX.
— Our sample instruction set has only a BEQ.
— We can add a small comparison circuit to the ID stage, after the

source registers are read.

= Then we would only need to flush one instruction on a misprediction.

beq $2, $3, Label

next in

Label:

jon 1

Reg

Clock cycle

3

4

DM

Reg

DM

Reg

Implementing flushes

= We must flush one instruction (in its IF stage) if the previous instruction is
BEQ and its two source registers are equal.

= We can flush an instruction from the IF stage by replacing it in the IF/ID
pipeline register with a harmless nop instruction.

— MIPS uses sll $0, SO, 0 as the nop instruction.
— This happens to have a binary encoding of all 0s: 0000 0000.

» Flushing introduces a bubble into the pipeline, which represents the one-
cycle delay in taking the branch.

= The IF.Flush control signal shown on the next page implements this idea,
but no details are shown in the diagram.

v
‘:" v‘;"
Q
X
Y,
i\\ 0

Branching without forwarding and load stalls

N
— [ID/EX
0 /\ > EX/MEM
W/ IF/ID > Control M W MEM/WB
PEZSrc > EX M >TWH
4= N N |] [
BN S The other
P P SN o hdd— stuff just
“i1v lﬂ_ itf]t'fzt | / won’t fit!
______/f /
[» Read Read
register 1 data 1 I
Addr Instr N ALU
N Ry EES R »| Read f \ > Zero|—y)
register 2 __/ ALUSrc Result—,|
. Write Read | 0 ——p Address
Instruction " register data 2 Data
memory . .
Write Registers 1 memory
data
A ol Write Read |mp|
IF Flush **(Extend RegDst data _data
\._______/’;
T Rd > »
’ "\

68

Branch Behavior in Programs

e Based on SPEC benchmarks on DLX

— Branches occur with a frequency of 14% to 16% in integer
programs and 3% to 12% in floating point programs.

— About 75% of the branches are forward branches
— 60% of forward branches are taken

— 80% of backward branches are taken

— 67% of all branches are taken

« Why are branches (especially backward branches)
more likely to be taken than not taken?

69

Summary

= Three kinds of hazards conspire to make pipelining difficult.

= Structural hazards result from not having enough hardware available to
execute multiple instructions simultaneously.

— These are avoided by adding more functional units (e.g., more adders
or memories) or by redesigning the pipeline stages.

= Data hazards can occur when instructions need to access registers that
haven’t been updated yet.

— Hazards from R-type instructions can be avoided with forwarding.
— Loads can result in a “true” hazard, which must stall the pipeline.

» Control hazards arise when the CPU cannot determine which instruction
to fetch next.

— We can minimize delays by doing branch tests earlier in the pipeline.

— We can also take a chance and predict the branch direction, to make
the most of a bad situation.

