Sequential Design: Example 2

- Design a sequential modulo 3 accumulator for 2bit operands
- Definitions:
 - Modulo *n* adder an adder that gives the result of the addition as the remainder of the sum divided by *n*
 - Example: (2 + 2) modulo 3 = remainder of 4/3 = 1
 - Accumulator a circuit that "accumulates" the sum of its input operands over time it adds each input operand to the stored sum, which is initially 0.
- Stored sum: (Y₁,Y₀), Input: (X₁,X₀), Output: (Z₁,Z₀)

Modulo 3 Accumulator

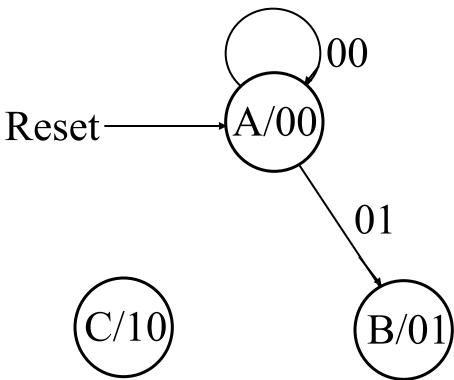
- For example, originally, Y1Y0=00 (assume this state is called A/00) and the first input is X1X0=10, then (10 + 00) mod 3 = 10. Therefore, state A/00 will transfer to state C/10. If the first input is X1X0=01, state A/00 will transfer to B/01 because the remainder of (stored sum + input) mod 3 = 01.
- Why we don't need input X1X0=11 ? Because whenever the input is 11, no state change!! (something + 11) mod 3 = something itself!

Analysis

- Assume that X1X0 is input (a two-bit binary number), Z1Z0 is output, Y1Y0 is stored sum and it is used to store the result of [(X1X0 + Y1Y0) mod 3].
- Originally, Y1Y0=00. Also, Z1Z0=Y1Y0 (now you understand that the output Z1Z0 only depends on the state Y1Y0 and therefore this is a Moore model sequential circuit).
- We're using D Flip-Flops for storing Y1Y0. For example, originally, Y1Y0=00 (assume this state is called A/00) and the first input is X1X0=01, then (01 + 00) mod 3 = 01. Therefore, state A/00 will transfer to state B/01. Since there are only 3 possibilities for state Y1Y0 (A/00, B/01, C/10), we only need 3 states to describe the behavior of this sequential circuit.

Example 2 (continued)

• Complete the state diagram:



Example 2 (continued)

• Complete the state table

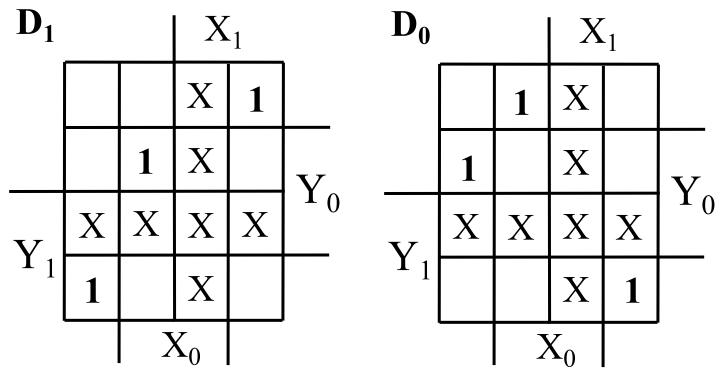
X ₁ X ₀	00	01	11	10	Z_1Z_0
Y ₁ Y ₀					1 0
	Y ₁ (t+1),	Y ₁ (t+1),	Y ₁ (t+1),	$Y_{1}(t+1),$	
	Y ₀ (t+1)	Y ₀ (t+1)	Y ₀ (t+1)	Y ₀ (t+1)	
A (00)	00	01	X	10	00
B (01)	01	10	X	00	01
- (11)	X	X	X	X	11
C (10)	10	00	X	01	10

• State Assignment: $(Y_1, Y_0) = (Z_1, Z_0)$

• Codes are in gray code order to ease use of K-maps in the next step

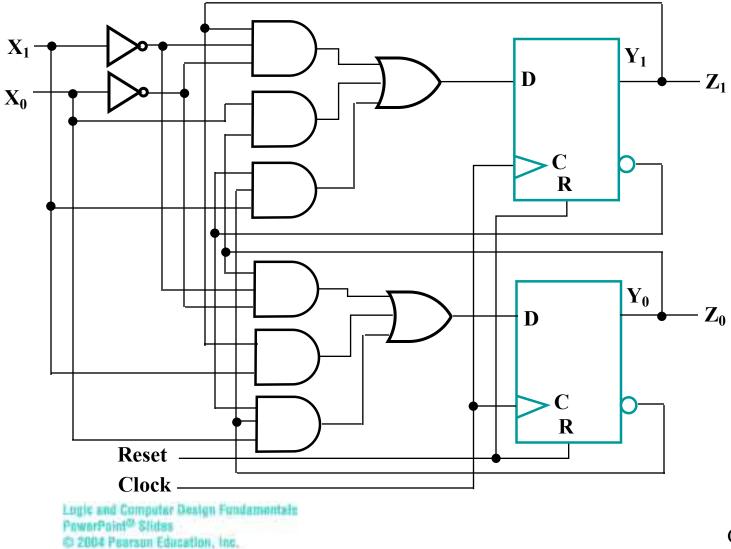
Example 2 (continued)

Find optimized flip-flop input equations for D flip-flops



• $\mathbf{D}_1 = Y_1 X_1' X_0' + Y_0 X_0 + Y_1' Y_0' X_1$ • $\mathbf{D}_0 = Y_0 X_1' X_0' + Y_1 X_1 + Y_1' Y_0' X_0$

Circuit - Final Result with AND, OR, NOT



Chapter 6 - Part 2 7

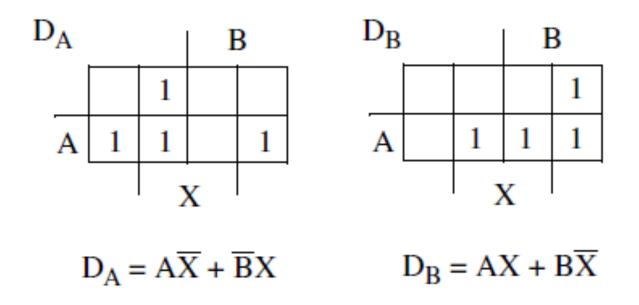
Sequential Design: Example 3 (Q4-13)

 Design a sequential circuit with two D flip-flops A and B and one input X. When X=0, the state of the circuit remains the same. When X=1, the circuit goes through the state transitions from 00 to 10 to 11 to 01, back to 00, and then repeats.

Draw the state table

Present state		Input	Next state		
Α	В	X	Α	В	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	0	1	
0	1	1	0	0	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	1	1	
1	1	1	0	1	

Derive equations using K-map

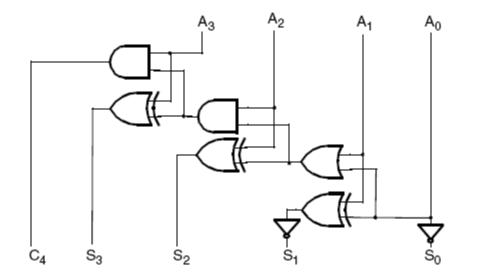


Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Chapter 6 - Part 2 10

Hints Q 3-57

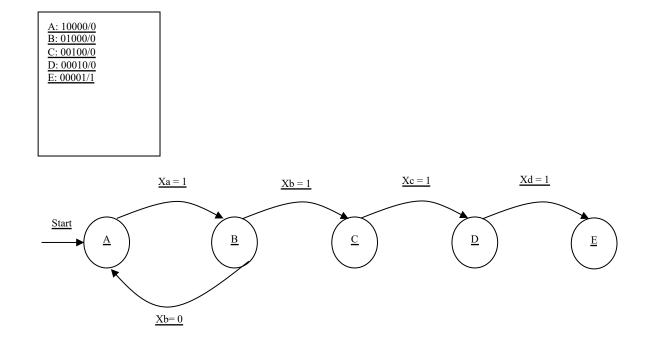
Look at the slides 29~30 in Lecture 12



Hints of Q 4-17

- Moore model and you will have 5 states in order to remember the four specified inputs (your secret code for the luggage).
- 1-hot code refers to a group of bits among which the legal combinations of values are only those with a single high (1) bit and all the others low (0). For example, the output of a decoder is usually a one-hot code, and sometimes the state of a state machine is represented by a one-hot code.
- Since you're required to use a 1-hot code for the state assignment, you need 5 bits for each of the five states. For example, you will use "10000" for state A and "01000" for state B and so on.
- Your first state (let's say A) will be the starting state. If your first button push is correct (let's say Xa=1), then your state machine goes to next state (i.e., B) which has state "01000/0" (/0 means that the output is zero, which means the lock is not unlocked yet). If your first button push is wrong (i.e., Xa=0), then your state machine goes no where (in other words, the next state is the current state). Similarly, your state machine (or say state diagram) reaches its final state (00001/1), which represents opening the lock successfully after it saw "Xa, Xb, Xc, and Xd" (your secret code).
- You cannot arbitrarily use four digits to be your secret code. Instead, you need to use a general one like "Xa Xb Xc Xd". Your circuit should be general in the sense that your secret code can be any of 4 digits in the range of 0 to 9.

State Diagram of Q4-17



7. Question 4-17

Present state		Inputs			Next state	Output
ABCDE	Ха	Xb	Хс	Xd	ABCDE	U
10000	0	Х	Х	Х	10000	0
10000	1	х	Х	X	01000	0
01000	Х	0	Х	X	10000	0
01000	Х	1	Х	Х	00100	0
00100	Х	х	0	х	10000	0
00100	Х	х	1	х	00010	0
00010	Х	х	Х	0	100 0 0	0
00010	х	х	х	1	00001	0
00001	х	x	х	х	00001	1

Terms of Use

- © 2004 by Pearson Education, Inc. All rights reserved.
- The following terms of use apply in addition to the standard Pearson Education <u>Legal Notice</u>.
- Permission is given to incorporate these materials into classroom presentations and handouts only to instructors adopting Logic and Computer Design Fundamentals as the course text.
- Permission is granted to the instructors adopting the book to post these materials on a protected website or protected ftp site in original or modified form. All other website or ftp postings, including those offering the materials for a fee, are prohibited.
- You may not remove or in any way alter this Terms of Use notice or any trademark, copyright, or other proprietary notice, including the copyright watermark on each slide.
- Return to Title Page