
Chapter 4 1

Chapter 3: part 3 Binary Subtraction

 Iterative combinational circuits

 Binary adders

• Half and full adders

• Ripple carry and carry lookahead adders

 Binary subtraction

 Binary adder-subtractors

• Signed binary numbers

• Signed binary addition and subtraction

• Overflow

 Other Arithmetic Functions

Chapter 4 2

Unsigned Subtraction (continued)

 The subtraction, 2n - N, is taking the 2’s

complement of N

 To do both unsigned addition and unsigned

subtraction requires:

 Quite complex!

 Goal: Shared simpler

logic for both addition

and subtraction

 Introduce complements

as an approach

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S

0 1
Subtract/Add

Chapter 4 3

Complements

 Two complements:

• Diminished Radix Complement of N

 (r - 1)’s complement for radix r

 1’s complement for radix 2

 Defined as (rn - 1) - N

• Radix Complement

 r’s complement for radix r

 2’s complement in binary

 Defined as rn - N

 Subtraction is done by adding the complement of

the subtrahend

 If the result is negative, takes its 2’s complement

Chapter 4 4

Binary 1's Complement

 For r = 2, N = 011100112, n = 8 (8 digits):

(rn – 1) = 256 -1 = 25510 or 111111112

 The 1's complement of 011100112 is then:

11111111

– 01110011

10001100

 Since the 2n – 1 factor consists of all 1's and

since 1 – 0 = 1 and 1 – 1 = 0, the one's
complement is obtained by complementing
each individual bit (bitwise NOT).

Chapter 4 5

Binary 2's Complement

 For r = 2, N = 011100112, n = 8 (8 digits),
we have:

(rn) = 25610 or 1000000002

 The 2's complement of 01110011 is then:

100000000

– 01110011
10001101

 Note the result is the 1's complement plus
1, a fact that can be used in designing
hardware

Chapter 4 6

Subtraction with 2’s Complement

 For n-digit, unsigned numbers M and N, find M
- N in base 2:

• Add the 2's complement of the subtrahend N to
the minuend M:

M + (2n - N) = M - N + 2n

• If M  N, the sum produces end carry rn which is
discarded; from above, M - N remains.

• If M < N, the sum does not produce an end carry
and, from above, is equal to 2n - (N - M), the 2's
complement of (N - M).

• To obtain the result - (N – M) , take the 2's
complement of the sum and place a - to its left.

Chapter 4 7

Important Observation

 The complement of the complement

restores the number to its original value.

 This is true for both 1’s complement and

2’s complement.

Chapter 4 8

Unsigned 2’s Complement Subtraction Example 1

 Find 010101002 – 010000112

01010100 01010100

– 01000011 + 10111101

00010001

 The carry of 1 indicates that no

correction of the result is required.

1

2’s comp

Chapter 4 9

Unsigned 2’s Complement Subtraction Example 2

 Find 010000112 – 010101002

01000011 01000011

– 01010100 + 10101100

11101111

00010001

 The carry of 0 indicates that a correction
of the result is required.

 Result = – (00010001)

0

2’s comp

2’s comp

Chapter 4 10

Signed Integers

 Positive numbers and zero can be represented by

unsigned n-digit, radix r numbers. We need a

representation for negative numbers.

 To represent a sign (+ or –) we need exactly one more

bit of information (1 binary digit gives 21 = 2 elements

which is exactly what is needed).

 Since computers use binary numbers, by convention,

the most significant bit is interpreted as a sign bit:

s an–2  a2a1a0

where:

s = 0 for Positive numbers

s = 1 for Negative numbers

and ai = 0 or 1 represent the magnitude in some form.

Chapter 4 11

Signed Integer Representations

Signed-Magnitude – the number consists of a

magnitude and a symbol (0 for +, 1 for -).

Signed-Complement – a negative number is

represented by its complement. There are two

possibilities here:

• Signed 1's Complement

 Uses 1's Complement Arithmetic

• Signed 2's Complement

 Uses 2's Complement Arithmetic

Chapter 4 12

Signed Integer Representation Example

 r =2, n=3

Number Sign -Mag. 1's Comp. 2's Comp.

+3 011 011 011

+2 010 010 010

+1 001 001 001

+0 000 000 000

– 0 100 111 —

– 1 101 110 111

– 2 110 101 110

– 3 111 100 101

– 4 — — 100

Chapter 4 13

Corresponding positive number?

 The two's complement of a negative

number is the corresponding positive

value. For example, inverting the bits of

−5 (1111 1011) gives:

• 0000 0100

 And adding one gives the final value:

• 0000 0101 (5)

Chapter 4 14

Signed-Complement Arithmetic

 Addition:

1. Add the numbers including the sign bits,

discarding a carry out of the sign bits (2's

Complement)

2. If the sign bits were the same for both

numbers and the sign of the result is different, an

overflow has occurred.

3. The sign of the result is computed in step 1.

 Subtraction:

Form the 2’s complement of the number you

are subtracting and follow the rules for addition.

Chapter 4 15

 Example 1: 1101

+0011

 Example 2: 1101

-0011

Signed 2’s Complement Examples

Result is 0000. The carry out of the MSB is discarded.

Result is 1010. The carry out of the MSB is discarded.

Chapter 4 16

2’s Complement Adder/Subtractor

 Subtraction can be done by addition of the 2's Complement.

1. Complement each bit (1's Complement.)

2. Add 1 to the result.

 The circuit shown computes A + B and A – B:

 For S = 1, subtract,

the 2’s complement

of B is formed by using

XORs to form the 1’s

comp and adding the 1

applied to C0.

 For S = 0, add, B is

passed through

unchanged

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0

Chapter 4 17

Overflow Detection

 Overflow occurs if n + 1 bits are required to contain the

result from an n-bit addition or subtraction

 Overflow can occur for:

• Addition of two operands with the same sign

• Subtraction of operands with different signs

 Signed number overflow cases with correct result sign

0 0 1 1

+ 0 - 1 - 0 + 1

0 0 1 1

 Detection can be performed by examining the result

signs which should match the signs of the top operand

Chapter 4 18

Overflow Detection

 Signed number cases with carries Cn and Cn-1 shown for correct

result signs:

0 0 0 0 1 1 1 1

0 0 1 1

+ 0 -1 -0 +1

0 0 1 1

 Signed number cases with carries shown for erroneous result signs

(indicating overflow):

0 1 0 1 1 0 1 0

0 0 1 1

+ 0 - 1 -0 + 1

1 1 0 0

 Simplest way to implement overflow V = Cn + Cn - 1

Chapter 4 19

Overflow Example (1)

Carries: 0 1

+70 0 1000110

+80 0 1010000

+150 1 0010110

Chapter 4 20

Overflow Example (2)

Carries: 1 0

-70 1 0111010

-80 1 0110000

-150 0 1101010

A simple logic that provides overflow

detection is shown in Figure 4-8 (see next

slide)

Chapter 4 21

Figure 4-8

Chapter 4 22

Class Exercises (1)

 Perform the indicated subtraction with

the following unsigned binary numbers

by taking the 2s complement of the

subtrahend: (please see slide 6)

 a) 11010 – 10001

 b) 11110 - 1110

11010 + 01111 = 01001

11110 + 10010 = 10000

Chapter 4 23

Class Exercises (2)

 Perform the arithmetic operations (+36) +

(-24) and (-35) – (-24) in binary using

signed 2s complement representation for

negative numbers. (see slide 14)

+36=0100100; -24=1101000; -35=1011101

Chapter 4 24

Other Arithmetic Functions

 Convenient to design the functional

blocks by contraction - removal of

redundancy from circuit to which input

fixing has been applied

 Functions

• Incrementing

• Decrementing

• Multiplication by Constant

• Zero Fill and Extension

Chapter 4 25

Design by Contraction

 Contraction is a technique for simplifying

the logic in a functional block to

implement a different function

• The new function must be realizable from

the original function by applying

rudimentary functions to its inputs

• Contraction is treated here only for

application of 0s and 1s (not for X and X)

• After application of 0s and 1s, equations or

the logic diagram are simplified by using

rules given on page 168 of the text.

Chapter 4 26

Design by Contraction Example

 Contraction of a ripple carry adder to incrementer for n = 3

• Set B = 001

• The middle cell can be repeated to make an incrementer with n > 3.

Chapter 4 27

Discussion

 Can we make the three cells identical?

 How?

The rightmost cell in position 0 can be replaced with the cell in

position 1 with B0=0 and C0=1. Likewise, the output C3 could

be generated but no used. In both cases, logic cost and power

efficiency are sacrificed to make all of the cells identical.

Chapter 4 28

Incrementing & Decrementing

 Incrementing

• Adding a fixed value to an arithmetic variable

• Fixed value is often 1, called counting (up)

• Examples: A + 1, B + 4

• Functional block is called incrementer

 Decrementing

• Subtracting a fixed value from an arithmetic variable

• Fixed value is often 1, called counting (down)

• Examples: A - 1, B - 4

• Functional block is called decrementer

Chapter 4 29

Multiplication by a Constant

 Multiplication of B(3:0) by 101

 See text Figure 4-10 (a) for contraction
B 1B 2B 3

00 B
0

B 1B 2B 3

Carry

output

4-bit Adder

Sum

B 0

C 0C 1C2C3C4C5C6

Chapter 4 30

Zero Fill

 Zero fill - filling an m-bit operand with 0s

to become an n-bit operand with n > m

 Filling usually is applied to the MSB end

of the operand, but can also be done on

the LSB end

 Example: 11110101 filled to 16 bits

• MSB end: 0000000011110101

• LSB end: 1111010100000000

Chapter 4 31

Extension

 Extension - increase in the number of bits at the

MSB end of an operand by using a complement

representation

• Copies the MSB of the operand into the new

positions

• Positive operand example - 01110101 extended to 16

bits:

0000000001110101

• Negative operand example - 11110101 extended to 16

bits:

1111111111110101

Chapter 4 32

Extension Example

 01101011 (107 in decimal)

0000000001101011

 10010101 (how much in 2’s complement?)

1111111110010101

Chapter 4 33

Weekly Exercises

 3-50

 3-51

 3-54

